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Chapter 1

Course description

Instructor: Weiyi Zhang
Email: weiyi.zhang@warwick.ac.uk
Webpage: http://homepages.warwick.ac.uk/staff/Weiyi.Zhang/
Lecture time (MS Teams):

Monday 3:05pm - 3:50 pm
Thursday 9:05am - 9:50 am from week 2

Support class:
Thursday 2:05pm - 2:50 am from week 2

TA: Thomas Holt, Thomas.Holt@warwick.ac.uk

Reference books:

• C. Chevalley, “Theory of Lie Groups”, Vol I, Princeton.

• J.J. Duistermaat, J.A.C. Kölk, “Lie Groups”, Springer, 2000.

• F.W. Warner, “Foundations of Differentiable Manifolds and Lie Groups”,
Graduate Texts in Mathematics, 94, Springer, 1983.

• A. Kirillov, Jr., “Introduction to Lie Groups and Lie Algebras”, Cam-
bridge Studies in Advanced Mathematics, 113. Cambridge University
Press, 2008.

• D. Bump, “Lie groups”, Graduate Texts in Mathematics, 225. Springer-
Verlag, 2004.
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6 CHAPTER 1. COURSE DESCRIPTION

Prerequisites: A knowledge of calculus of several variables including the
Implicit Function and Inverse Function Theorems, as well as the existence
theorem for ODEs, as well as some basic notions from topology, namely open
and closed sets, continuity etc.

Knowledge of MA 3H5 Manifolds will be required. Results needed from
the theory of manifolds and vector fields will be stated but not proved in the
course.

Contents: The concept of continuous symmetry suggested by Sophus Lie
had an enormous influence on many branches of mathematics and physics
in the twentieth century. Created first as a tool in a small number of areas
(e.g. PDEs) it developed into a separate theory which influences many areas
of modern mathematics such as geometry, algebra, analysis, mechanics and
the theory of elementary particles, to name a few.

In this module we shall introduce the classical examples of Lie groups
and basic properties of the associated Lie algebra and exponential map. We
will also talk about some representation theory and basic structural theory
of compact Lie groups.



Chapter 2

Lie groups and Lie algebras

2.1 Lie Group

2.1.1 Smooth manifolds

To introduce the notion of Lie groups, we need to first briefly recall the
definition of (smooth) manifolds.

Let M be a topological space. A local chart on M is a non-empty open
set U ⊂M with a homeomorphism φ of U into an open set in Rn.

Two charts (φ, U) and (ψ, V ) are compatible if either U ∩ V = ∅ or
U ∩ V 6= ∅ and ψ ◦ φ−1 : φ(U ∩ V )→ ψ(U ∩ V ) is a diffeomorphism.

An atlas on M is a collection {(φα, Uα) : α ∈ A} of local charts indexed
by some set A which are pairwise compatible and M = ∪α∈AUα. An atlas is
called maximal if every chart compatible with all the charts of the atlas is
already in the atlas. Every atlas extends to a unique maximal atlas.

A smooth manifold is a second countable Hausdorff topological space M
with a choice of a maximum atlas of (smooth) atlas.

Other than proving a topological space is a manifold directly by definition,
there is another way using implicit function theorem.

Theorem 2.1.1. If y ∈ Rk is a regular value of a smooth map F : U → Rk

from an open set U ⊂ Rn+k, then F−1(y) = {x ∈ U : F (x) = y} is a manifold
of dimension n.

We say that y is a regular value on F if for every x which satisfies F (x) =
y, the derivative of F at x is surjective.

If M and N are manifolds then a continuous map f : M → N is smooth
if for any pair of charts (U, φ) on M and (V, ψ) on N with U ∩ f−1(V ) 6= ∅,
the map ψ ◦ f ◦ φ−1 on φ(U ∩ f−1(V )) is smooth (as a map between open
sets in Euclidean spaces).

7



8 CHAPTER 2. LIE GROUPS AND LIE ALGEBRAS

Say f is a diffeomorphism if f is a homeomorphism and f, f−1 are smooth.
Two manifolds are diffeomorphic if there is a diffeomorphism between them.

If N = R with standard smooth structure, the smooth maps are called
smooth functions on M . The set of smooth functions is denoted by C∞(M).
It is a ring with identity.

2.1.2 Lie groups

Definition 2.1.2. A Lie group G is a smooth manifold which is also a group
such that the multiplication map

m : G×G→ G, (g, h) 7→ gh

and the inverse map
i : G→ G, g 7→ g−1

are smooth (i.e. C∞) maps.

When M and N are manifolds, then their product M × N is also a
manifold. Thus the definition makes sense.

Here come two remarks. First, it suffices to require that the single map
(g, h) 7→ gh−1 is smooth. Second, we know that requiring all structures to
be C0 is enough to imply smoothness. This is Hilbert’s 5th problem. In fact,
the argument is much easier if we assume C2.

Example: The following are examples of Lie groups.

1. A finite group is a Lie group of dimension zero.

2. (Rn,+).

3. (Rn/Zn,+), an n-dimensional torus. Smoothness follows because it is
a local property.

4. (R \ {0}, ·), the multiplicative group of the real line.

5. GL(V ), the automorphisms of a finite dimensional real vector space V .
Choosing a basis for V gives an isomorphism of GL(V ) and GL(n,R),
the group of n×n invertible matrices with real coefficients. It is an open
subset of in Mn(R) (= n× n real matrices ∼= Rn2

). The multiplication
is smooth since it is given by a quadratic polynomial. The inverse is
smooth since the entries are polynomials divided by det g 6= 0 which is
smooth. It is Lie group of dimension n2.

For complex numbers C and quaternions H, GL(n,C) and GL(n,H)
(as well as Mn(C),Mn(H)) are defined similarly.
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6. U(n), the group of unitary matrices of rank n: i.e. matrices satisfying
X∗ · X = In. Look at the map F : Mn(C) → Hn(C), F (X) = X∗ ·
X, where Hn(C) = {A ∈ Mn(C) : A∗ = A} is the set of Hermitian

matrices. dimHn(C) = n+ n(n−1)
2
· 2 = n2. We check that the identity

matrix In is a regular value of F .

d

dt
F (X + tA)|t=0 =

d

dt
(X∗ + tA∗)(X + tA) = X∗A+ A∗X.

So the differential at X is a linear map Mn(C)→ Hn(C) : A 7→ X∗A+
A∗X. As X ∈ F−1(In) = U(n), any Hermitian matrix B is X∗A +
A∗X when A = 1

2
X · B(= 1

2
(X∗)−1 · B). This shows the differential is

surjective and hence In is a regular value of F .

By Theorem 2.1.1, we know U(n) is a manifold of dimension 2n2−n2 =
n2. Multiplication and inverse are smooth since they are restrictions
from that of GL(n,C). So U(n) is a Lie group.

We have U(1) = S1.

7. SU(n), the group of n× n matrices with complex coefficients and sat-
isfying X∗ ·X = In, detX = 1. Since det(X∗ ·X) = | detX|2, we know
| detX| = 1 for X ∈ U(n). Look at the map

f : Mn(C)→ Hn(C)× R, f(X) = (X∗X, i(detX − detX∗)).

We compute

d

dt
det(X + tA)|t=0 =

d

dt
det(In + tX−1A)|t=0 = tr(X−1A)

when detX = 1 (= (−1)n when detX = −1). So the differential of f
at preimage of (In, 0), restricting at detX = 1, is a linear map

Mn(C)→ Hn(C)× R ∼= Rn2+1 .

A 7→ (X∗A+ A∗X, i · tr(X∗A− A∗X))

It is a linear algebra exercise to check this map is onto. Hence SU(n)
is a manifold of dimension n2 − 1 by Theorem 2.1.1.

Multiplication and inversion are smooth in the matrix entries, so SU(n)
is a Lie group.

One can see that

SU(2) = {
(
α β
−β̄ ᾱ

)
: α, β ∈ C, |α|2 + |β|2 = 1}.
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Write α = x1 + ix2, β = x3 + ix4, xi ∈ R, we see that SU(2) is diffeo-
morphic to S3.

In fact, the only spheres Sn which could be given the structure of Lie
groups are S1 and S3.

In the following, we list more Lie groups without proof. The argument
is similar to the above two examples.

8. Special linear group SL(n,R) = {X ∈ GL(n,R) : detX = 1} is a Lie
group of dimension n2 − 1.

9. O(n) = {X ∈ Mn(R) : X tX = In}, the orthogonal group, is a Lie

group of dimension n(n−1)
2

.

10. SO(n) = O(n) ∩ SL(n,R), special orthogonal group. SO(n) is the
component of the identity of O(n).

SO(2) = U(1) = S1. SO(3) is the rotation group of our 3D space.

11. O(p, q), SO(p, q), indefinite orthogonal groups. Define non-singular
bilinear form

Bp,q(x, y) =

p∑
i=1

xi · yi −
p+q∑
i=p+1

xi · yi = xtIp,qy.

Then O(p, q) = {g ∈ Mp+q(R) : Bp,q(gx, gy) = Bp,q(x, y),∀x, y ∈
Rp+q}, or equivalently gtIp,qg = Ip,q. It is a Lie group of dimension
(p+q)(p+q−1)

2
. For g ∈ O(p, q), (det g)2 = 1.

So SO(p, q) = O(p, q) ∩ SL(p+ q,R) is an open subgroup of O(p, q).

SO(0, n) = SO(n, 0) = SO(n) and SO(1, 1) = R. Lorentz group
SO(1, 3).

One can similarly define U(p, q) and SU(p, q).

12. Sp(2n,R) symplectic group. Define the bilinear formB2n(x, y) = xtJ2ny

where J2n =

(
0 −In
In 0

)
.

Sp(2n,R) = {g ∈M2n(R) : B(gx, gy) = B(x, y),∀x, y ∈ R2n},

equivalently gtJ2ng = J2n.

Define F (g) = gtJ2ng, and A2n(R) = {A ∈ M2n(R) : At = −A}.
Then F : M2n(R) → A2n(R) and Sp(2n,R) = F−1(J2n). Showing J2n
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is a regular value would imply Sp(2n,R) is a manifold of dimension

4n2 − 2n(2n−1)
2

= 2n2 + n. It is a group with matrix multiplication, so
a Lie group.

13. Complex versions SL(n,C),O(n,C), SO(n,C),O(p, q;C) = O(p+q,C),
Sp(2n,C). Notice for Sp(2n,C), the corresponding bilinear form is
B(x, y) =

∑n
i=1(xn+iyi−xiyn+i). If x = (x1, · · · , x2n) and y = (y1, · · · , y2n).

14. Compact symplectic group Sp(n) = {X ∈ Mn(H) : X̄ tX = I} is just
the quaternion unitary group. It is a Lie group of dimension 4n2− (n+
n(n−1)

2
· 4) = 2n2 + n.

One can show that Sp(n) = U(2n) ∩ Sp(2n,C). The standard Hermi-
tian form on Hn is K(v′, w′) =

∑
v̄′iw

′
i. Here the conjugation is the

quaternion conjugation a+ bi+ cj + dk = a − bi − cj − dk. Use the
identification C2n ∼= Hn by

(z1, · · · , z2n) 7→ (z1 + jzn+1, · · · , zn + jz2n),

and write v′i = vi + jvn+i and similarly for w′i, we can rewrite the
quaternion Hermitian form as K(v′, w′) = H(v, w)− jQ(v, w) where H
is the standard complex Hermitian form H(v, w) =

∑n
i=1 v̄iwi (here the

conjugation is the complex one, not the quaternion one) and Q(v, w) =∑n
i=1(vi+nwi−viwi+n). In the computation, notice v̄′i = v̄i−jvn+i where

v̄′i and v̄i means quaternion and complex conjugation respectively, and
use the relation jz = z̄j for any z ∈ C.

This implies Sp(n) = U(2n) ∩ Sp(2n,C). Strictly speaking, the above
argument only shows Sp(n) = U(2n) ∩ Sp(2n,C) ∩ GL(n,H). But we
actually have U(2n)∩Sp(2n,C) ⊂ GL(n,H) as g∗g = I2n and g∗J2ng =
J2n imply J2ng = gJ2n. In fact, U(2n), Sp(2n,C) and GL(n,H) are
called compatible triple and any element in any two belongs to the
third one. Thus, Sp(n) is the intersection of any two of the three
groups.

Exercise: Show U(n) = O(2n) ∩ Sp(2n,R).

One notices that SU(n), SO(n), Sp(n) (and U(n)) are compact connected
Lie groups.

The following is a more direct way to show something is a Lie group. We
will prove it later in the class.

Theorem 2.1.3. Let G be a Lie group, H ⊂ G a subgroup in the algebraic
sense. If H is a closed as a subset of G, then H has a unique structure of a
Lie subgroup.
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Let us now define the notion of Lie group action.

Definition 2.1.4. A (left) action of a Lie group G on a manifold M is a
smooth map G×M →M written (g,m) 7→ g ·m such that g · (h ·m) = gh ·m
and e ·m = m.

A representation of G is a linear action on a vector space, i.e. a homo-
morphism G→ GL(V ).

There are two important left actions of G on G itself.

lg : G→ G, h 7→ gh

rg : G→ G, h 7→ hg−1.

2.2 Lie algebra

2.2.1 Lie algebra

Definition 2.2.1. A Lie algebra is a vector space V (over a field K) with
a bilinear map (called the Lie bracket) [ , ] : V × V → V such that for all
X, Y, Z ∈ V ,

1. [X, Y ] = −[Y,X]

2. [[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0 (Jacobi identity)

Example:.

1. Suppose A is an associative algebra. We can turn A into a Lie algebra
by defining [a, b] = ab − ba. In particular, we may take A = End(V )
for some vector space V , e.g. A = Mn(R),Mn(C).

2. Suppose A is an associative algebra and Der(A) the space of deriva-
tions, i.e. linear maps d : A → A satisfying d(ab) = a(db) + (da)b
for all a, b ∈ A. Then Der(A) is a Lie algebra under commutators,
[d1, d2] = d1d2 − d2d1.

