
General flows of deterministic

and stochastic replicator

dynamics

Vassili N. Kolokoltsov, Department of

Statistics, University of Warwick,

v.kolokoltsov@warwick.ac.uk

April 12, 2010



Replicator Dynamics (RD) displays beauti-

ful mathematical features and is successful

in modeling real life behavior in biology and

economics (like some lizards following the RD

prediction of the Rock-Paper-Scissors game).

In some cases, however, the behavior of species

in real life situations are quite different from

the predictions of RD and its various modifi-

cations. This suggest the existence of an un-

derlying more fundamental structure. We ar-

gue that this structure is provided by Markov

processes of interacting particles. From this

point of view the RD becomes just a dynamic

law of large numbers for these random sys-

tems. And the fluctuation from this limit can

be studied by means of an appropriate dy-

namic Central Limit Theorem.



We aim to overview a method of general deriva-

tion of the dynamic law of large numbers

from Markov models of interaction. This al-

lows one to present in a unified way the de-

duction of both a variety of the basic equa-

tions from statistical mechanics (say Smolu-

chovski, Boltzman, Vlasov, etc), as well as

RD equations in very general situations. In

the talk we mostly stress the formal scheme.

Mathematical details can be found in refer-

ences given at the end.

In the talk we assume some familiarity with

Markov chains in continuous time and with

related notions of Markov semigroups and their

generators.



1. State space of systems of interacting

particles (set-up)

X a locally compact metric space

X0 a one-point space, Xj = X × ... × X (j-

times) (with product topology),

X = X = ∪∞j=0Xj (disjoint union)

X specifies the state space of one particle and

X = ∪∞j=0Xj stands for the state space of a

random number of similar particles.

Csym(X ) the Banach spaces of symmetric bounded

continuous functions on X and by Csym(Xk)

the corresponding spaces of functions on the

finite power Xk

Msym(X ) symmetric measures

The elements of M+
sym(X ) and Csym(X ) are

respectively the (mixed) states and observ-

ables for a Markov process on X .



Bold letters, e.g. x, y denote the elements

of X . For a finite set I = {i1, ..., ik}, xI is

the collection of the variables xi1, ..., xik and

dxI = dxi1...dxik.

Factor spaces SXk and SX are obtained by

the factorization of Xk and X with respect to

all permutations, which allows for the identi-

fications:

Csym(X ) = C(SX ), SX the set of all finite

subsets of X.

Basic inclusion SX →M+(X):

x = (x1, ..., xl) 7→ δx1 + ... + δxl, (1)

is a bijection between SX and the spaceM+
δ (X)

of finite linear combinations of δ-measures.



Clearly each f ∈ Csym(X ) is defined by its

components (restrictions) fk on Xk so that

for x = (x1, ..., xk) ∈ Xk ⊂ X , say, one can

write f(x) = f(x1, ..., xk) = fk(x1, ..., xk). Sim-

ilar notations are for measures. In particular,

the pairing between Csym(X ) and M(X ) can

be written as

(f, ρ) =
∫

f(x)ρ(dx)

= f0ρ0 +
∞∑

n=1

∫
f(x1, ..., xn)ρ(dx1...dxn),

f ∈ Csym(X ), ρ ∈M(X )

so that ‖ρ‖ = (1, ρ) for ρ ∈M+(X ).

A useful class of measures (and mixed states)

on X is given by the decomposable measures

of the form Y ⊗, which are defined for an ar-

bitrary finite measure Y (dx) on X by their

components

(Y ⊗)n(dx1...dxn) = Y (dx1)...Y (dxn)



Similarly the decomposable observables (mul-

tiplicative or additive)) are defined for an ar-

bitrary Q ∈ C(X) as

(Q⊗)n(x1, ..., xn) = Q(x1)...Q(xn)

and

(Q⊕)(x1, ..., xn) = Q(x1) + ... + Q(xn)

(Q⊕ vanishes on X0). In particular, if Q =

1, then Q⊕ = 1⊕ is the number of particles:

1⊕(x1, ..., xn) = n.

