

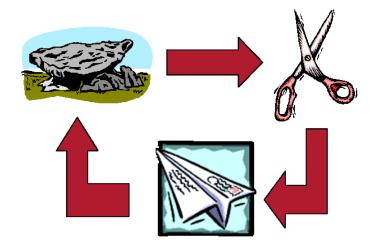
Generalised weakened fictitious play and random belief learning

David S. Leslie 12 April 2010

Collaborators: Sean Collins, Claudio Mezzetti, Archie Chapman

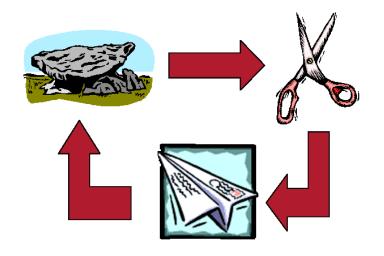
- Learning in games
- Stochastic approximation
- Generalised weakened fictitious play
 - Random belief learning
 - Oblivious learners

KNormal form games



- Players $i=1,\ldots,N$
- Action sets A^i
- Reward functions $r^i: A^1 \times \dots \times A^N \to \mathbb{R}$

Mixed strategies



- Mixed strategies $\pi^i \in \Delta^i$
- Joint mixed strategy $\pi = (\pi^1, \dots, \pi^N)$
- Reward function extended so that $r^i(\pi) = \mathbb{E}_{\pi}[r^i(oldsymbol{a})]$

Assume other players use mixed strategy π^{-i} .

Player i should choose a mixed strategy in the $\ensuremath{\mathsf{best}}\xspace$ response set

$$b^{i}(\pi^{-i}) = \operatorname*{argmax}_{\tilde{\pi}^{i} \in \Delta^{i}} r^{i}(\tilde{\pi}^{i}, \pi^{-i})$$

Best responses

Assume other players use mixed strategy π^{-i} .

Player i should choose a mixed strategy in the $\ensuremath{\mathsf{best}}\xspace$ response set

$$b^{i}(\pi^{-i}) = \operatorname*{argmax}_{\tilde{\pi}^{i} \in \Delta^{i}} r^{i}(\tilde{\pi}^{i}, \pi^{-i})$$

A Nash equilibrium is a fixed point of the best response map:

$$\pi^i \in b^i(\pi^{-i}) \quad \text{for all } i$$

A problem with Nash

Consider the game

$$\left(egin{array}{ccc} (2,0) & (0,1) \\ (0,2) & (1,0) \end{array}
ight)$$

with unique Nash equilibrium

$$\pi^1 = (2/3, 1/3), \quad \pi^2 = (1/3, 2/3)$$

KA problem with Nash

Consider the game

$$\left(egin{array}{ccc} (2,0) & (0,1) \ (0,2) & (1,0) \end{array}
ight)$$

with unique Nash equilibrium

$$\pi^1 = (2/3, 1/3), \quad \pi^2 = (1/3, 2/3)$$

•
$$r^i(a^i,\pi^{-i})=2/3$$
 for each i,a^i

- How does Player 1 know to use $\pi^1 = (2/3, 1/3)$?
- Player 2 to use $\pi^2 = (1/3, 2/3)$?

Learning in games

- Attempts to justify equilibrium play as the end point of a learning process
- Generally assumes pretty stupid players!
- Related to evolutionary game theory

At time n, choose action a_n , and receive reward R_n

Multi-armed bandits

Estimate after time n of the expected reward for action $a \in A$ is:

$$Q_n(a) = \frac{\sum_{m \le n : a_m = a} R_m}{\kappa_n(a)}$$

where $\kappa_n(a) = \sum_{m=1}^n \mathbb{I}\{a_m = a\}$

If
$$a_n \neq a$$
, $\kappa_n(a) = \kappa_{n-1}(a)$ and:

$$Q_n(a) = \frac{\left(\sum_{m=1}^{n-1} \mathbb{I}\{a_m = a\}R_m\right) + 0}{\kappa_{n-1}(a)} = Q_{n-1}(a)$$

 $\text{ if } a_n = a, \\$

$$Q_n(a) = \frac{\left(\sum_{m=1}^{n-1} \mathbb{I}\{a_m = a\}R_m\right) + R_n}{\kappa_n(a)}$$
$$= \left(1 - \frac{1}{\kappa_n(a)}\right)Q_{n-1}(a) + \frac{1}{\kappa_n(a)}R_n$$