3. Let M be a smooth manifold, A = C∞(M). Then Der(A) is the
derivations of C∞(M), i.e. the Lie algebra of vector fields which will
be recalled in the next subsection.

Definition 2.2.2. A homomorphism of Lie algebra F : g→ h is a K-linear
map which preserves the Lie bracket, i.e. [Fa, Fb] = F [a, b].
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Definition 2.2.3. A Lie subalgebra of g is a K-linear subspace h ⊂ g such
that [h, h] ⊂ h.

Note that a Lie subalgebra is clearly a Lie algebra in its own right, and
the inclusion h→ g is a homomorphism of Lie algebras.

Definition 2.2.4. An ideal in g is a K-linear subspace h ⊂ g such that
[g, h] ⊂ h.

If h ⊂ g is an ideal, then g/h has a unique Lie algebra structure so that
the quotient map g→ g/h is a homomorphism of Lie algebras.

Exercise: Check the Lie bracket on g induces a Lie bracket on the quotient
g/h.

2.2.2 Tangent and cotangent spaces

To define the tangent space, we recall the notion of germ. A germ is
an equivalence class of pairs (U, fU), where U is an open neighborhood of x
and fU : U → R is a smooth function. The pairs (U, fU) and (V, fV ) are
equivalent if fU and fV are equal on some neighborhood W ⊂ U ∩ V of x.
Let Ox be the vector space of germs at x.

A local derivation of Ox is a linear map X : Ox → R such that

X(fg) = f(x)X(g) + g(x)X(f).

Any such local derivative is called a tangent vector.
Let (U, φ) be a local chart with coordinate functions x1, · · · , xn and

a1, · · · , an ∈ R, then

Xf =
n∑
i=1

ai
∂f

∂xi
|x :=

∑
ai
∂f ◦ φ−1

∂ri
|φ(x)

where ri are standard coordinate functions on Rn, is a local derivation. In
fact, every local derivation is of this form.

Definition 2.2.5. The tangent space TxM is the set of such local derivatives.
It is an n-dimensional real vector space if M is an n-dimensional manifold.

Follows from the above discussion, {∂x1 , · · · , ∂xn} is a basis of TxM .
Intuitively, a tangent vector is an equivalence class of paths through x:

two paths are equivalent if they are tangent at x. By a path we mean
a smooth map u : (− ε, ε) → M such that u(0) = x for some ε > 0.
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Given a function, we can use the path to define a local derivation Xf =
d
dt
f(u(t))|t=0 =

∑
ai

∂f
∂xi

(x). We sometimes write this X ∈ TxM as u′(0).
By a vector field X on M , we mean a rule that assigns to each point

x ∈M an element Xx ∈ TxM and the assignment x 7→ Xx is smooth.

Proposition 2.2.6. There is a one-to-one correspondence between vector
fields on a smooth manifold M and derivations of C∞(M).

This implies vector fields can be restricted and patched, hence a sheaf.
Now consider two vector fields X, Y . Locally, X =

∑
ai

∂
∂xi

and Y =∑
bi

∂
∂xi

where ai, bi are smooth functions. We have [X, Y ] =
∑

i,j(aj
∂bi
∂xj
−

bj
∂ai
∂xj

) ∂
∂xi

.

Given a smooth map θ : M → N , one can describe the map dxθ :
TxM → Tθ(x)N (sometimes, we also write it as θ∗) by saying that it sends
v ∈ TxM to (θ◦γ)′(0) for any curve γ in M with γ′(0) = v. Or more directly,
dxθ(Xx)(f) = Xx(f ◦ θ). Two vector fields X, Y on M and N respectively
are said to be θ-related if dxθ(Xx) = Yθ(x) for all x ∈M .

The dual space of the tangent space is called the cotangent space of M
at x, and is denoted by T ∗xM . In the special case N = R above, we have
Xx(f) = dxf(Xx). In other words, dxf is a cotangent vector at x. In local
charts, the dual basis of {∂x1 , · · · , ∂xn} in T ∗xM is {dx1, · · · , dxn}. And we
have df = ∂f

∂x1
dx1 + · · ·+ ∂f

∂xn
dxn at x.

With the notion of induced maps on tangent spaces, we can also define
regular values. Then, we have the following general form of Theorem 2.1.1.

Theorem 2.2.7. If p ∈ N is a regular value of smooth map f : M → N
between manifolds, then f−1(p) is a manifold of dimension dimM − dimN .
Moreover, ker dqf = Tq(f

−1(p)) for any q ∈ f−1(p).

In fact, all these tangent spaces could be bundled together to form a
manifold TM , called the tangent bundle. As a set TM = tx∈MTxM . We
have a surjective map π : TM → M with π(TxM) = {x} for all x ∈ M .
Given a chart, φ : U → V ⊂ Rn of M , we have a map ψ : TU → V × Rn

given by ψ(v) = (φπ(v), dπ(v)φ(π(v))), where x = π(v). In this way, an atlas
{φα : Uα → Vα}α∈A gives rise to a smooth atlas {ψα} of TM . A smooth map
s : M → TM such that π ◦ s = id is called a section of tangent bundle. A
vector field is a smooth section of the tangent bundle.

Similarly, the cotangent spaces also form a vector bundle, called the cotan-
gent bundle T ∗M . A smooth section of the cotangent bundle is a 1-form (or
sometimes called a covector). Given each x ∈M , we can form the pth exte-
rior power of the cotangent space. This is also a vector bundle, ΛpT ∗M . A
section of it is called a p-form.
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2.3 The Lie algebra of a Lie group

Definition 2.3.1. A vector field X on a Lie group G is said to be left-
invariant if (dglh)Xg = Xlh(g) = Xhg for all g, h ∈ G.

This relation will be denoted shortly by (lh)∗(Xg) = Xhg. X is left-
invariant means that X is lh-related to itself for all h ∈ G.

Proposition 2.3.2. The vector space of left-invariant vector fields is closed
under [, ] and is a Lie algebra of dimension dimG. If Xe ∈ TeG, there is a
unique left-invariant vector field X on G with the prescribed tangent vector
at the identity.

Proof. We first need a lemma.

Lemma 2.3.3. If F : M → N , and vector fields X, Y on M and vector fields
X ′, Y ′ on N are F -related, then [X, Y ] is F -related to [X ′, Y ′].

Proof. Take f ∈ C∞(N), then we have Xx(f ◦F ) = dxF (Xx))(f) = X ′F (x)(f)
if X and X ′ are F -related. It is equivalent to write

(X ′(f)◦F )(x) = (X ′(f))(F (x)) = X ′F (x)(f) = Xx(f◦F ) = (X(f◦F ))(x),∀x ∈M.

Therefore X and X ′ are F -related if and only if X ′(f) ◦ F = X(f ◦ F ) for
all f ∈ C∞(M).

Now, we have

([X, Y ])(f ◦ F ) =X(Y (f ◦ F ))− Y (X(f ◦ F ))

=X(Y ′(f) ◦ F )− Y (X ′(f) ◦ F )

=X ′(Y ′(f)) ◦ F − Y ′(X ′(f)) ◦ F
=([X ′, Y ′](f)) ◦ F

This means [X, Y ] is F -related to [X ′, Y ′].

Now since left invariant vector fields are lh-related for all h ∈ G by defi-
nition, the Lie bracket of two left vector fields is a left invariant vector field.

Given a tangent vector Xe at the identity e, we may define a left-invariant
vector field by Xg = (lg)∗(Xe). Conversely any left-invariant vector field must
satisfy this identity. So the space of left-invariant vector fields is isomorphic
to the tangent space of G at e. Therefore, its dimension is dimG.

For ξ ∈ TeG, we denote by ξ̃ = (lg)∗ξ the left-invariant vector field on G
whose value at e is ξ.
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Definition 2.3.4. If G is a Lie group, then its Lie algebra g is the vector
space TeG with bracket [ξ, η] := [ξ̃, η̃]e.

It follows from Proposition 2.3.2, g is indeed a Lie algebra.

Example:.

1. GL(n,R) ⊂ Mn(R) is an open set so its tangent space at any g ∈
GL(n,R) is just Mn(R). We will show that the Lie bracket is just the
commutator [A,B] = AB −BA.

To prove this, we compute Ã, the left invariant vector field associated
with the matrix A ∈ TI GL(n,R). On GL(n,R), we have global co-
ordinate maps given by xij(g) = gij, the ijth entry of g ∈ GL(n,R).
Then the corresponding tangent vector is written as

∑
Aij

∂
∂xij

. To de-

termine Ã, we only need to evaluate Ãg(xpq) for any g ∈ GL(n,R) and
1 ≤ p, q ≤ n. By definition, Ãg(xpq) = ÃI(xpq ◦ lg) = A(xpq ◦ lg). If
h ∈ GL(n,R),

(xpq ◦ lg)(h) = xpq(gh) =
∑
k

gpkhkq =
∑
k

gpkxkq(h).

Hence,

Ãg(xpq) = A(xpq ◦ lg) =
∑
k

gpkAkq.

That is,

Ãg =
∑
i,j,k

gikAkj
∂

∂xij
.

It follows that the Lie bracket for the vector fields is

([Ã, B̃]g) =[
∑

gikAkj
∂

∂xij
,
∑

gpqBqr
∂

∂xpr
]

=
∑

gikAkjBjr
∂

∂xir
−
∑

gpqBqrArj
∂

∂xpj

=
∑

gik(AkrBrj −BkrArj)
∂

∂xij
.

In particular, its restriction to TI GL(n,R) is [A,B] = AB −BA.

This Lie algebra is called gl(n,R).
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2. All the other matrix Lie groups. Take O(n) ⊂ GL(n,R) for example.

Let F : Mn(R)→ Sn(R) by F (g) = gTg. Then

(DInF )(A) =
d

dt
(In + tA)T (In + tA)|t=0 = AT + A.

Therefore TIn(O(n)) = kerDInF = An(R), the skew-symmetric matri-
ces.

For the Lie bracket, we can extend A ∈ TInO(n) to O(n) or to GL(n,R)

to get two left-invariant extensions ÃO(n) and ÃGL(n,R) and ÃGL(n,R)|O(n)
=

ÃO(n). Hence the Lie bracket is also the commutator. This Lie algebra
is denoted o(n).

When n = 3, we can write a skew-symmetric matrix as 0 −x3 x2

x3 0 −x1

−x2 x1 0

 .

The bracket AB −BA becomes the cross-product in R3.

Lie algebra of other matrix Lie groups could be calculated similarly as
the Lie subalgebra of gl(n,R) or gl(n,C).

Now suppose φ : G → H is a Lie group homomorphism, then its differ-
ential at e gives a linear map φ∗ from g to h.

Theorem 2.3.5. If φ : G → H is a Lie group homomorphism, then the
induced map φ∗ : g→ h is a Lie algebra homomorphism.

Proof. Suppose Xe, Ye ∈ g, and X, Y the corresponding left invariant vector
fields. Define X ′, Y ′ be the corresponding left invariant vector fields for
φ∗Xe, φ∗Ye ∈ h. Since φ is a group homomorphism, we have φ ◦ lg = lφ(g) ◦ φ.

We have

X ′φ(g) = (lφ(g))∗φ∗Xe = (lφ(g) ◦ φ)∗Xe = (φ ◦ lg)∗Xe = φ∗Xg.

Similarly for Y and Y ′. Hence X,X ′ and Y, Y ′ are φ-related.
By Lemma 2.3.3, [X, Y ] and [X ′, Y ′] are φ-related. In particular, this

implies φ∗([Xe, Ye]) = [φ∗Xe, φ∗Ye], which is the desired relation.

The other way to check this relation is by Proposition 2.4.6. Later we
will also write φ∗ for the induced map.
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An n-dimensional manifold M is parallelizable if there is a diffeomorphism
f : M ×Rn → TM restricting to a linear isomorphism Rn = p×Rn → TpM
for each p ∈M . Equivalently, M is parallelizable if there exist n vector fields
X1, · · · , Xn which are linearly independent at each point in M .

When G is a Lie group, choose a basis e1, · · · , en of g. The the left-
invariant extension of ei are linearly independent in TgG for each g ∈ G.
This proves

Proposition 2.3.6. Any Lie group is parallelizable.

2.4 Exponential map

Definition 2.4.1. We say that γ : I → M is an integral curve of a vector
field X if for any t ∈ I, dγ

dt
(t) = Xγ(t).

One should understand dγ
dt

(t) as γ∗(
d
dt

)|γ(t). Locally the equation dγ
dt

(t) =
X(γ(t)) gives rise a system of first order differential equations. By the Picard
theorem, locally an integral curve always exists and is unique, and depends
on the initial data smoothly.

When M is compact, then for any p ∈M , there is a unique integral curve
γp : (− ε, ε)→M such that γp(0) = p. Thus we can define a map

φt : M →M, p 7→ γp(t).

Definition 2.4.2. A one-parameter subgroup (1-PSG) in a Lie group G is
a smooth homomorphism λ : R→ G.

A 1-PSG λ has a derivative λ′(0) ∈ g.

Proposition 2.4.3. For each ξ ∈ g there is a unique 1-PSG λξ with λ′ξ(0) =
ξ.

Proof. Take the left-invariant extension ξ̃. If λ(t) is a 1-PSG with λ′(0) = ξ,
then

λ′(t) =
d

ds
λ(t+ s)|s=0 =

d

ds
lλ(t)λ(s)|s=0 = delλ(t)(λ

′(0)) = delλ(t)(ξ) = ξ̃λ(t).

Hence, λ(t) is an integral curve for ξ̃. This proves the uniqueness by ODE.
Let Φt : G→ G be the map induced by the integral curve of ξ̃. Since ξ̃ is

left-invariant, Φt(g1g2) = g1Φt(g2). Let λ(t) = Φt(1). Then

λ(t+ s) = Φt+s(1) = Φs(Φt(1)) = Φs(λ(t)) = λ(t)Φs(1) = λ(t)λ(s).