Here we talk about pure jump processes on

X (generalized Markov chains), whose semi-

group and the generator preserves the space

Csym of continuous symmetric functions and

hence are given by symmetric transition ker-

nels q(x; dy) that could be thus considered as

kernels on the factor space SX .



2. Pure jump Markov models of interact-

ing particles

Assume

P2(x1, x2; dy) = {P2
m(x1, x2; dy1...dym)}

a continuous transition kernel SX2 → SX such

that P2(x; {x}) = 0 for all x ∈ X2, with the

intensity

P2(x1, x2) =
∫

X
P2(x1, x2; dy)

=
∞∑

m=0

∫

Xm
P2

m(x1, x2; dy1...dym).

The intensity defines the rate of decay of

any pair of particles x1, x2 and the measure

P k(x1, x2; dy) defines the distribution of pos-

sible outcomes.



Supposing that any randomly chosen pair of

particles from a given set of n particles can

interact, leads to the following generator of

binary interacting particles defined by the ker-

nel P2:

(G2f)(x1, ..., xn) =
∑

I⊂{1,...,.n},|I|=2

∫
(f(xĪ ,y)− f(x1, ..., xn))P

2(xI , dy).

Probabilistic interpretation in terms of expo-

nential waiting times.



Similarly, a k-ary interaction of a pure jump

type is specified by a transition kernel

P k(x1, ..., xk; dy) = {P k
m(x1, ..., xk; dy1...dym)}

(2)

from SXk to SX such that P k(x; {x}) = 0 for

all x ∈ X , having the intensity

P k(x1, ..., xk) =
∫

P k(x1, ..., xk; dy)

=
∞∑

m=0

∫
P k

m(x1, ..., xk; dy1...dym). (3)

This kernel defines the following generator of

k-ary interacting particles:

(Gkf)(x1, ..., xn) =
∑

I⊂{1,...,.n},|I|=k

∫
(f(xĪ ,y)− f(x1, ..., xn))P

k(xI , dy). (4)

Changing the state space by (1) yields the

corresponding Markov process on M+
δ (X).



Choosing a positive parameter h, we shall

perform now the following scaling: we scale

the empirical measures δx1+ ...+δxn by a fac-

tor h and the operator of k-ary interactions

by a factor hk−1 (similar to the scaling used in

the theory of superprocesses, which in our no-

tations corresponds to the ’interaction free’

case of k = 1). This leads to the operator

Λh
kf(hδx) = hk−1 ∑

I⊂{1,...,n},|I|=k

∫
[f(hδx−

∑

i∈I

hδxi+hδy)−f(hν)]P (xI; dy) (5)

(where we denoted δy = δy1 + ... + δym for

y = (y1, ..., ym)), acting on the space of con-

tinuous functions on the set M+
hδ(X) of mea-

sures of the form hν = hδx = hδx1 + ...+hδxn.



The above scaling (usually applied in statis-

tical mechanics) is not the only reasonable

one. For the theory of evolutionary games

(or other biological model) a more natural

scaling is by normalizing on the number of

particles, i.e. by division of k-ary interaction

by nk−1 = (‖hν‖/h)k−1. This leads (instead

of (5)) to the operator

Λ̃h
kf(hδx) = hk−1 ∑

I⊂{1,...,n},|I|=k

∫
[f(hν−

∑

i∈I

hδxi+hδy)−f(hν)]
P (xI; dy)

‖hδx‖k−1
. (6)



3. Heuristic derivation of kinetic equa-

tions

Using the obvious formula
∑

I⊂{1,...,n},|I|=2

f(xI) =

1

2

∫ ∫
f(z1, z2)δx(dz1)δx(dz2)−

1

2

∫
f(z, z)δx(dz)

(7)

(valid for f ∈ Csym(X2) and x = (x1, . . . , xn) ∈
Xn),

the operator Λh
2 can be written in the form

Λh
2f(hδx) = −1

2

∫

X

∫

X
[f(hδx−2hδz+hδy)−f(hδx)]

P (z, z; dy)(hδx)(dz)

+
1

2h

∫

X

∫

X2
[f(hδx−hδz1−hδz2+hδy)−f(hδx)]

P (z1, z2; dy)(hδx)(dz1)(hδx)(dz2).