Multi-armed bandits

Update estimates using

$$Q_n(a) = \begin{cases} Q_{n-1}(a) + \frac{1}{\kappa_n(a)} \{R_n - Q_{n-1}(a)\} & \text{if } a_n = a \\ Q_{n-1}(a) & \text{if } a_n \neq a \end{cases}$$

At time n+1 use Q_n to choose an action a_{n+1}

Fictitious play

At iteration n + 1, player *i*:

- \bullet forms beliefs $\sigma_n^{-i} \in \Delta^{-i}$ about the other players' strategies
- \bullet chooses an action in $b^i(\sigma_n^{-i})$

The beliefs about player j are simply the MLE:

$$\sigma_n^j(a^j) = \frac{\kappa_n^j(a^j)}{n} \qquad \text{where } \kappa_n^j(a^j) = \sum_{m=1}^n \mathbb{I}\{a_m^j = a^j\}$$

The beliefs about player j are simply the MLE:

$$\sigma_n^j(a^j) = \frac{\kappa_n^j(a^j)}{n} \qquad \text{where } \kappa_n^j(a^j) = \sum_{m=1}^n \mathbb{I}\{a_m^j = a^j\}$$

Recursive update: $\sigma_{n+1}^j(a^j) = \frac{\kappa_{n+1}^j(a^j)}{n+1} = \frac{\kappa_n^j(a^j) + \mathbb{I}\{a_{n+1}^j = a^j\}}{n+1}$

The beliefs about player j are simply the MLE:

$$\sigma_n^j(a^j) = \frac{\kappa_n^j(a^j)}{n} \qquad \text{where } \kappa_n^j(a^j) = \sum_{m=1}^n \mathbb{I}\{a_m^j = a^j\}$$

Recursive update:

$$\sigma_{n+1}^{j}(a^{j}) = \frac{\kappa_{n+1}^{j}(a^{j})}{n+1} = \frac{\kappa_{n}^{j}(a^{j}) + \mathbb{I}\{a_{n+1}^{j} = a^{j}\}}{n+1} = \frac{n}{n+1} \frac{\kappa_{n}^{j}(a^{j})}{n} + \frac{\mathbb{I}\{a_{n+1}^{j} = a^{j}\}}{n+1}$$

The beliefs about player j are simply the MLE:

$$\sigma_n^j(a^j) = \frac{\kappa_n^j(a^j)}{n} \qquad \text{where } \kappa_n^j(a^j) = \sum_{m=1}^n \mathbb{I}\{a_m^j = a^j\}$$

Recursive update:

$$\sigma_{n+1}^{j}(a^{j}) = \left(1 - \frac{1}{n+1}\right)\sigma_{n}^{j}(a^{j}) + \frac{1}{n+1}\mathbb{I}\{a_{n+1}^{j} = a^{j}\}$$

The beliefs about player j are simply the MLE:

$$\sigma_n^j(a^j) = \frac{\kappa_n^j(a^j)}{n} \qquad \text{where } \kappa_n^j(a^j) = \sum_{m=1}^n \mathbb{I}\{a_m^j = a^j\}$$

Recursive update:

$$\sigma_{n+1}^{j} = \left(1 - \frac{1}{n+1}\right)\sigma_{n}^{j} + \frac{1}{n+1}\boldsymbol{e}_{a_{n+1}^{j}}$$

The beliefs about player j are simply the MLE:

$$\sigma_n^j(a^j) = \frac{\kappa_n^j(a^j)}{n} \qquad \text{where } \kappa_n^j(a^j) = \sum_{m=1}^n \mathbb{I}\{a_m^j = a^j\}$$

Recursive update:

$$\sigma_{n+1}^{j} = \left(1 - \frac{1}{n+1}\right)\sigma_{n}^{j} + \frac{1}{n+1}\boldsymbol{e}_{a_{n+1}^{j}}$$

In terms of best responses:

$$\sigma_{n+1}^j \qquad \in \left(1 - \frac{1}{n+1}\right)\sigma_n^j \qquad + \frac{1}{n+1}b^j(\sigma_n^{-j})$$

The beliefs about player j are simply the MLE:

$$\sigma_n^j(a^j) = \frac{\kappa_n^j(a^j)}{n} \qquad \text{where } \kappa_n^j(a^j) = \sum_{m=1}^n \mathbb{I}\{a_m^j = a^j\}$$

Recursive update:

$$\sigma_{n+1}^{j} = \left(1 - \frac{1}{n+1}\right)\sigma_{n}^{j} + \frac{1}{n+1}\boldsymbol{e}_{a_{n+1}^{j}}$$