This proves the existence of λξ for small t. The fact that it can be extended
to any t ∈ R is obvious from λ(t+ s) = λ(t)λ(s).
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Define the exponential map exp : g → G by exp(ξ) = λξ(1). The
uniqueness of 1-PSG, Proposition 2.4.3, implies that λξ(ct) = λcξ(t) since
dλξ(ct)

dt
|t=0 = cξ. Hence, λξ(t) = exp(tξ). The implies that the derivative of

exponential map at 0 is the identity from g to g and the inverse function
theorem shows that the exp gives a diffeomorphism from a neighborhood of
0 ∈ g to a neighborhood of e ∈ G.

Example:.

1. When G ⊂ GL(n,R), then

exp(A) = eA = 1 + A+
1

2!
A2 +

1

3!
A3 + · · ·

This is because etA is the unique 1-PSG whose derivative at t = 0 is A.

2. Let G = R, so g = R. We have exp(a) = a.

3. Let G = S1 = {z ∈ C ||z| = 1}, then it is identified with U(1). We
have g = iR. The 1-PSG λξ(t) = eitx and thus exp(ix) = eix.

We can also identify S1 with R /Z. If so, item 2 gives us exp(x) = x.

We can use the above Example 1 to calculate the Lie algebra of matrix
groups more directly. Since they are subgroups of GL(n,R), the Lie algebras
are subalgebras of gl(n,R), by Theorem 2.3.5 and the local diffeomorphism
exp.

Example:.

1. Let us consider the orthogonal group O(n) again. By definition, A ∈
o(n) if and only if (etA)T etA = In, which is equivalent to saying etA

T
=

e−tA. Since the exponential map is locally a diffeomorphism, we con-
clude that A ∈ o(n) if and only if AT = −A. Hence o(n) = An.

Since SO(n) is the identity component of O(n), we know the Lie algebra
so(n) is the same as o(n).

2. For the special linear group SL(n,R), and any A ∈ sl(n,R), we have

det eA = 1. However, det eA = etr(A). Hence, A ∈ sl(n,R) if and only
if tr(A) = 0.

Proposition 2.4.4. For any homomorphism F : G→ H of Lie groups and
any ξ ∈ g, we have exp(F∗(ξ)) = F (exp(ξ)).



20 CHAPTER 2. LIE GROUPS AND LIE ALGEBRAS

Proof. Both F (exp(tξ)) and exp(F∗(tξ)) are 1-PSG. They both have deriva-
tives F∗(ξ) at t = 0. By Proposition 2.4.3, we know F (exp(tξ)) = exp(F∗(tξ)),
in particular exp(F∗(ξ)) = F (exp(ξ)).

Proposition 2.4.5. Let G,H be Lie groups. If G is connected, then any
Lie group homomorphism F : G → H is uniquely determined by the map
F∗ : g→ h.

Proof. Since exp(F∗(ξ)) = F (exp(ξ)) and the image of the exponential map
contains a neighborhood of identity in G, this implies that F∗ determines F
in a neighborhood of identity in G.

Then the conclusion follows from the following claim

Claim: If G is connected, then any neighborhood U of identity generates G.

To show this, let V = U ∩ U−1. It is also an open neighborhood of e. It
is clear that G′ = ∪k≥1V

k is open. The cosets g1G
′ ∩ g2G

′ 6= ∅ if and only if
g1G

′ = g2G
′. Therefore G is the disjoint union of open sets. Connectedness

implies G = G′.

2.4.1 The adjoint representation

There are other approaches to the definition of the bracket on g.

Lie group G acts on itself on the left by conjugation

Ψ : G→ Aut(G), Ψgh = ghg−1.

Then Ψg maps e to e, so we have the adjoint action Adg = (Ψg)∗ ∈ GL(g).
In particular, we have (Adg)

−1 = Adg−1 . Then the homomorphism Ad : G→
GL(g) has a derivative at the identity. This induced map is denoted by

ad = Ad∗ : g→ End(g).

This is called the infinitesimal adjoint representation.

Proposition 2.4.6. For X, Y ∈ g, we have adXY = [X, Y ].

Some authors use this as an alternative definition of Lie bracket on g.

Proof. Let X̃, Ỹ be the left-invariant extensions of vectors X, Y ∈ g. Let
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f ∈ C∞(G).

adXY (f) =
d

dt
|t=0(Adexp(tX)Y )(f)

=
∂2

∂t∂u
|t=u=0f(exp(tX) exp(uY ) exp(−tX))

=
∂2

∂t∂u
|t=u=0f(exp(tX) exp(uY )) +

∂2

∂u∂t
|t=u=0f(exp(uY ) exp(−tX))

=(X̃Ỹ − Ỹ X̃)f |e
=[X, Y ]f

We use the fact of chain rule that if F (t1, t2) is a function of two real
variables,

d

dt
|t=0F (t, t) =

∂F

∂t1
(0, 0) +

∂F

∂t2
(0, 0).

The following is an immediate corollary of the definition.

Corollary 2.4.7. The Lie algebra g of an abelian Lie group G has trivial
Lie bracket [X, Y ] = 0 for any X, Y ∈ g.

Proof. The conjugation Φ is the identity map. So the differential Ad and ad
are trivial maps.

For matrix groups, we can check it easily by expanding the matrix expo-
nential

etXY e−tX = Y + t(XY − Y X) +O(t2).

In fact, this gives another (more conceptual) way to show the Lie bracket of
gl(n,R) is the commutator.

The Jacobi identity

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

could take two forms

([adx, ady])(z) = ad[x,y](z)

adx[y, z] = [adxy, z] + [y, adxz]

The first means ad is a Lie algebra homomorphism, i.e. taking brackets
to brackets. The second means ad is a derivation. In other words, ad : g →
Der(g).
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We have a simple relation with exponential map

Adexp(x) = exp(adx).

This is easy to see by checking the derivatives of the respective curves at
t = 0.

Given a representation ρ : G → GL(V ) inducing Lie algebra homomor-
phism ρ∗ : g → End(V ) the map ξ 7→ − tr(ρ∗(ξ)

2) is a quadratic form on g,
invariant under the adjoint action of G. The Killing form is the quadratic
form defined in this way by the adjoint representation. Namely,

B(u, v) = − tr(adu ◦ adv)

In general these forms could be indefinite. Cartan characterizes “semisimple”
Lie algebra by the non-degeneracy (positive definite for compact groups) of
the Killing form.

Proposition 2.4.8. The Killing form on a Lie algebra satisfies

B(u, v) = B(v, u), B(adxy, z) +B(y, adxz) = 0.

In fact, it already follows from l properties of quadratic form in the above
general setting. Below is a slightly different argument.

Proof. To show B([x, y], z) +B(y, [x, z]) = 0. B([x, y], z) is the trace of

adxadyadz − adyadxadz,

while B(y, [x, z]) is the trace of

adyadxadz − adyadzadx.

The sum is zero because tr(XY ) = tr(Y X) for endomorphisms X, Y of a
vector space. The same fact implies B(x, y) = B(y, x).

2.4.2 Coadjoint representation

Similarly, if g∗ is the dual of g, then the coadjoint action of G on g∗ is

Ad∗ : G→ Aut(g∗), g 7→ Ad∗g,

where Ad∗g is defined by

〈Ad∗gξ,X〉 = 〈ξ, Adg−1X〉

for all ξ ∈ g∗, X ∈ g. Write ad∗X : g∗ → g∗ for the derivative of the coadjoint
action at e along the direction Xg. Since adXY = [X, Y ],

ad∗Xξ(Y ) = −ξ([X, Y ]).
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Definition 2.4.9. For any smooth action τ : G→ Diff(M), the orbit of G
through m ∈M is

G ·m = {g ·m|g ∈ G}.
The stabilizer (also called the isotropic subgroup) of m ∈M is the subgroup

Gm = {g ∈ G|g ·m = m}.
In particular, for Ad and Ad∗, we have adjoint and coadjoint orbits. The

orbit O = G/Gm where Gm is the stabilizer of some m ∈ O. For semisimple
Lie groups, the existence of non-degenerate Killing form identifies adjoint
orbits with coadjoint orbits.

In general, we will see in the following that any coadjoint orbit has a
natural symplectic structure.

Definition 2.4.10. A symplectic structure on M is a non-degenerate 2-form
such that dω = 0.

We have TmO = Tm(G/Gm) = g/gm. We want to define a skew symmetric
2-form on TmO. We first define a skew symmetric form

ωξ : g× g→ C, (x, y) 7→ ξ([x, y]).

We have g ∈ Gξ ⇔ Ad∗gξ = ξ. Therefore

X ∈ gξ ⇔ ad∗Xξ = 0.

Therefore, since ξ([X, Y ]) = ωξ(X, Y ), we obtain

ωξ(X, Y ) = 0, ∀Y ∈ g⇔ X ∈ gξ.

The assignment ξ 7→ ωξ thus gives a nondegenerate 2-form ω on O. Moreover,
it satisfies dω = 0. To prove this claim, we use the Cartan formula for exterior
differential

dω(X, Y, Z) =X(ω(Y, Z)) + Z(ω(X, Y )) + Y (ω(Z,X))

−(ω([X, Y ], Z) + ω([Z,X], Y ) + ω([Y, Z], X))

For the first line, we apply

X(ωξ(Y, Z)) = X(ξ([Y, Z])) = ξ([X, [Y, Z]]),

for the second line, we apply

ωξ([X, Y ], Z) = ξ([[X, Y ], Z]),

as well as Jacobi identity, we know both vanish. Hence,

Theorem 2.4.11. Any coadjoint orbit O ⊂ g∗ has a natural symplectic
structure.

This symplectic structure is sometimes called the Kirillov-Kostant-Souriau
symplectic structure.
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2.5 Baker-Campbell-Hausdorff formula

Through exponential map, the group law is determined by its Lie algebra.
We will see how it goes in a precise manner. The following gives the first
indication.

Proposition 2.5.1. If G is a Lie group, and X, Y ∈ g be such that [X, Y ] =
0. Then exp(X) exp(Y ) = exp(X + Y ) = exp(Y ) exp(X).

Proof. By adXY = [X, Y ] = 0, we have Adexp(X)Y = exp(adX)Y = Y . Hence
the 1-PSGs exp(X) exp(tY ) exp(−X) and exp(tY ) have the same derivative
at t = 0: Adexp(X)Y = Y . This implies exp(X) exp(Y ) = exp(Y ) exp(X).

It implies exp(tX) exp(tY ) is a 1-PSG. Moreover, it has the same deriva-
tive, X+Y , as the 1-PSG exp(t(X+Y )). Hence, exp(X) exp(Y ) = exp(X+
Y ).

In particular, it implies the following.

Corollary 2.5.2. If G is an abelian Lie group and g is its Lie algebra, then
exp : g→ G is a Lie group homomorphism.

In general, Lie bracket operation on g measures the non-commutativity
of the multiplication of G. In the following, we would like to find out the
difference between exp(X) exp(Y ) and exp(X + Y ). Without confusing, we
will denote X both for an element in g and its corresponding left invariant
vector field. Then

(Xf)(a) = Xaf =
d

dt
|t=0f(a exp(tX))

for any f ∈ C∞(G) and any a ∈ G. More generally, for any t ∈ R,

(Xf)(a exp(tX)) =
d

ds
|s=0f(a exp(tX) exp(sX)) =

d

ds
|s=0f(a exp((t+ s)X)

=
d

dt
f(a exp(tX)).

Using this and induction, one can see that for any k ≥ 0,

(Xkf)(a exp(tX)) =
dk

dtk
(f(a exp(tX))).

In particular,

(Xkf)(a) =
dk

dtk
|t=0f(a exp(tX))
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The formulae could be generalized to multi-variable,

(X1 · · ·Xkf)(a) =
∂k

∂t1 · · · ∂tk
|t1=···=tk=0f(a exp(t1X1) · · · exp(tkXk)).

As a consequence, we have the following Taylor expansion.

Proposition 2.5.3. If f is a smooth function on G, then for small |t|,

f(exp(t1X1) · · · exp(tkXk)) = f(e)+
∑
i

tiXif(e)+
1

2
(
∑
i

t2iX
2
i f(e)+2

∑
i<j

titjXiXjf(e))+O(t3)

This formula holds for vector-valued functions as well. Then we can see
how Lie brackets measures the non-commutativity for G.

Theorem 2.5.4. Let n ≥ 1 and X1, · · · , Xn ∈ g. Then for |t| sufficiently
small,

exp(tX1) · · · exp(tXn) = exp(t
∑

1≤i≤n

Xi +
t2

2

∑
1≤i<j≤n

[Xi, Xj] +O(t3)).

Proof. We apply Proposition 2.5.3 to f(exp(tX)) = tX for t small. Then
f(e) = 0 and

Xf(e) =
d

dt
|t=0f(exp(tX)) =

d

dt
|t=0(tX) = X, Xnf(e) = 0.

Since ∑
i

X2
i + 2

∑
i<j

XiXj = (X1 + · · ·+Xn)2 +
∑
i<j

[Xi, Xj],

we have the desired formula.

In particular,

exp(tX) exp(tY ) = exp(tX + tY +
t2

2
[X, Y ] +O(t3))

for |t| small. For the higher order terms, we have the following Baker-
Campbell-Hausdorff formula.

Theorem 2.5.5. For small enough X, Y ∈ g, we have

exp(X) exp(Y ) = exp(µ(x, y))
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for some g-valued function µ(x, y) which is given by the following series con-
vergent in some neighborhood of (0, 0):

µ(X, Y ) = X + Y +
∑
m≥2

µm(X, Y ),

where µm(X, Y ) is a Lie polynomial in X, Y of degree m, i.e. a formal
polynomial ( in general non-commutative, non-associative) of X, Y of degree
m whose products are Lie brackets.

This expression is independent of the Lie algebra g or the choice of X, Y .

There is a more explicit formula.

Theorem 2.5.6 (Dynkin’s formula). For X, Y small,

µ(X, Y ) = X+Y+
∑
k=1

(−1)k

k + 1

∑ (−1)
∑
i(li+mi)

l1 + · · ·+ lk + 1

(adY )l1

l1!
◦(adX)m1

m1!
◦· · ·◦(adY )lk

lk!
◦(adX)mk

mk!
(Y )

To write first several terms:

µ(X, Y ) = X + Y +
1

2
[X, Y ] +

1

12
([X, [X, Y ]] + [Y, [Y,X]]) + · · ·

We will not prove the above two theorems, since higher order terms will
not be used in this course.