For a linear function fg(µ) =
∫

g(y)µ(dy),

Λh
2fg(hδx) =

1

2

∫

X

∫

X2
[g⊕(z1, z2)− g⊕(y)]

P (z1, z2; dy)(hδx)(dz1)(hδx)(dz2)

−1

2
h

∫

X

∫

X
[g⊕(z, z)−g⊕(y)]P (z, z; dy)(hδx)(dz)

It follows that if h → 0 and hδx tends to some

finite measure µ (large number of particles

limit with a finite ”whole mass”), the evolu-

tion equation ḟ = Λh
2f for linear f = fg tends

to the equation

d

dt

∫

X
g(z)µt(dz)

=
1

2

∫

X

∫

X2
(g⊕(y)− g⊕(z))P2(z; dy)µ⊗2

t (dz)

(8)

with z = (z1, z2), which represents the gen-

eral kinetic equation for binary interactions of

pure jump type in the weak form.

The famous Boltzman equation and the Smolu-

chovski coagulation equation are particular

cases of (8).



Similar procedure with k-ary interactions leads

to the general kinetic equation for k-ary inter-

actions of pure jump type in the weak form:

d

dt

∫

X
g(z)µt(dz)

=
1

k

∫

X

∫

Xk
(g⊕(y)− g⊕(z))P k(z; dy)µ⊗k

t (dz)

(9)

with z = (z1, ..., zk). On the other hand, using

the alternative scaling, leads to the equation

d

dt

∫

X
g(z)µt(dz) =

1

k

∫

X

∫

Xk
(g⊕(y)− g⊕(z))

P k(z; dy)

(
µt

‖µt‖

)⊗k

(dz)‖µt‖. (10)

In biological context one traditionally writes

the dynamics in terms of normalized (proba-

bility) measures.



For positive µ, (10) implies

d

dt
‖µt‖ = −1

k

∫

Xk
Q(z)

(
µt

‖µt‖

)⊗k

(dz)‖µt‖,
(11)

where

Q(z) = −
∫

X

∫

Xk
(1⊕(y)− 1⊕(z))P k(z; dy).

(12)

Consequently, rewriting equation (10) in terms

of normalized measure νt = µt/‖µt‖ yields

d

dt

∫

X
g(z)νt(dz)

=
1

k

∫

X

∫

Xk
(g⊕(y)− g⊕(z))P k(z; dy)(νt)

⊗k(dz)

+
1

k

∫

X
g(z)νt(dz)

∫

X

∫

Xk
Q(z)(νt)

⊗k(dz). (13)



4. Simple well-posedness results for ki-

netic equations and convergence of Markov

approximation

The central notion for the theory of kinetic

equations is the criticality. The transition

kernel P = P k(x; dy) from (2) is called sub-

critical (respectively critical), if
∫

X
(1⊕(y)− 1⊕(x))P k(x; dy) ≤ 0

for all x ∈ Xk (respectively if the equality

holds).

Theorem 1. Suppose the transition kernel is

subcritical and its intensity is uniformly bounded.

Then for any non-negative measure µ ∈M+(X)

there exists a unique global solution to the

basic kinetic equations above (with each of

two scalings considered). Moreover this so-

lution is positive, ‖µt‖ ≤ ‖µ‖ for all t, and the

mapping t 7→ µt is strongly differentiable.

Proof. Key point is positivity preservation.



A worth noting feature of equation (9) is that

its evolution preserves L1 spaces. Namely,

the following holds.