2.6 Lie subgroups

Let us first recall various notions of submanifolds of M , from weakest to
strongest.

Immersion: S is a manifold equipped with a map φ : S →M such that φ∗
is injective for every s ∈ S.
Injective Immersion: S a manifold equipped with a globally injective
immersion.
Embedding: An injective immersion where the intrinsic topology of S agree
with the induced subspace topology.

Example 2.6.1. Consider torus T 2 = S1 × S1. For any coprime pair of
integers (p, q),

Hp,q := {(eipt, eiqt)|t ∈ R}
is an embedded submaniold.

For any irrational number α,

Hα := {(eit, eiαt)|t ∈ R}

is not embedded, but is injective immersed.
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Closed Embedding: An embedding in which φ(S) ⊂M is closed.

Definition 2.6.2. If G is a Lie group, a Lie subgroup is an injective im-
mersed submanifold H with the inclusion map f : H → G a homomorphism
of groups.

So all the lines on a torus are Lie subgroups.
This implies f is a homomorphism of Lie groups. Let H be a Lie subgroup

of G. The induced map f∗ : h → g is injective and a homomorphism of Lie
algebras and hence is an isomorphism of h with a Lie subalgebra of g.

Conversely, any Lie subalgebra gives rise to some Lie subgroup. For that,
we need the notion of integrable distribution. Details can be found in e.g.
Warner.

A k-dimensional distribution on a manifold M is a k-dimensional subbun-
dle V ⊂ TM which assigns to every p ∈ M a k-dimensional vector subspace
Vp of TpM . V is called smooth if for every p ∈ M , there is a neighbor-
hood U of p and smooth vector fields X1, · · · , Xk such that for every q ∈ U ,
X1(q), · · · , Xk(q) are a basis of Vq.

An integral manifold for a distribution V is a k-dimensional submanifold
N ⊂ M such that at every point p ∈ N , we have TpN = Vp. This is a
straightforward generalization of the notion of an integral curve for direction
field in ODE theory. However, for k > 1, the existence of integral manifold
is not automatic. We say that a distribution V is integrable if through each
point of M there exists an integral manifold of V . Suppose N is an integral
manifold for V at p, and Xp, Yp ∈ Vp = TpN . Then we have [Xp, Yp] ∈ TpN .
The converse is also true.

Theorem 2.6.3 (Frobenius Theorem). A distribution V is integrable if and
only if for any two vector fields X, Y ∈ V, one has [X, Y ] ∈ V. In this situ-
ation, then through every point p ∈M , there is a unique maximal connected
integral manifold of V.

In general, the integral submanifold is not even an embedded submanifold
but only an immersed one.

Theorem 2.6.4. If h is a Lie subalgebra of g, then there is a unique con-
nected Lie subgroup H of G with Lie algebra h.

Proof. Let X1, · · · , Xk be a basis of h ⊂ g. Let X̃i be corresponding left
invariant vector fields. Since they are linearly independent at e, they are
linearly independent at all g ∈ G. In other words,

Vg = span{X̃1(g), · · · , X̃k(g)}
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is a k-dimensional distribution on G. Since [Xi, Xj] ∈ h for all i, j, by
Frobenius theorem, V is integrable. That is, there is a unique maximal
connected integral manifold of V through e. Denote this by H.

To show that H is a subgroup, note that V is a left invariant distribution.
So the left translation of any integral manifold is an integral manifold. Now
suppose h1, h2 ∈ H. Since h1 = lh1e ∈ H ∩ lh1H and H is maximal, we have
lh1H ⊂ H. So in particular h1h2 = lh1h2 ∈ H. Similarly, h−1

1 ∈ H since
lh−1

1
(h1) = e ∈ H implies lh−1

1
H ⊂ H. It follows that H is a subgroup of

G. Since the group operations on H are restriction from that of G, they are
smooth. So H is a Lie group.

To show uniqueness, let K be another connected Lie subgroup with Lie
algebra h. Then K is also an integral manifold of V . So we have K ⊂ H.
Since TeK = TeH, the inclusion has to be a local isomorphism. In other
words, K coincides withH near e. Since any connected Lie group is generated
by any open set containing e, we conclude that K = H.

2.6.1 Closed Lie subgroups

Definition 2.6.5. A Lie subgroup H of G is said to be a closed Lie subgroup
if H is also an embedded submanifold of G.

As in Example 2.6.1, each Hp,q is a closed Lie subgroup. However, Hα is
not.

Lemma 2.6.6. Suppose G is a Lie group, H is a subgroup of G which is an
embedded submanifold as well. Then H is closed in the sense of topology.

Proof. Since H is an embedded submanifold, it is locally closed everywhere.
In particular, one can find an open neighborhood U of e in G such that
U ∩H = U ∩ H̄. Take h ∈ H̄. Since hU ∩H 6= ∅, we choose an element h′

from it. Hence h−1h′ ∈ U . For any sequence hn ∈ H converging to h, we
know h−1

n h′ ∈ H converges to h−1h′. In other words, h−1h′ ∈ U ∩H̄ = U ∩H.
So h ∈ H, which implies H is closed.

In other words, a closed Lie subgroup must be a subgroup which is closed
in the sense of topology. A remarkable theorem due to E. Cartan claims that
the inverse is also true, i.e. any subgroup which is also a closed subset must
be a Lie subgroup.

Theorem 2.6.7. Let G be a Lie group, H ⊂ G a subgroup in the algebraic
sense. If H is closed as a subset of G, then H has a unique structure of a
Lie subgroup.
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Proof. Define h := {X ∈ g| exp tX ∈ H,∀t}.

Lemma 2.6.8. h is a linear subspace of g.

Proof. Clearly h is closed under scalar multiplication. It is closed under
vector addition because for any t ∈ R,

exp(t(X+Y )) = lim
n→∞

(exp(
t(X + Y )

n
+O(

1

n2
))n = lim

n→∞
(exp(

tX

n
) exp(

tY

n
))n ∈ H.

Lemma 2.6.9. If U is a sufficiently small open neighborhood of 0 ∈ g, then
exp(U ∩ h) = exp(U) ∩H.

Proof. Note that exp h ⊂ H by definition. Therefore, exp(V ∩h) ⊂ H∩expV
for any open neighborhood V of 0 ∈ g. Let h′ ⊂ g be a linear complement,
i.e. g = h⊕ h′. Then the map

Φ : h⊕ h′ → G, (X, Y ) 7→ expX expY

is a local diffeomorphism of a neighborhood of 0 ∈ g into a neighborhood
of e ∈ G. If the lemma were false, we could find a sequence of vectors
Xi + Yi ∈ h ⊕ h′ with Yi 6= 0 such that Xi + Yi → 0 and Φ(Xi + Yi) ∈ H.
Since exp(Xi) ∈ H, we must have exp(Yi) ∈ H for all i. We let Y be a limit
point of Yi

|Yi| . We still denote the converging subsequence by Yi, etc. Let t ∈ R
be fixed, we take ni = [ t

|Yi| ] be the integer part of t
|Yi| . Then

exp(tY ) = lim
i→∞

exp(niYi) = lim
i→∞

exp(Yi)
ni ∈ H.

Since this holds for all t, it must be the case that Y ∈ h. Hence Y ∈ h∩ h′ =
{0}. Contradict to the fact that Y is a unit vector.

Near the origin, exp is a diffeomorphism. By the preceding lemma, e has
an open neighborhood Ue such that H∩Ue is a closed embedded submanifold
of Ue. By translation, every h ∈ H has an open neighborhood Uh with
the same property. Since H is closed, for any g ∈ G \ H, there exists an
neighborhood Ug of g such that Ug ∩ H = ∅. Therefore, H is a closed
embedded submanifold. The multiplication and inverse are restrictions from
that of G, hence smooth.

Here is an immediate consequence.

Corollary 2.6.10. If φ : G→ H is a Lie group homomorphism, then kerφ
is a closed Lie subgroup of G whose Lie algebra is ker(φ∗).
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Proof. kerφ is a subgroup of G which is also a closed subset. According
to Cartan’s theorem, kerφ is a Lie subgroup. Its Lie algebra is given by
{X ∈ g| exp(tX) ∈ kerφ,∀t}. The theorem follows since exp(tφ∗(X)) =
φ(exp(tX)) = e,∀t, which is equivalent to saying φ∗(X) = 0.

An important consequence is a “continuity implies smoothness” result.

Theorem 2.6.11. Every continuous homomorphism of Lie groups is smooth.

Proof. Let φ : G→ H be a continuous homomorphism, then Γφ = {(g, φ(g))|g ∈
G} is a closed subgroup, and thus a Lie subgroup of G×H. The projection

p : Γφ → G×H → G

is bijective, smooth and is a Lie group homomorphism. It follows that dp is
a constant rank map, and thus has to be bijective at each point. So p is a
local diffeomorphism everywhere. Since p is globally invertible, p is also a
global diffeomorphism. The map φ = pr2 ◦ p−1 is smooth.

As a consequence, for any topological group G, there is at most one
smooth structure on G to make it a Lie group. (However, it is possible that
one group admits two different topologies and thus have different Lie group
structures.)

2.6.2 Lie group homomorphisms

Let X be a topological space. A covering space of X is a topological
space C together with a continuous surjective map p : C → X, such that for
every x ∈ X, there exists an open neighborhood U of x, such that p−1(U)
(the inverse image of U under p) is a union of disjoint open sets in C, each
of which is mapped homeomorphically onto U by p.

Proposition 2.6.12. Suppose Φ : G→ H is a homomorphism of connected
Lie groups such that on the level of Lie algebras, Φ∗ : g→ h is bijective, then
Φ is a covering map.

Proof. By left invariance, it suffices to check the covering property at e ∈ H.
Since Φ∗ : g→ h is bijective, Φ maps a neighborhood U of e in G bijectively
to a neighborhood V of e in H. Hence, Φ is surjective. Let Γ = Φ−1(e) ⊂ G.
Then Γ is a subgroup of G. Moreover, for any a ∈ Γ,

Φ ◦ la(g) = Φ(ag) = Φ(g),

we have Φ−1(V) = ∪a∈ΓlaU . The Proposition is proved if we can show la1U ∩
la2U = ∅ for a1 6= a2 ∈ Γ. If la1U ∩ la2U 6= ∅, then laU ∩U 6= ∅ for a = a−1

1 a2.
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So we have p1, p2 ∈ U such that p2 = ap1 ∈ laU ∩ U . Then Φ(p1) = Φ(p2).
However, Φ is one-to-one on U . So p1 = p2. It follows a = e and a1 = a2.
This proves Φ is a covering map.

A topological space X is called simply-connected if it is path-connected
and any continuous map f : S1 → X can be contracted to a point in the
following sense: there exists a continuous map F : D2 → X (where D2

denotes the unit disk in R2) such that F restricted to S1 is f .
An equivalent formulation is this: X is simply-connected if and only if it

is path-connected, and whenever p : [0, 1] → X and q : [0, 1] → X are two
paths with the same start and endpoint (p(0) = q(0) and p(1) = q(1)), then
p and q are homotopic relative {0, 1}. Intuitively, this means that p can be
“continuously deformed” to get q while keeping the endpoints fixed. Hence
the term simply connected: for any two given points in X, there is one and
“essentially” only one path connecting them.

Example 2.6.13. Sn, n 6= 1, Rn are simply connnected.

Every path connected covering map of a simply-connected and path con-
nected space is a homeomorphism. A covering of X, π : X̃ → X, is called a
universal covering if X̃ is simply connected. In fact, X̃ is a set of all paths
p : [0, 1] → X such that p(0) = x0 modulo the equivalence relation of path-
homotopy. The covering map π is defined as π(p) = p(1). If X is simply
connected, π : X̃ → X is a homeomorphism.

When G is a Lie group, its universal covering space G̃ also admits a group
structure and the projection π : G̃ → G is a Lie group homomorphism. Its
kernel is the fundamental group π1(G).

Example 2.6.14. π : R → S1 is the universal covering of S1. Hence, the
fundamental group π1(S1) = Z.

Theorem 2.6.15. Let G,H be Lie groups with Lie algebras g, h and φ : g→
h a Lie algebra homomorphism. Suppose G,H are connected and G is simply
connected. Then there exists a unique Lie group homomorphism Φ : G→ H
such that Φ∗ = φ.

Proof. Consider the graph of φ as a subalgebra of g⊕ h:

{(X,φ(X))|X ∈ g} ⊂ g⊕ h.

By Theorem 2.6.4, there exists a Lie subgroup Γ ⊂ G × H with this Lie
algebra. Let p1, p2 be the projection maps to G and H respectively. (p1)∗
restricts to the graph of φ is bijective, so p1 is a covering map. Since G is
simply connected, this is an isomorphism. The composition Φ = p2 ◦ p−1

1 is
a Lie group homomorphism with Φ∗ = φ.
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This could be applied to representations of Lie groups and Lie algebras.

Definition 2.6.16. A representation of a Lie algebra g is a vector space V
together with a homomorphism ρ : g→ gl(V ).

Let V be a complex vector space and H = GL(V ) in Corollary 2.6.15, we
have

Proposition 2.6.17. Let G be a Lie group with Lie algebra g. Every rep-
resentation ρ : G → GL(V ) defines a representation ρ∗ : g → gl(V ). If
G is connected and simply connected, then every representation of g can be
uniquely lifted to a representation of G.

We talk about the fundamental group of a Lie group.

Lemma 2.6.18. Let G be a connected topological group and Γ a discrete
normal subgroup. Then Γ ⊂ Z(G).

Proof. Let γ ∈ Γ. Then g 7→ gγg−1 is a continuous map G→ Γ. Since G is
connected and Γ is discrete, it is constant, so gγg−1 = γ for all g. Therefore
γ ∈ Z(G).

Proposition 2.6.19. If G is a connected Lie group, then the fundamental
group π1(G) is abelian.

Proof. Let π : G̃→ G be the universal cover. We have ker(π) = π1(G). This
is a discrete normal subgroup of G̃ and hence contained in Z(G̃) by Lemma
2.6.18. In particular, it is abelian.

2.7 Riemannian geometry of Lie groups

A Riemannian manifold consists of a smooth manifold M and for ev-
ery x ∈ M an inner product (i.e. a positive definite symmetric bilinear
form) 〈, 〉 on the tangent space TxM , such that for vector fields X and Y ,
x 7→ 〈X(x), Y (x)〉 is a smooth function. Any smooth manifold admits a Rie-
mannian metric. This implicitly uses the fact that a locally compact second
countable Hausdorff space is paracompact, which means every open cover
has a locally finite refinement.

In a system of local coordinates on the manifold M given by real functions
x1, · · · , xn, the vector fields { ∂

∂x1
, · · · , ∂

∂xn
} give a basis of tangent vectors at

each point of M . The metric tensor can be written in terms of the dual
basis {dx1, · · · , dxn} of the cotangent bundle as g =

∑
i,j gijdxi ⊗ dxj where

gij(x) := 〈 ∂
∂xi
, ∂
∂xj
〉.
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The covariant derivative is a generalization of the directional derivative
from vector calculus. More precisely, a covariant derivative ∇ assigns a
tangent vector field ∇XY to each pair (X, Y ) of vector fields X, Y , such that
the following holds:

1. ∇XY is linear in X, i.e. ∇αX+βZY = α∇XY + β∇ZY , for functions
α, β.

2. ∇XY is additive in Y , i.e. ∇X(Y1 + Y2) = ∇XY1 +∇XY2.

3. ∇XY obeys the product rule, i.e. ∇X(fY ) = X(f)Y + f∇XY for
functions f .

It can be written in local coordinate using Christoffel symbols. On a
Riemannian manifold, there is a special one, called Levi-Civita connection,
characterized by the conditions

∇XY −∇YX = [X, Y ],

X(〈Y, Z〉) = 〈∇XY, Z〉+ 〈Y,∇XZ〉.

Exercise: For Levi-Civita connection, show the Koszul formula

2〈∇XY, Z〉 =X(〈Y, Z〉) + Y (〈X,Z〉)− Z(〈X, Y 〉)
− 〈Y, [X,Z]〉 − 〈X, [Y, Z]〉 − 〈Z, [Y,X]〉

(2.1)

We now look at Riemannian metrics on a Lie group. A Riemannian metric
on a Lie group G is called left-invariant if and only if

〈X, Y 〉h = 〈(lg)∗X, (lg)∗Y 〉gh

for all g, h ∈ G and X, Y ∈ ThG. Similarly, we say a metric is right invariant
if rg preserve the metric. A metric that is both left-invariant and right-
invariant is called bi-invariant.

Exercise: There is a bijective correspondence between left-invariant metrics
on a Lie group G and inner products on the Lie algebra g.

Hint: If 〈, 〉 is an inner product on g, set 〈u, v〉g = 〈(lg−1)∗u, (lg−1)∗v〉, for
all u, v ∈ TgG.

Exercise: For a left-invariant metric 〈, 〉 on G and any two left-invariant
vector fields X, Y , we have Z(〈X, Y 〉) = 0 for any vector field Z.

Another exercise characterizes bi-invariant metric by adjoint action.
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Lemma 2.7.1. A left invariant metric on G is also right invariant if and
only if for each g ∈ G and u, v ∈ g,

〈Adgu,Adgv〉 = 〈u, v〉. (2.2)

When G is connected, the relation (2.2) is equivalent to

〈[X, Y ], Z〉 = 〈X, [Y, Z]〉. (2.3)

Proof. The first statement is left as an exercise.
For the second, (2.2) implies (2.3) by taking the derivative of the relation

〈Adexp tYX,Z〉 = 〈X,Adexp(−tY )Z〉.
For the other direction, since a connected Lie group is generated by any

neighborhood of the identity, we can assume g is sufficiently close to the
identity such that g = exp(Y ) for some uniquely defined Y close to zero. We
have the identity Adg = eadY . (2.2) is same as saying Adg−1 = Ad∗g. This is
equivalent to −adY = ad∗Y . Hence (2.3) implies (2.2).

Since the Killing form is Ad-invariant. Hence, if the Lie group is compact
and semisimple, the Killing form provides a bi-invariant Riemannian metric.
By averaging process, we can construct bi-invariant metric on any compact
group. It uses Haar measure. If G is a Lie group there exists a left-invariant
non-zero differential form of top degree, unique up to scaling. This could
be constructed as the left invariant extension of such a differential form on
the Lie algebra. This defines Haar measure. In general, when G is a locally
compact Hausdorff topological group, Haar proves there exists a left-invariant
regular Borel measure. It is unique up to scaling and satisfies µ(U) > 0 for
every nonempty open Borel set U .

Then for any u, v ∈ TeG, and any inner product on g, we define

(u, v) :=

∫
G

〈Adgu,Adgv〉µ(g).

When G is compact, µ(G) < ∞. This gives an Ad-invariant inner product
on g and thus a bi-invariant metric on G.

In fact, we know the connected Lie group admits a bi-invariant metric if
and only if it is isomorphic to the cartesian product of a compact group and
an additive vector group.

Now, (2.1), Lemma 2.7.1 and the exercise before it altogether imply that
for left-invariant vector fields, the Levi-Civita connection of a bi-invariant
metric has the form

∇XY =
1

2
[X, Y ]. (2.4)
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Definition 2.7.2. A smooth curve γ(t) is called a geodesic if ∇γ′(t)γ
′(t) = 0.

Since 1-PSGs are integral curves of left-invariant vector fields, we can
apply (2.4) to know they are geodesics. Moreover, since geodesic equation is
a 2nd order ODE, there is a unique geodesic passing through any given point
and tangent to a given direction. Hence

Proposition 2.7.3. The geodesics through e ∈ G are the 1-PSGs.

In the language of Riemannian geometry, it implies the exp in Lie group
coincides with the notion of exponential map in Riemannian geometry when
G admits a bi-invariant metric.

Corollary 2.7.4. The exponential map of a compact connected Lie group is
surjective.

Proof. By Riemannian geometry, if M is a compact connected Riemannian
manifold (see Kobayashi-Nomizu, Theorem 4.2 for example), and x, y ∈ M ,
then there is a geodesic p : [0, 1] → M such that p(0) = x and p(1) = y.
Take x = e and y = g. By Proposition 2.7.3, the geodesics are exponential
maps exp(tX) for some X ∈ g. So g = exp(X).

Exercise: Show the exponential map exp : sl(2,R) → SL(2,R) is not sur-
jective.

Hint: Which diagonal matrices are in the image?

2.8 Maximal Tori

We start with a general result on abelian Lie group.

Proposition 2.8.1. Any connected abelian Lie group is of the form T r×Rk.

Proof. Let G be a connected abelian Lie group, then we have seen in Corol-
lary 2.5.2 (and 2.7.4) that g ∼= Rn and exp : g→ G is a surjective Lie group
homomorphism, so G is isomorphic to g/ ker(exp).

On the other hand, ker(exp) is a Lie subgroup of (g,+), and it is discrete
since exp is a local diffeomorphism near e. We can show it is a lattice,
i.e. there exist linearly independent vectors v1, · · · , vr such that ker(exp) =
{n1v1+· · ·+nrvr|ni ∈ Z} (see e.g. the 2016 lecture notes of algebraic number
theory). Let V1 be its span and V2 be its complement in g, we have

G = g/ ker(exp) = V1/ ker(exp)× V2 = T r × Rk .
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A torus is a Lie group isomorphic to T n = Rn /Zn. Any compact con-
nected abelian Lie group is a torus.

A generator of a compact torus T is an element t such that the smallest
closed subgroup of T containing t is T itself.

Proposition 2.8.2. Every compact torus T has a generator. Indeed, gener-
ators are dense in T .

Proof. Let T = (R /Z)r. Choose (t1, · · · , tr) ∈ Rr. The result follows from
the following Kronecker theorem.

Theorem 2.8.3. The image of t = (t1, · · · , tr) in T = (R /Z)r is a generator
of T if and only if 1, t1, · · · , tr are linearly independent over Q.

Proof. 1, t1, · · · , tr are linearly dependent if and only if t mod Zr is in the
kernel of a nontrivial homomorphism

f : T r → S1, f(v1, · · · , vr) = e2πi(α1v1+···+αrvr), αj ∈ Z.

If 1, t1, · · · , tr are linearly dependent, we assume f(t) = 1. If f is non-
trivial, this kernel is not all of T and hence is a proper closed subgroup of T ,
so [t] cannot be a generator.

Conversely, a non-generator [t] is contained in a proper closed subgroup
H ⊂ T , and the quotient group is a non trivial compact connected abelian
Lie group. Thus T/H is a torus T k, k > 0, and [t] is in the kernel of the
nontrivial homomorphism

T → T/H ∼= T k = S1 × · · · × S1 pr1→ S1.

Hence 1, t1, · · · , tr are linearly dependent.
This completes the proof.

Definition 2.8.4. Let G be a compact Lie group. A subgroup T ⊂ G is a
maximal torus if T is a torus and there is no other torus T ′ with T ( T ′ ⊂ G.

Example:

1. A maximal torus T in U(n) is given by the diagonal matrices

diag(eiλ1 , · · · , eiλn).

It is known by linear algebra that any unitary matrix can be diagonal-
ized by unitary matrices. In other words, we have

U(n) = ∪g∈U(n)gTg
−1.
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2. A maximal torus in SU(n) is given by the diagonal matrices as above,
with

∑
λi = 0. So SU(n) has rank n− 1.

3. A maximal torus in SO(2n) is given by

SO(2)× · · · × SO(2) =



cos t1 − sin t1
sin t1 cos t1

·
·
·

cos tn − sin tn
sin tn cos tn


4. A maximal torus in SO(2n+ 1) is given by

SO(2)×· · ·×SO(2)×{1} =



cos t1 − sin t1
sin t1 cos t1

·
·
·

cos tn − sin tn
sin tn cos tn

1


5. Sp(n) = Sp(2n,C) ∩ U(2n) consists of unitary matrices of the form(

A −B̄
B Ā

)
A maximal torus in it is the image of the maximal torus U(n) describe
above,

diag(eiλ1 , · · · , eiλn , e−iλ1 , · · · , e−iλn).

In all the above examples, we have G = ∪g∈GgTg−1 by linear algebra. In
general, this is a deep theorem, Cartan’s maximal tori theorem.

Theorem 2.8.5. Let G be a compact connected Lie group, and T be a max-
imal torus. Then every maximal torus is conjugate to T , and every element
of G is contained in a conjugate of T .

Hence, we can define the rank of a group G to be the dimension of a
maximal torus.
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Proof. We first prove the second statement. Let g ∈ G. We will show that
there exists k ∈ G such that g ∈ kTk−1.

Let t0 be a generator of T . Since the exponential map of a compact Lie
group is surjective, we have X ∈ g and H0 ∈ t such that exp(X) = g and
exp(H0) = t0.

Take the Ad-invariant inner product. Let k ∈ G be an element such that
〈X,AdkH0〉 is maximal. Let H = AdkH0. Thus expH generates kTk−1. By
this choice 〈X,Adexp(tY )H〉 has a maximum when t = 0. So

0 =
d

dt
〈X,Adexp(tY )H〉|t=0 = 〈X, adYH〉 = 〈X, [Y,H]〉 = 〈[H,X], Y 〉

for all Y . Hence [H,X] = 0. By Proposition 2.5.1, expH commutes with
exp(tX). Since expH generates the maximal torus kTk−1, it follows that
the 1-PSG exp(tX) is contained in the centralizer of kTk−1. The closure
of the abelian group generated by exp(tX) and kTk−1 is a torus containing
the maximal torus kTk−1. Hence, exp(tX) ∈ kTk−1. In particular, g =
exp(X) ∈ kTk−1.

For the first statement, let T ′ be another maximal torus, and let t′ be a
generator. Then t′ is contained in kTk−1 for some k, so T ′ ⊂ kTk−1. Hence
T ′ = kTk−1 by maximality of T ′.

In fact, we have derived the corresponding Lie algebra version of Theo-
erem 2.8.5 at the same time.

Theorem 2.8.6. Let G be a compact connected Lie group, and t the Lie
algebra of a maximal torus T . Then every coadjoint orbit intersects t.

Corollary 2.8.7. If G is a compact connected Lie group, then the center
Z(G) = {g ∈ G|gh = hg,∀h ∈ G} is the intersection of all maximal tori in
G.

Proof. Suppose g ∈ Z(G), then for any maximal torus T , there is some h ∈ G
such that hgh−1 ∈ T . So g ∈ T for any maximal torus T .

Conversely suppose g lies in all maximal tori. For any h ∈ G, there
is a maximal torus T such that h ∈ T . Since T is abelian, gh = hg. So
g ∈ Z(G).

In general, for any subgroup H ⊂ G, the centralizer

ZG(H) = {g ∈ G|gh = hg,∀h ∈ H}

is a Lie subgroup of G.
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Corollary 2.8.8. Suppose G is a compact connected Lie group and A ⊂ G
is a connected abelian Lie subgroup. Then ZG(A) is the union of all maximal
tori in G that contains A. In particular, ZG(A) is connected. When T is a
maximal torus, ZG(T ) = T .

Proof. Note ZG(A) = ZG(Ā). So we may assume A is a torus. Suppose T
is a maximal torus containing A. Then by definition T ⊂ ZG(A). So ZG(A)
contains the union of all maximal tori in G that contains A.

Conversely, let g ∈ ZG(A), or equivalently A ⊂ ZG(g). Then the identity
component ZG(g)◦ is a compact connected Lie group, and A ⊂ ZG(g)◦ since
e ∈ A and A is connected. Let T1 be a maximal torus in ZG(g)◦ that contains
A. So by definition, g ∈ Z(ZG(g)◦). By the previous corollary, g ∈ T1. Hence
the maximal torus T1 contains both A and g. Hence ZG(A) is contained in
the union of all maximal tori in G that contains A. This completes the
proof.

Corollary 2.8.9. Let G be a compact connected Lie group and T ⊂ G a
torus. Then the centralizer ZG(T ) is a closed connected Lie subgroup of G.