Theorem 2. Under assumptions of the pre-

vious Theorem suppose we are given a refer-

ence (not necessarily finite, but σ-finite and

positive) measure M on X. Let µ has a non-

negative density f with respect to M , i.e.

f ∈ L1(X, M). Then the solution µt will also

have a non-negative density ft ∈ L1(X, M)

satisfying the weak equation

d

dt

∫

X
g(z)ft(z)M(dz) =

1

k

∫

X

∫

Xk
(g⊕(y)−g⊕(z))

P k(z; dy)
k∏

i=1

ft(zi)M
⊗k(dz). (14)

Proof. It repeats literarily the proof of the

previous theorem. Namely, one first get the

local existence and uniqueness and then ex-

tends to all times by positivity.



Theorem 3. Under the assumptions of the

previous Theorem assume additionally that

X is compact. Then the operator (5) (re-

spectively (6)) generates a uniquely defined

nonexplosive Markov process Zh
t (respectively

Z̃h
t ) on M+

hδ for any h > 0. Moreover, if the

initial conditions Zh
0 converge weakly to a fi-

nite measure µ on X as h → 0, then the pro-

cesses Zh
t (respectively Z̃h

t ) converge in the

sense of distribution to the solution µt (a de-

terministic process) of the equation (9) (re-

spectively (10)) constructed in Theorem 1.



5. Evolutionary games and Replicator dy-
namics

Recall: a k-person game (in normal form) is
specified by a collection of k compact spaces
X1, ..., Xk of possible pure strategies for the
players and a collection of continuous payoff
functions H1,...,Hk on X1 × · · · ×Xk.

One step of such a game is played accord-
ing to the following rule. Each player i, i =
1, ..., k, chooses independently a strategy xi ∈
Xi and then receives the payoff Hi(x1, ..., xk).
The collection {x1, ..., xk} is called a profile (or
situation) of the game. In elementary models
Xi are finite sets.

A game is called symmetric if Xi = X do
not depend on i and the payoffs are symmet-
ric in the sense that they are specified by a
single function H(x; y1, ..., yk−1) on Xk sym-
metric with respect to the last k−1 variables
y1, ..., yk−1 via the formula

Hi(x1, ..., xk) = H(xi, x1, ..., xi−1, xi+1, ..., xk).

In symmetric games the label of the player is
irrelevant, only the strategy is important.



By the mixed strategy extension of a game

with strategy spaces Xi and payoffs Hi, i =

1, ..., k, we mean a k-person game with the

spaces of strategies P(Xi) (considered as a

compact space in its weak topology), i =

1, ..., k, and the payoffs

H?
i (P ) =

∫

Xk
Hi(x1, ..., xk)P (dx1 · · · dxk),

P = (p1, ..., pk) ∈ P(X1)× · · · × P(Xk).

Playing a mixed strategy pi is interpreted as

choosing pure strategies randomly with prob-

ability law pi.

The key notion in the theory of games is that

of Nash equilibrium. Let

H?
i (P‖xi) =

∫

X1×···×Xi−1×Xi+1×···×Xn

Hi(x1, ..., xn) dp1 · · · dpi−1dpi+1 · · · dpn. (15)

A situation P = (p1, ..., pk) is called a Nash

equilibrium, if

H?
i (P ) ≥ H?

i (P‖xi) (16)

for all i and xi ∈ Xi.



For symmetric games and symmetric profiles

P = (p, ..., p), which are of particular interest

for evolutionary games,

H?
i (P ) = H?(P ) =

∫

Xk
H(x1, ..., xk)p

⊗k(dx1 · · · dxk)

and

H?
i (P‖y) = H?(P‖y)

=
∫

Xk−1
H(y, x1, ..., xk−1) p⊗(k−1)(dx1 · · · dxk−1)

do not depend on i and the condition of equi-

librium is

H?(P ) ≥ H?(P‖x), x ∈ X. (17)

The replicator dynamics (RD) of evolutionary

game theory is supposed to model the process

of approaching the equilibrium from a given

initial state by decreasing the losses produced

by deviating from the equilibrium (adjusting

the strategy to the current situation).