Proof. By Corollary 2.8.8, ZG(T ) is connected. To show it is a closed Lie
subgroup, let u ∈ T be a generator. Then ZG(T ) = ZG(u). We only need to
show ZG(u) is a closed submanifold near e. Identify a neighborhood of e ∈ G
with N in g by the exponential map. Since u exp(tX)u−1 = exp(tAduX),
we know exp(tX) ∈ ZG(u) for all t if and only if X is in the Lie subalgebra
{X ∈ g|AduX = X}. This is a closed subspace in g.

2.9 Weyl group

Let G be a compact connected Lie group, and T ⊂ G a maximal torus.
The normalizer of T is

N(T ) = {g ∈ G|gTg−1 = T}.

It is a closed subgroup since if t ∈ T is a generator, N(T ) is the inverse
image of t under the continuous map g 7→ gtg−1. By definition, T is a
normal subgroup of N(T ).

Definition 2.9.1. The quotient group W = N(T )/T is called the Weyl group
of G.

Proposition 2.9.2. The connected component N(T )◦ of the identity in N(T )
is T itself. The Weyl group is a finite group.
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Proof. We first prove that the automorphism group Aut(T ) of a torus T =
Rk /Zk is isomorphic to GL(k,Z). First, any element of GL(k,Z) could
be realized as an element in Aut(T ). On the other hand, if φ ∈ Aut(T ),
it induces an invertible linear transformation φ∗ of the Lie algebra t that
commutes with the exponential map, i.e. φ◦exp = exp ◦φ∗. It must preserve
the kernel Λ = ker exp. Identify t = Rk then Λ is identified with Zk. This
implies the matrix of (φ)∗ must lie in GL(k,Z).

Since GL(k,Z) is discrete, any connected subgroup of Aut(T ) must act
trivially. Hence any element in N(T )◦ commutes with all elements in T . By
Corollary 2.8.8, N(T )◦ ⊂ ZG(T ) = T .

The quotient N(T )/T is both discrete and compact and hence finite.

Proposition 2.9.3. Let G be a compact connected Lie group, and T a max-
imal torus. Then two elements t1, t2 ∈ T are conjugate in G if and only if
they sit on the same orbit of the Weyl group action.

Proof. If gt1g
−1 = t2 for g ∈ G, we have gTg−1 ⊂ gZG(t1)g−1 = ZG(t2).

Hence, both T and gTg−1 are maximal tori in ZG(t2)◦. So there exists h ∈
ZG(t2)◦ such that hgTg−1h−1 = T . It follows hg ∈ N(T ) and hgt1g

−1h−1 =
t2.

It follows that each orbit of conjugation action ofG intersects the maximal
torus T precisely in the orbit of the Weyl group. There are finitely many
such points since |W | <∞.

As we see from the proof of Proposition 2.9.2, we know the Weyl group
acts on the Lie algebra t of the maximal torus T preserving the lattice Λ.
Therefore, the statement of Proposition 2.9.3 also holds true for Lie algebra.
Precisely, suppose two elements ξ1, ξ2 ∈ t are conjugate in G, then there is an
element of the Weyl group mapping ξ1 to ξ2. Hence, we have the important
fact

Corollary 2.9.4. The adjoint orbits in G are in one-to-one correspondence
with the orbits of the Weyl group acting on t.

Examples:

1. For G = U(n), a maximal torus is diag(eiλ1 , · · · , eiλn). Its normalizer
N(T ) consists of all monomial matrices (matrices with a single nonzero
entry in each row and column) in U(n). One can see this by simple
calculation (

0 eiθ

eiµ 0

)(
x 0
0 y

)(
0 e−iµ

e−iθ 0

)
=

(
y 0
0 x

)
.
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It follows that the Weyl group W (U(n)) = Sn, the full symmetric
group.

2. W (SU(n)) = Sn. |W | = n!.

3. W (SO(2l + 1)) = G(l) = (Z/2Z)l o Sl, the group of permutations φ of
the set {−l, · · · ,−1, 1, · · · , l} with φ(−k) = −φ(k) for all 1 ≤ k ≤ l.
|W | = 2ll!. These are “permutation matrices” of the diagonal 2 × 2

blocks, generated by direct sums of two copies of

(
0 1
1 0

)
and diagonal

1’s, and direct sums of a copy of

(
0 1
1 0

)
at 2i − 1 and 2i rows and

columns and −1 in the last diagonal and other diagonals 1.

4. W (SO(2l)) = SG(l), the subgroup of G(l) that consists of even permu-
tations. |W | = 2l−1l!.

5. W (Sp(n)) = G(n). The equality of with the same Weyl group as for
SO(2n+ 1) is not a coincidence.

2.10 Examples: SO(3), SL(2,R), SU(2)

We first look at SO(3). It is a 3-dimensional Lie group whose Lie algebra
so(3) consists of all 3× 3 real anti-symmetric matrices. Take the basis

e1 =

0 0 0
0 0 −1
0 1 0

 , e2 =

 0 0 1
0 0 0
−1 0 0

 , e3 =

0 −1 0
1 0 0
0 0 0

 .

One checks
[e1, e2] = e3, [e2, e3] = e1, [e3, e1] = e2.

Hence we can calculate the Killing form

B(xe1 + ye2 + ze3, xe1 + ye2 + ze3) = 2(x2 + y2 + z2).

For any A ∈ SO(3), the third column (row) is the cross product of the other
two. Hence, a direct calculation shows that

A ·(xe1 +ye2 +ze3) ·A−1 = A ·(xe1 +ye2 +ze3) ·At = (A ·(x, y, z)t) ·(e1, e2, e3).

In the last part, we misuse of notations. It means a linear combination of
ei where the coefficients are the three entries of A · (x, y, z)t. This relation
could be checked for e1, e2, e3 respectively, and then by linearity.
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In other words, the adjoint action of SO(3) on so(3) is just the usual SO(3)
action on R3. Each orbit of adjoint action is the sphere x2 + y2 + z2 = c or

the origin (0, 0, 0). The Lie subalgebra

0 0 0
0 0 −t
0 t 0

 ∈ t is the Lie algebra of

the maximal torus

1 0 0
0 cos t − sin t
0 sin t cos t

. Its intersection with adjoint orbits

is ±
√
c when c > 0 and 0 when c = 0. We notice the Weyl group is Z2.

For SL(2,R), one can use the similar calculation to show that the Lie
algebra sl(2,R) is three dimensional and its Killing form has signature (2, 1).
So the adjoint action gives a homomorphism SL(2,R) → SO(2, 1). But we
can see these facts in a slightly different manner. We identify sl(2,R) with
R3 via

A =

(
a b
c −a

)
7→ (a, b, c).

Nonzero traceless 2 × 2 matrices have the same Jordan normal form if and
only if they have the equal value of the determinant ∆ = −(a2 + bc). Each
orbit is either one connected component of 2-sheeted hyperboloid (a2 + bc =
const > 0), a 1-sheeted hyperboloid (a2 + bc = const < 0), each half of the
cone a2 + bc = 0, or the origin (0, 0, 0).

SL(2,R) contains two non-conjugate maximal abelian subgroups

(
et 0
0 e−t

)
and SO(2) =

(
cos t − sin t
sin t cos t

)
. But they are conjugate to each other within

SL(2,C). Their Lie algebras are (t, 0, 0) and (0,−t, t) respectively.
The Lie algebra su(2) is three dimensional and its Killing form is positive

definite so the adjoint action gives a homomorphism SU(2) → SO(3). We
can work it out more explicitly. We identify su(2) with the skew Hermi-

tian matrices

(
ix iy − z

iy + z −ix

)
of trace zero. These matrices have the same

diagonalization if and only if they have the equal value of the determinant
∆ = x2 + y2 + z2. Thus, with respect to this invariant positive definite
quadratic form, the adjoint representation of SU(2) is orthogonal. Hence, we
have a homomorphism ψ : SU(2)→ SO(3). The surjectivity follows from the

fact that the maximal torus

(
eit 0
0 e−it

)
maps to

1 0 0
0 cos(2t) − sin(2t)
0 sin(2t) cos(2t)


and Cartan’s maximal tori theorem. Hence ψ is a covering map. The kernel
is {±I}. Alternatively, one can check the induced Lie algebra homomor-
phism, i.e. the infinitesimal adjoint represenation, is an isomorphism. Since
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we have shown SU(2) = S3, in particular simply connected. Hence, we have
π1(SO(3)) = Z/2Z. It can be seen from the Dirac cup trick.

In fact, SO(3) is the real projective 3-space, since in the covering map and
the identification of SU(2) with S3, antipodal points are identified. We can
see it by another way. A rotation can be specified by a vector along the axis of
the rotation, with magnitude giving the angle of the rotation. This identifies
elements of SO(3) with points inside or on the ball of radius π centered at
origin. However, antipodal points on the surface of the ball represent the
same rotation, thus identified. This gives real projective 3-space. There is
an implicit use of the exponential map from so(3) to SO(3).

In fact, in all above examples, we can write down explicit and equivalent
basis, with (inequivalent) Ad-invariant form tr(xy).
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Chapter 3

Roots and Root system

3.1 Semisimple compact groups

A Lie algebra g is simple if it has no nonzero proper ideals and if dim g > 1.
A Lie algebra is semisimple if it has no abelian ideals. A compact Lie group
is simple/semisimple if its Lie algebra is simple/semisimple. Equivalently, a
simple Lie group is a simple group, a semi-simple Lie group is one with no
non-trivial abelian connected normal subgroups. Also equivalently, a semi-
simple Lie algebra is isomorphic with a product of simple Lie algebras. So
U(n) is not semisimple since the scalar matrices in u(n) form an abelian
ideal.

There is an important criterion of semisimplicity of Lie algebra due to
Cartan.

Theorem 3.1.1 (Cartan’s criterion). Lie algebra is semisimple if and only
if the Killing form is nondegenerate.

The proof of it is based on Jordan decomposition. If we admit the Ado
theorem that any Lie algebra is isomorphic to a subalgebra in gl(V ), then
the Jordan decompositino follows from the Jordan decomposition of linear
algebra: x = xs + xn where xs is diagnalizable and xn is nilpotent. We will
not give the proof.

A direct corollary of it is an alternative definition of semisimplicity of Lie
algebra.

Corollary 3.1.2. A Lie algabra g is semisimple if and only if g can be
decomposed into the direct sum

g = g1 ⊕ · · · ⊕ gk

where gi are simple noncommutative ideals. Such a decomposition is unique.

45
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For Lie groups, we have

Proposition 3.1.3. Let G be a compact connected Lie group. Then G is
semisimple if and only if the center of G is finite.

Proof. The closure of a connected abelian normal subgroup is also a con-
nected abelian normal subgroup. Hence it is a torus which is contained in a
maximal torus. But this torus is invariant under conjugation by any element.
So it is contained in every maximal torus and therefore in the center. Since
the Lie algebra of an abelian normal subgroup is an abelian ideal, hence G
is semisimple if and only if Z(G) is finite.

3.2 Schur’s lemma

Schur’s lemma is an important lemma to study irreducible representa-
tions. Recall (V, π) is called a representation of G if π : G → GL(V ) is a
group homomorphism.

Definition 3.2.1. Let (V, π) be a representation of Lie group G. The rep-
resentation V is irreducible (or simple) if its has no subrepresentation other
than 0 and V .

Any one dimensional representation is irreducible. The standard repre-
sentation of SO(n) on Rn is irreducible.

Definition 3.2.2. A finite dimensional representation V of G is called com-
pletely reducible (or semi-simple) if it is isomorphic to a direct sum of irre-
ducible representations.

Definition 3.2.3. A representation (V, π) of G is unitary if V admits a G-
invariant positive-definite Hermitian inner product, i.e. π(g) is unitary for
any g ∈ G.

Proposition 3.2.4. Any finite dimensional unitary representation is com-
pletely reducible.

Proof. Let V be any reducible representation of G, and W ⊂ V a subrepre-
sentation. Then the space W⊥ orthogonal to W is also invariant under the
G-action. It follows W⊥ is also a subrepresentation and V = W ⊕W⊥. We
continue this procedure until each component is irreducible.

Proposition 3.2.5. Any finite dimensional representation of a compact Lie
group is completely reducible.
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Proof. We can use the averaging trick to get invariant inner product on V .
Namely, let

(v, w) :=

∫
G

〈g · v, g · w〉dg

where dg is the Haar measure on G.
Then the conclusion follows from Proposition 3.2.4.

The next is the Schur’s lemma.

Lemma 3.2.6 (Schur’s Lemma). Let V,W be irreducible complex represen-
tation of G.

1. If f : V → W is a G-invariant linear map, then either f ≡ 0 or f is
invertible.

2. If f1, f2 : V → W are two G-invariant linear maps and f2 6= 0, then
there exists λ ∈ C such that f1 = λf2.

Proof. For the first part, suppose f is not identically zero. Since ker(f) is
a G-invariant subset in V , it must be {0}. So f is injective. On the other
hand, Im(f) is a G-invariant subspace of W , then f(V ) = W . Hence f is
invertible.

For the second part, since f2 6= 0, it is invertible. So f = f−1
2 ◦ f1 is a

G-invariant linear map from V to V . For any eigenvalue λ of f , f − λId is
G-invariant which is not invertible. Hence f − λId ≡ 0 and f1 = λf2.

It immediately follows from Lemma 3.2.6 (2) that

Corollary 3.2.7. Let V be an irreducible representation of G, then HomG(V, V ) =
C ·Id.

Conversely, we have

Lemma 3.2.8. If (π, V ) is a unitary representation of G, and HomG(V, V ) =
C ·Id, then (π, V ) is an irreducible representation of G.

We leave it as an exercise.

Corollary 3.2.9. If (π, V ) is an irreducible representation of G, then for
any h ∈ Z(G) = {h ∈ G : gh = hg,∀g ∈ G}, π(h) = λ · Id for some λ ∈ C.

Proof. It implies π(h) : V → V is G-invariant. So it follows from Corollary
3.2.7.