More precisely, assuming a mixed profile is

given by a density ft with respect to a certain

reference measure M on X (ft can be inter-

preted as the fraction of a large population

using strategy x), the replicator dynamics is

defined as

ḟt(x) = ft(x)(H
?(ftM‖x)−H?(ftM)). (18)

We want to show how this evolution appears

as a simple particular case of the general dy-

namic law of large number limit (kinetic equa-

tion) described above.

A key feature distinguishing the evolution-

ary game setting in the general framework:

the species produce new species of their own

kind (with inherited behavioral patterns). In

the usual model of evolutionary game the-

ory it is assumed that any k randomly chosen

species can occasionally meet and play a k-

person symmetric game specified by a payoff

function H(x; y1, ..., yk−1) on Xk, where the

payoff measures fitness expressed in terms of

expected number of offspring.



To specify a Markov model we need to spec-

ify the game a bit further. We shall assume

that X is a compact set and that the re-

sult of the game for player x playing against

y1, ..., yk−1 is given by the probability rates

Hm(x; y1, ..., yk−1), m = 0,1, ..., of the num-

ber m of particles of type x that would appear

in place of x after this game (one interac-

tion). To fit into the original model, the Hm

can be chosen arbitrary, as long as the aver-

age change equals the original function H:

H(x; y1, ..., yk−1) =
∞∑

m=0

(m−1)Hm(x; y1, ..., yk−1).

(19)

The simplest model is one, in which a species

can either die or produce another species of

the same kind with given rates H0, H2; the

probabilities are therefore H0/(H0 +H2) and

H2/(H0+H2). Under these assumptions equa-

tion (19) reduces to

H(x; y1, ..., yk−1) = (H2 −H0)(x; y1, ..., yk−1).

(20)



In any case, we have transition kernels of the

form

P k
m(z1, ..., zk; dy) = Hm(z1; z2, ..., zk)

m∏

j=1

δz1(dyj)

+Hm(z2; z1, ..., zk)
m∏

j=1

δz2(dyj) + · · ·

+Hm(zk; z1, ..., zk−1)
m∏

j=1

δzk(dyj) (21)

so that
∫

X
(g⊕(y)− g⊕(z))P k(z; dy)

= g(z1)H(z1; z2, ..., zk)+· · ·+g(zk)H(zk; z1, ..., zk−1).

Due to the symmetry of H, equation (10)

takes the form

d

dt

∫

X
g(x)µt(dx) =

‖µt‖
(k − 1)!

∫

Xk

g(z1)H(z1; z2, ..., zk)

(
µt

‖µt‖

)⊗k

(dz1 · · · dzk).

(22)



Hence for the normalized measure νt = µt/‖µt‖
one gets the evolution

d

dt

∫

X
g(x)νt(dx)

=
1

(k − 1)!

∫

X
(H?(νt‖x)−H?(νt))g(x)νt(dx),

(23)

which represents the replicator dynamics in

weak form for a symmetric k-person game

with an arbitrary compact space of strategies.

It is obtained here as a simple particular case

of (13).

If a reference probability measure M on X

is chosen, equation (23) can be rewritten in

terms of the densities ft of νt with respect to

M as (18).



6. Equilibria
Proposition 1. (i) If ν defines a symmet-
ric Nash equilibrium for symmetric k-person
game (its mixed strategy extension) specified
by payoff H(x; y1, ..., yk−1) on Xk (X again a
compact space), then ν is a fixed point for
RD (23). If ν is such that any open set in X

has a positive ν measure (pure mixed profile),
then the inverse statement holds.

Proof. (i)

H?(ν‖x) ≤ H?(ν) (24)

for an equilibrium ν and all x ∈ X. The set
M = {x : H?(ν‖x) < H?(ν)} should have
ν-measure zero (otherwise integrating (24)
would lead to a contradiction). This implies
that∫

X
(H?(ν‖x)−H?(ν))g(x)νt(dx) = 0. (25)

for all g. (ii) Conversely assuming (25) holds
for all g implies (taking into account here that
ν is purely mixed profile)

H?(ν‖x) = H?(ν)

on a open dense subset of X and hence ev-
erywhere, due to the continuity of H.



Proposition 2.Consider a mixed strategy ex-

tension of a two-person symmetric game with

a compact space of pure strategies X of each

player and a payoff matrix being an antisym-

metric function H on X2, i.e. H(x, y) =

−H(y, x). Assume there exists a positive fi-

nite measure M on X such that
∫

H(x, y)M(dy) =

0 for all x. Then M specifies a symmetric

Nash equilibrium. Moreover, the function

L(f) =
∫

ln ft(x)M(dx)

is the first integral (i.e. it is constant on

the trajectories) of the RD on densities with

respect to M .

Proof. Is a straightforward generalization of

the discrete case.

Note however that the existence of the first

integral is not enough to make a conclusion

on the stability in this infinite-dimensional set-

ting.



7. Stochastic replicator dynamics

Kinetic equations and RD described above

specify the law of large numbers limits for

Markov processes of interacting particles when

this limit is a deterministic process. How-

ever there are natural situations when the law

of large numbers is itself random. Studying

such random limits leads to general measure-

valued processes with (possibly infinite dimen-

sional) pseudo-differential generators. The

simplest case of these limits obtained from

branching (noninteracting particle systems)

yields a popular class of processes called su-

perprocesses.

Let us briefly introduce those limiting pro-

cesses turning to two-person games with only

a finite set X = {1, ..., d} of pure strategies.

Nj the number of individuals playing the strat-

egy j

N =
∑d

j=1 Nj the whole size of the popula-

tion.



The outcome of a game between players with

strategies i and j is a probability distribu-

tion Aij = {Am
ij} of the number of offsprings

m ≥ −1 (m = −1 means the death of the

individual) of the players (
∑∞

m=−1 Am
ij = 1).

If the intensity of the reproduction per time

unit aij are given, this yields the Markov chain

on Zd
+ with the generator

Gf(N) =
d∑

j=1

Nj

∞∑

m=−1


Bm

j +
d∑

k=1

ajkAm
jk

Nk

|N |


 (f(N + mej)− f(N))

(26)

(where Bm
j describe the background repro-

duction process), which is a version of the

generators of binary interactions introduced

above.



Assuming a natural dependence of probabili-
ties Am

jk on a small parameter h (inverse of the
average number of particles) leads in h → 0
limit to the process on Rd

+ with the generator
of the type

Λ =
d∑

j=1

xj


φj +

d∑

k=1

xk

µ(x)
φjk


 , (27)

where φj and φjk generate one-dimensional
Lévy processes:

φjkf(x) = gjk
∂2f

∂x2
j

(x) + βjk
∂f

∂xj
(x)

+
∫ (

f(x + yej)− f(x)− 1y≤1(y)
∂f

∂xj
(x)yj

)
νjk(dy),

(28)

φjf(x) = gj
∂2f

∂x2
j

(x) + βj
∂f

∂xj
(x)

+
∫ (

f(x + yej)− f(x)− 1y≤1(y)
∂f

∂xj
(x)y

)
νj(dy),

where all νjk, νj are Borel measures on (0,∞)
such that the function min(y, y2) is integrable
with respect to these measures, gj and gjk are
non-negative.



The interpretation of the approximations of

the three terms in (28) (diffusion, drift and

integral part):

The first term stands for a quick game (”death

or birth” game), which describes some sort of

fighting for reproduction, whose outcome is

that an individual either dies or produces an

offspring;

The second term (approximating drift) de-

scribes games for death or for life depending

on the sign of βjk;

Third term corresponds to games with a slow

reproduction of the large number of offsprings.

Developments: the fluctuations around the

LLN (kinetic equations or replicator dynam-

ics) are described by the dynamic CLT.

Remark. Underlying probabilistic models should

be taken into consideration when discussing

alternative evolutionary dynamics.
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