Corollary 3.2.10. Any irreducible representation of an abelian Lie group is
one dimensional.
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Proof. Since G = Z(G), by Corollary 3.2.9, for any g ∈ G, π(g) is a multiple
of the identity map on V . It follows that any subspace of V is G-invariant.
Hence dimV = 1 because V is irreducible.

Eventually, it means commutative diagonolizable matrices could be si-
multaneously diagonalized.

3.3 Weights and Roots

3.3.1 Weights

Suppose T is a connected compact abelian Lie group. By Corollary 2.5.2,
the map exp : t → T is a homomorphism of Lie groups. Let L ⊂ t be its
kernel. We know L ⊂ t is closed and discrete, and t/L = T .

By Corollary 3.2.10, all irreducible finite-dimensional complex represen-
tations of torus are one-dimensional. Therefore, all the irreducible com-
plex representations of T = Rn /(2πZ)n are given by the character group
X(T ) = Hom(T, S1). Explicitly,

(eiθ1 , · · · , eiθn) · z = ei(m1θ1+···+mnθn)z.

Let π : G → GL(V ) be a complex representation of G and T a maximal
torus. By restriction we get a representation of T , still denote by π. Then by
complete reducibility, π is a direct sum of one-dimensional representations.
We know T = t/L, so we can lift π : T → S1 to a homomorphism t → S1.
Using our fixed bi-invariant inner product on g to identify t with t∗, we
identify X(T ) with a lattice Λ ⊂ it

Λ = {λ ∈ it|〈λ, L〉 ⊂ 2πiZ}.
In other words, any element α ∈ Λ gives an irreducible representation ρα of
T on C by ρα(exp(X)) · z = e〈α,X〉z for X ∈ t.

With this understood, we have a decomposition

V = ⊕λ∈ΛVλ

where
Vλ :={v ∈ V |∀t ∈ T, π(t) · v = ρλ(t) · v}

={v ∈ V |∀H ∈ t, π∗(H) · v = 〈λ,H〉v}.
We say that λ is a weight of π if Vλ 6= 0, and dimVλ is the multiplicity

of the weight, and Vλ is the λ-weight space. Nonzero elements of the weight
space are called weight vectors.

Example:.
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1. With coordinates i · (λ1, · · · , λn) (i.e. diag(eiλ1 , · · · , eiλn) ∈ T ) on t
for the maximal torus T ⊂ U(n), the weights of the standard repre-
sentation Cn are λi (where λi = (0, · · · , 1, · · · 0) or when viewed as an
element in the dual space λi(i(t1, · · · , tn)) = ti).

2. For the representation Λ2 Cn of U(n) the weights are λi+λj, i 6= j. For
Λ3 Cn, the weights are λi + λj + λk, i, j, k all different, and so on.

3. For the representation Sym2 Cn of U(n), the weights are λi + λj (i = j
allowed).

3.3.2 Complex representation of sl(2,C)

The simplest complex semisimple Lie algebra is sl(2,C). As the discussion
in Section 2.10, we know su(2)⊗C = sl(2,R)⊗C = sl(2,C). In fact, it plays
an important role in the representation theory of general semisimple Lie
algebras/groups.

Lemma 3.3.1. The finite dimensional complex representations of SU(2),
su(2), sl(2,C) are one-to-one correspondent.

Proof. Since SU(2) is simply connected, we can apply Proposition 2.6.17 to
get equivalence of representations for SU(2) and su(2).

The representation ρ : g → gl(V ) extends to g ⊗ C by ρ(x + iy) =
ρ(x)+iρ(y). So defined ρ is complex linear and compatible with commutator.
This gives equivalence of representation of su(2) and sl(2,C).

There is a standard basis of the Lie algebra sl(2,C).

H =

(
1 0
0 −1

)
, X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
With the relations

[X, Y ] = H, [H,X] = 2X, [H,Y ] = −2Y. (3.1)

In this case, the compact part su(2) consists of the skew Hermitian ma-
trices. Hence, H ∈ it. We have L = {2πinH|n ∈ Z} and Λ ⊂ it = R. So
Λ = Z.

Let (ρ, V ) be an irreducible finite dimensional complex representation of
sl(2,C). The action H on V is diagonalizable, we thus have a decomposition

V = ⊕Vλ, (3.2)
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where λ runs over a collection of complex numbers (In fact, it follows from
Lemma 3.3.1 that λ are integers. But we do not assume it in the following.),
such that for any vector space v ∈ Vλ we have H(v) = λ · v. Here and later,
we write ρ(ξ)(v) simply by ξ(v) for ξ ∈ sl(2,C). Now we want to see how
X, Y act on each Vλ. We apply a key computation which will be used several
times later

H(X(v)) =X(H(v)) + [H,X](v)

=X(λ · v) + 2X(v)

=(λ+ 2)X(v).

That is, if v is an eigenvector for H with eigenvalue λ, then X(v) is also a
eigenvector with eigenvalue λ+ 2. In other words, we have

X : Vλ → Vλ+2.

Similar calculation shows Y (Vλ) ⊂ Vλ−2.
As an immediate consequence, for any irreducible representation V , the

complex number that appear in the decomposition (3.2) must be congruent to
one another mod 2. For any α that actually occurs, the subspace ⊕j∈ZVα+2j

would be invariant under sl(2,C) and hence equal to all of V . Moreover,
the Vα that appear must form an unbroken string of numbers of the form
β, β + 2, · · · , β + 2k. We denote by n the last element in this sequence.

Choose any nonzero vector v ∈ Vn. Since Vn+2 = {0}, we must have
X(v) = 0.

Proposition 3.3.2. The vectors {v, Y (v), Y 2(v), · · · } span V .

Proof. We call this space W . We show sl(2,C) carries W into itself. Clearly,
Y preserves it. Moreover, since Y m(v) ∈ Vn−2m, we have H(Y m(v)) = (n −
2m)Y m(v), so H preserves the subspace W . Thus, we only need to show
X(W ) ⊂ W .

First, X(v) = 0. Then we do the key calculation again

X(Y (v)) =Y (X(v)) + [X, Y ](v)

=Y (0) +H(v)

=nv.

Do the same computation inductively, we have

X(Y m(v)) =(n+ (n− 2) + · · ·+ (n− 2m+ 2)) · Y m−1(v)

=m(n−m+ 1)Y m−1(v).

Hence, W ⊂ V is a non-trivial subrepresentation. By the irreducibility of V ,
we have W = V .
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There are some immediate corollaries.

Corollary 3.3.3. All the eigenspaces Vλ of H are one dimensional.

Second, as we can see from the proof, V is determined by the weights,
i.e. the collection of λ in the decomposition (3.2).

Since V is finite dimensional, we have a lower bound on the λ for which
Vλ 6= 0. In other words, we must have Y k(v) = 0 for sufficiently large k. If
m is the smallest power of Y annihilating v, then we have

0 = X(Y m(v)) = m(n−m+ 1)Y m−1(v).

Hence, we have n − m + 1 = 0. In particular, it implies n is an integer.
Moreover, the eigenvalues of H are symmetric about the origin in Z. To
summarize, we have a unique irreducible representation V (n) for each non-
negative integer n. The representation V (n) is n+1-dimensional, with weights
n, n− 2, · · · , 2− n,−n.

We notice two phenomena. First, the weights are symmetric about 0.
This follows from the symmetry of Weyl group Z2. Second, irreducible rep-
resentations V (n) are uniquely determined by the highest weight n. These
two facts could be generalized for representations of a general complex semi-
simple Lie algebra.

The trivial 1-dimensional representation is just V (0). For the standard
representation of sl(2,C) on V = C2, if x, y are standard basis of C2, we
have H(x) = x,H(y) = −y, so V = C ·x ⊕ C ·y = V−1 ⊕ V1 is just the
representation V (1). In general, it is straightforward to compute that the
symmetric power Symn(V ) is just the representation V (n).

Look at the adjoint representation. As we can see from (3.1), it has
weights ±2 and 0. Hence, it is the irreducible representation V (2).

3.3.3 Roots

If we look at the complexification of the adjoint representation g⊗C of G,
the nonzero weights of V are called roots, the weight spaces are called root
spaces, and weight vectors are called root vectors. We have seen that there
exists inner product on the Lie algebra of a compact Lie group where ad is
skew-self-adjoint. It could be extended to an inner product on g⊗C. When
G is semisimple, we can choose it as Killing form. Explicitly, an element
α ∈ it is called a root if α 6= 0 and there exists a nonzero X ∈ g ⊗ C such
that [H,X] = 〈α,H〉X for all H ∈ t. The root space is denoted by gα. Later,
we will also sometimes write 〈α,H〉 as α(H) for simplicity. This is a purely
imaginary number.
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If V is the complexification of a real representation, V = A⊗RC, then the
nonzero weights come in pairs ±w, with the same multiplicities (Exercise!).
Hence, the roots, as elements in Λ ⊂ it, come in pairs ±α. The weight zero
space just correspond to t⊗ C =: tC. If we denote the set of all roots by R,
we have the direct sum decomposition

g⊗ C = tC ⊕ (⊕α∈Rgα).

Example:.

1. With standard coordinates i(λ1, · · · , λn) on t for the maximal torus
T ⊂ U(n), the roots are λi−λj for i 6= j. There are n(n− 1) roots and
dimG = n2, rank G = n.

This follows from the computation that the conjugation by an element
(exp(iλ1), · · · , exp(iλn)) ∈ T sends
a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
an1 an2 · · · ann

 7→


a11 ei(λ1−λ2)a12 · · · ei(λ1−λn)a1n

ei(λ2−λ1)a21 a22 · · · ei(λ2−λn)a2n

· · · · · · · · · · · ·
ei(λn−λ1)an1 ei(λn−λ2)an2 · · · ann


2. For SU(n) everything is the same as for U(n), except the dimension

and rank both drop by 1.

3. With the same standard coordinates, the roots of SO(2n+1) are ±λi±
λj for i 6= j and ±λi. There are 2n(n − 1) + 2n = 2n2 roots and
dimG = n(2n+ 1), rank G = n.

4. For SO(2n), roots are ±λi ± λj, for i 6= j. There are 2n(n − 1) roots
and dimG = n(2n− 1), rank G = n.

5. The roots of Sp(n) are λi − λj for i 6= j together with ±(λi + λj)
(i = j allowed). There are n(n − 1) + n(n + 1) = 2n2 roots and
dimG = n(2n+ 1), rank G = n.

Proposition 3.3.4. For any α, β ∈ tC, we have [gα, gβ] ⊂ gα+β. In partic-
ular, if X ∈ gα and Y ∈ g−α, then [X, Y ] ∈ tC. Furthermore, if X is in gα
and Y ∈ gβ, and α + β is neither zero nor a root, then [X, Y ] = 0.

Proof. We have Jacobi identity

[H, [X, Y ]] = [[H,X], Y ] + [X, [H,Y ]].
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Thus if X ∈ gα and Y ∈ gβ, we have

[H, [X, Y ]] = [α(H)X, Y ] + [X, β(H)Y ] = (α + β)(H)[X, Y ]

for all H ∈ tC. This shows [X, Y ] ∈ gα+β.

We write gC = g+ ig. We define the congujation with respect to g by the
real linear transformation X = Y + iZ 7→ X̄ = Y − iZ, Y, Z ∈ g. For any
complex number c, we have cX = c̄X̄.

Proposition 3.3.5. 1. If α ∈ it is a root, so is −α. Specifically, if X ∈
gα, then X̄ ∈ g−α.

2. If X ∈ gα and Y ∈ g−α, then [X, Y ] is a multiple of α.

3. If 0 6= Xα ∈ gα, then [Xα, X̄α] is a nonzero element of it, and α([Xα, X̄α]) 6=
0.

4. When g is semisimple, the roots span tC complex linearly (and it as real
vector space).

Proof. If X ∈ gα, then for all H ∈ t ⊂ g, we have

[H, X̄] = [H,X] = α(H)X = −α(H)X̄.

The last inequality is because α(H) is purely imaginary. Hence X̄ ∈ g−α.
For part 2, if Z ∈ tC is orthogonal to α, then

〈Z, [X, Y ]〉 = −〈[X,Z], Y 〉 = [0, Y ] = 0.

Then the conclusion follows from the nondegeneracy of the inner product.
For part 3, by Proposition 3.3.4, [Xα, Xα] ∈ tC. It is straightforward to

check i[Xα, Xα] is invariant under taking conjugate. Hence [Xα, Xα] ∈ it.
If [Xα, Xα] = 0, then kerα ⊂ t,<Xα,=Xα span r + 1 dimensional abelian
subspace of ig over R, contradicting to the assumption that r is the rank of
g. We then apply part 2 to get α([Xα, X̄α]) 6= 0.

For part 4, suppose that the roots do not span it. Then there would be a
nonzero H ∈ t such that α(H) = 0 for all α ∈ R. Then we would have H in
the center of g, contradicting the definition of a semisimple Lie algebra.

Proposition 3.3.6. 1. If α ∈ R, then dim(gα) = 1.

2. If α, β ∈ R and α = cβ, c ∈ R, then c = ±1.
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Proof. By last proposition, we can find X ∈ gα, Y ∈ g−α, so that H =
[X, Y ] 6= 0 and α(H) 6= 0. Adjust by scalars, they generate a subalgebra s
isomorphic to sl(2,C), in particular α(iH) = 2. Consider the adjoint action
of s on V = tC ⊕ (⊕gkα) sum over all nonzero complex multiple kα of α.
From our discussion on the representation of sl(2,C), only k’s that can occur
are integral multiple of 1

2
.

Now s acts trivially on ker(α) ⊂ tC ⊂ V , and it acts irreducibly on
s ⊂ V . They cover the zero weight space tC. Since each representation
with an even weight must have a weight 0 as in Section 3.3.2, we know the
only even weights occurring are 0 and ±2 as appeared in the trivial and
adjoint representations. In particular, 2α is not a root. So if we start with
g 1

2
α and g− 1

2
α by the same argument, it would imply α is not a root. This

contradiction shows 1
2
α is not a root, which is equivalent to saying 1 is not

a weight occurring in V . But then there can be no other representations
since each representation with an odd weight must have a weight 1. In other
words, V = ker(α)⊕ s and both statements of the proposition follow.

The proof of the above proposition also implies the following.

Proposition 3.3.7. For any α ∈ R, a nonzero Xα ∈ gα and X̄α ∈ g−α
generate a complex Lie subalgebra sα ⊂ gC isomorphic to sl(2,C). Moreover,
sα ∩ g is isomorphic to su(2).

Proof. The first part is the construction in Proposition 3.3.6. For the second
statement, we notice iHα = i[Xα, X̄α], Xα + X̄α, and i(Xα − X̄α) are in g,
and generate su(2).

3.4 Root system

We define the root system.

Definition 3.4.1. Let V be a finite-dimensional Euclidean vector space, with
the standard Euclidean inner product. A root system in V is a finite set R
of non-zero vectors (called roots) that satisfy the following conditions:

1. The roots span V .

2. The only scalar multiple of a root α ∈ R that belong to R are α and
−α.

3. For every root α ∈ R, the set R is closed under reflection through the
hyperplane perpendicular to α. In other words, for any root α ∈ R,
sα(R) = R for the reflection sα(β) := β − 2(α,β)

(α,α)
α.
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4. For any two roots α, β ∈ R, the number 2(α,β)
(α,α)

is an integer.

The first condition is called non-degeneracy, satisfied by semisimple Lie
algebras. The second condition is called reduced. Some authors omit condi-
tion 2 to define a root system, and they call ones with it reduced.

If R is a root system in V , the coroot α∨ of a root α is defined by

α∨ :=
2

(α, α)
α.

The set of coroot also forms a root system in V (Exercise!), called the dual
root system. By definition, (α∨)∨ = α, and for reflections s, (sα)∨ = s(α∨).

Example:
For SU(2), there is only one non-trivial element of the Weyl group, repre-

sented by

(
0 1
−1 0

)
. It transforms an element in

(
it 0
0 −it

)
∈ t to

(
−it 0
0 it

)
.

In other words, it induces the reflection sλ for the root λ, i.e. sλ : λ 7→ −λ.

Theorem 3.4.2. If R is the set of roots associated with a compact Lie group
G and its maximal torus T , then R is a root system.

Proof. The vector space V = it. By Proposition 3.3.5 (4), R spans V . By
Proposition 3.3.6, the only scalar multiple of a root α ∈ R that belong to R
are α and −α.

We now show that each reflection sα is induced by an element in the Weyl
group of (G, T ). Since SU(2) is simply connected, it follows from Corollary
2.6.15 that the Lie algebra inclusion su(2) → g of Proposition 3.3.7 is the
differential of a homomorphism iα : SU(2)→ G. We claim the element

wα = iα

(
0 1
−1 0

)
induces sα. First, the adjoint map of wα maps α 7→ −α as we can see in
the above example. Let Tα = {t ∈ T |α(t) = 1}. We have Lie(Tα) = tα =
ker(α) ⊂ t. We have wα centralizes Tα and thus fixes itα. Since t is generated

by tα and α = iα

(
eit 0
0 e−it

)
, we know we know R is preserved by wα and

the above two properties of wα characterize sα.
Item 4 of Definition 3.4.1 follows from a more general fact, Proposition

3.4.3. Thus R is a root system.

Proposition 3.4.3. Let (π, V ) be a finite dimensional representation of G,

and let λ ∈ X(T ) be a weight, i.e. Vλ 6= 0. Then 2〈λ,α〉
〈α,α〉 ∈ Z for all α ∈ R.
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Proof. The space W = ⊕k∈ZVλ+kα is stable under Xα and X̄α by a similar
argument as Proposition 3.3.4. Therefore it is invariant under sα. This
implies it is invariant under iα(SU(2)), in particular by wα. It follows that
the set {λ + kα|k ∈ Z} is invariant under sα. This is equivalent to saying
2〈λ,α〉
〈α,α〉 ∈ Z.

This proposition says a geometric integral element (with respect to G) is
algebraic integral (with respect to g).

Moreover, as in section 3.3.2, the set of weights of a finite dimensional
representation of sl(2,C) is symmetric about the origin, and is an uninter-
rupted string of integers of the same parity. Therefore the set {λ+kα|k ∈ Z}
has {p ≤ k ≤ q} for some p, q ∈ Z, and it must be the case that

2p+
2〈λ, α〉
〈α, α〉

= −(2q +
2〈λ, α〉
〈α, α〉

),

i.e.
2〈λ, α〉
〈α, α〉

= −(p+ q).

As we see from the proof, sα fixes tα = kerα and acts as −1 on other
piece of t. Any H ∈ it with 〈α,H〉 6= 0 for all α ∈ R is called regular. Hence,
the regular set is the complement of a finite number of hyperplanes.

Definition 3.4.4. A Weyl chamber in it is a connected component of the
regular set.

Choose a regular H0 ∈ it and define the positive roots

R+ = {α ∈ R|〈α,H0〉 > 0}.

If we let R− = −R+, we have R = R+ ∪ R−. It is also convex, i.e. if
α, β ∈ R+ and if α + β ∈ R then α + β ∈ R+. Moreover, the Weyl chamber
C+ in which H0 lies is characterized by

C+ = {H ∈ it|〈α,H〉 > 0,∀α ∈ R+}.

Hence the Weyl chambers are convex. C+ is called the dominant Weyl cham-
ber or the fundamental Weyl chamber.

Definition 3.4.5. α ∈ R+ is a simple root if α cannot be expressed as
α = β + γ with β, γ ∈ R+.

Let ∆ ⊂ R+ be the set of simple roots.
We show some basic properties of simple roots.
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Proposition 3.4.6. 1. For simple roots α 6= β, then 〈α, β〉 ≤ 0. If the
equality holds, then both α± β are not roots.

2. ∆ is a vector space basis of the R-linear span of R.

3. If any α ∈ R is expressed as a linear combination of simple roots,
then the coefficients are integers, either all nonnegative (in which case
α ∈ R+) or all non positive (in which case α ∈ R−).

Proof. Since the set of k such that β + kα is a root is a consecutive string
of integers p ≤ k ≤ q, and 2〈β,α〉

〈α,α〉 = −(p + q). So if 〈α, β〉 > 0, we have

β−α ∈ R. Interchange the roles of α, β if necessary so that α−β = γ ∈ R+.
Then α = β + γ, which is a contradiction. This is the first part of item 1.

In particular, it shows β − α /∈ R, i.e. p ≥ 0. If 〈α, β〉 = 0, it implies
p+ q = 0. It means p = q = 0 and thus α + β /∈ R.

Now suppose that α ∈ R+. If α /∈ ∆, we have α = α′ + α′′. Since the
terms of the decomposition 〈α,H0〉 = 〈α′, H0〉+ 〈α′′, H0〉 are all positive and
there are finitely many positive roots, item 2 follows.

Item 3 follows from linear independence of ∆, which will be shown in the
following. If this is not true, then there is a relation for ∆ = {α1, · · · , αr},∑

j≤k

cjαj =
∑
j>k

cjαj,

for c1, · · · , ck > 0 and k ≥ 1 while ck+1, · · · , cr ≥ 0. Take inner product gives

0 ≤ ||
∑
j≤k

cjαj||2 =
∑
j≤k<i

cjci〈αj, αi〉 ≤ 0.

This implies
∑

j≤k cjαj = 0. This gives a contradiction with pairing with H0

and notice αj ∈ R+ and cj > 0 for j ≤ k.

The fundamental Weyl chamber is in fact a fundamental region of Weyl
group on it.

Proposition 3.4.7. The action of Weyl group on the set of chambers is
simply transitive.

Proof. To show the action is transitive, we connect two Weyl chambers by a
path which crosses one root plane at a time, transversely. Then the corre-
sponding product of reflections transforms one Weyl chamber to the other.

To show it is simply transitive, suppose w is an element of Weyl group
and C is a chamber with wC = C. Let w have order n. and choose any point
η ∈ C. Let ξ =

∑n−1
r=0 w

rη. By convexity of C, ξ ∈ C which is fixed by w.
Let g ∈ G be an element whose adjoint action realizes w. So g ∈ ZG(exp ξ).
Since ξ is regular, we have ZG(exp ξ) = T and so w is the identity.
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For ξ ∈ t let Wξ be the subgroup of the Weyl group which fixes ξ. A
similar argument shows Wξ acts transitively on the set of Weyl chambers
which contain ξ.

Corollary 3.4.8. No two distinct points in the closure of the same Weyl
chamber are in the same orbit of W . Therefore the closure of C+ is a fun-
damental region of the action W .

We would like to remark without proof that there exists the following
one-to-one correspondence (Borel-Weil):

• irreducible representations

• integral coadjoint orbits

• orbits of weights under Weyl group

• weights in the closure of fundamental Weyl chamber

We have seen that each adjoint orbit intersects t at finitely many points which
are invariant under the action of Weyl group as a set. When the intersection
is on the weight lattice, this weight ξ on C+ defines a homomorphism from T
to S1 and hence a complex line bundle Lξ over G/T when ξ ∈ C+. Then the
corresponding representation Vξ is the space of holomorphic sections of Lξ
over G/T . When ξ is in the boundary of C+, the corresponding line bundle
over Mξ = G/H for H ⊃ T could also be lifted to G/T . ξ is the highest
weight of the representation Vξ, which always has multiplicity one. The most
difficult part of the correspondence is the construction of a representation
with a given highest weight.

3.4.1 Classification

Property 4 of Definition 3.4.1 puts restrictions on the geometry of the
roots. If θ is the angle between α and β, we have

nβα =
2〈α, β〉
〈α, α〉

= 2 cos θ
||β||
||α||

is an integer. In particular, 4 cos2 θ = nαβnβα is an integer between 0 and
4. Hence, the angles between roots could be 0, π

6
, π

4
, π

3
, 2π

3
, 3π

4
, 5π

6
and π. An

important consequence for the classification of root system is the following.
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Proposition 3.4.9. Suppose α, β are distinct simple roots and 〈α, β〉 6= 0.
Then

∠(α, β) =


120◦ k = 1

135◦ k = 2

150◦ k = 3

with ||α||2 = k||β||2 or ||β||2 = k||α||2.

In summary, we can reduce the classification of compact semisimple com-
pact Lie groups to compact simple Lie groups. The latter could be reduced
to the classification of (irreducible) root systems, which could be reduced to
the classification of Dynkin diagrams of simple roots.

A Dynkin diagram of G is the graph constructed as follows

• The vertices are the simple roots.

• α, β ∈ ∆ are connected by k edges if 〈α, β〉 6= 0 and ||α||2 = k||β||2 or
the other direction. and are not connected if 〈α, β〉 = 0. If k 6= 1, the
edge is directed from the longer root to the shorter.

Theorem 3.4.10. The only possible Dynkin diagrams of connected, compact,
simple Lie groups are An, Bn, Cn, Dn, E6, E7, E8, F4, G2. Each of these does
correspond to a connected, compact, simple Lie group, which is unique up to
covering.

We will not prove this. Instead, we explain why this should be true. The
first part follows from some elementary analysis using inner products, etc.
For instance, one quickly realizes that cycles are impossible, and then only
one pair of nodes can have multiple edges.

In particular, the Lie groups corresponding to An, Bn, Cn, and Dn are
SU(n + 1), SO(2n + 1), Sp(n), and SO(2n) respectively. The uniqueness
follows because from the Dynkin diagram we can reconstruct the roots and
root system. First for the sl(2,C) corresponding to simple roots, then other
roots are obtained by taking brackets.

We try to illustrate some of these exceptional collections of root systems.
First for E8. One choice of simple roots is give by the rows of the following
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matrix: 

1 −1 0 0 0 0 0 0
0 1 −1 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 1 −1 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 1 1 0
−1

2
−1

2
−1

2
−1

2
−1

2
−1

2
−1

2
−1

2

0 0 0 0 0 1 −1 0


So its corresponding Lie group has rank 8 and dimension 248 = 8+112+128,
where 112 roots with integer entries obtained from (±1,±1, 0, 0, 0, 0, 0, 0) by
taking an arbitrary combination of signs and an arbitrary permutation of
coordinates (roots of so(16)), and 128 roots with half-integer entries obtained
from

(±1

2
,±1

2
,±1

2
,±1

2
,±1

2
,±1

2
,±1

2
,±1

2
)

by taking an even number of minus signs (or, equivalently, requiring that the
sum of all the eight coordinates be even).

The integral span of the E8 root system forms a lattice in R8 naturally
called the E8 root lattice. This lattice is rather remarkable in that it is
the only (nontrivial) even, unimodular lattice with rank less than 16. In
particular, the distance between neighboring points in E8 is

√
2, so we can

form a packing with spheres of radius
√

2
2

and density

V ol(B8√
2/2

)

V ol(R8 /E8)
=

π4

384
.

This is the optimal packing in dimension 8, in the sense the density is the
largest possible one.

The root system E7 is the set of vectors in E8 that are perpendicular to
a fixed root in E8. The root system E7 has 126 roots. E6 is the subsystem
of E8 perpendicular to two suitably chosen roots of E8. The root system E6

has 72 roots.
The root system G2 has rank 2 and 12 roots, which form the vertices of

a hexagram. As a simply connected compact Lie group, G2 is the automor-
phism Aut(O) of octonion (Aut(R) ∼= 1, Aut(C) ∼= Z2, Aut(H) ∼= SO(3)).

The root system F4 has rank 4 and dimension 52. One choice of simple
roots give by the rows of 

1 −1 0 0
0 1 −1 0
0 0 1 0
−1

2
−1

2
−1

2
−1

2

 .
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The 48 root vectors of F4 form vertices of the 24-cell (8 vertices obtained
by permuting (±1, 0, 0, 0) and 16 vertices of the form (±1

2
,±1

2
,±1

2
,±1

2
))

and its dual (24 vertices are (±1,±1, 0, 0)). The 24-cell is one of the six
4-dimensional convex regular polytopes.

The root system also gives us some special isomorphisms, up to coverings,
within the families of classical Lie groups.

• SO(3), SU(2) and Sp(1).

• SO(4), SU(2)× SU(2) and SO(3)× SO(3).

• SO(5) and Sp(2).

• SO(6) and SU(4).
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