In terms of best responses:

$$\sigma_{n+1} \in \left(1 - \frac{1}{n+1}\right)\sigma_n + \frac{1}{n+1}b \left(\sigma_n\right)$$

 $\theta_{n+1} \in \theta_n + \alpha_{n+1} \left\{ F(\theta_n) + M_{n+1} \right\}$

$$\theta_{n+1} \in \theta_n + \alpha_{n+1} \left\{ F(\theta_n) + M_{n+1} \right\}$$

• $F:\Theta\to\Theta$ is a (bounded u.s.c.) set-valued map

•
$$\alpha_n \to 0$$
, $\sum_n \alpha_n = \infty$

• For any T > 0,

$$\lim_{n \to \infty} \sup_{k > n : \sum_{i=n}^{k-1} \alpha_{i+1} \le T} \left\| \sum_{i=n}^{k-1} \alpha_{i+1} M_{i+1} \right\| = 0$$

The last is implied by: $\sum_{n} (\alpha_n)^2 < \infty$, $\mathbb{E}[M_{n+1} | \theta_n] \to 0$, and $\operatorname{Var}[M_{n+1} | \theta_n] < C$ almost surely.

$$\theta_{n+1} \in \theta_n + \alpha_{n+1} \left\{ F(\theta_n) + M_{n+1} \right\}$$

$$\frac{\theta_{n+1} - \theta_n}{\alpha_n} \in F(\theta_n) + M_{n+1}$$

$$\downarrow$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\theta \in F(\theta),$$

a differential inclusion

(Benaïm, Hofbauer and Sorin, 2005)

$$\theta_{n+1} \in \theta_n + \alpha_{n+1} \left\{ F(\theta_n) + M_{n+1} \right\}$$

In fictitious play:

$$\sigma_{n+1} \in \sigma_n + \frac{1}{n+1} \{ b(\sigma_n) - \sigma_n \}$$

$$\downarrow$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \sigma \in b(\sigma) - \sigma,$$

the best response differential inclusion.

Hence σ_n converges to the set of Nash equilibria in zero-sum games, potential games, and generic $2 \times m$ games.

Weakened fictitious play

- Van der Genugten (2000) showed that the convergence rate of fictitious play can be improved if players use ϵ_n -best responses. (For 2-player zero-sum games, and a very specific choice of ϵ_n)
- $\pi \in b_{\epsilon_n}(\sigma_n) \Rightarrow \pi \in b(\sigma_n) + M_{n+1}$ where $M_n \to 0$ as $\epsilon_n \to 0$ (by continuity properties of b and boundedness of r)
- \bullet For general games and general $\epsilon_n \to 0$ this fits into the stochastic approximation framework

Generalised weakened fictitious play

Theorem: Any process such that

$$\sigma_{n+1} \in \sigma_n + \alpha_{n+1} \{ b_{\epsilon_n}(\sigma_n) - \sigma_n + M_{n+1} \}$$

where

• $\epsilon_n \to 0$ as $n \to \infty$

•
$$\alpha_n \to 0$$
 as $n \to \infty$

•
$$\lim_{n \to \infty} \sup_{k > n : \sum_{i=n}^{k-1} \alpha_{i+1} \le T} \left\| \sum_{i=n}^{k-1} \alpha_{i+1} M_{i+1} \right\| = 0$$

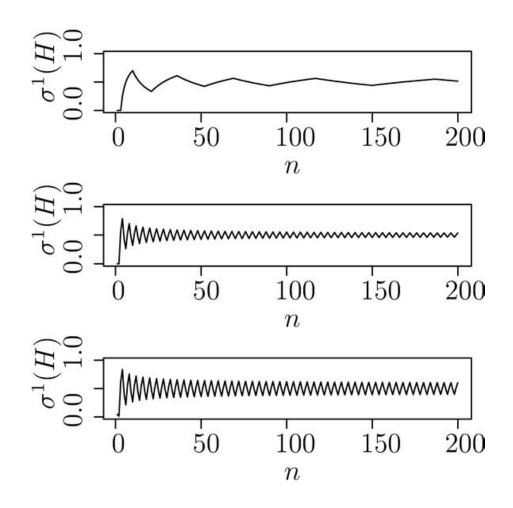
converges to the set of Nash equilibria for zero-sum games, potential games and generic $2 \times m$ games.

Recency

- For classical fictitious play $\alpha_n = \frac{1}{n}$, $\epsilon_n \equiv 0$ and $M_n \equiv 0$
- For any $\alpha_n \to 0$ the conditions are met (since $M_n \equiv 0$)

• How about
$$\alpha_n = \frac{1}{\sqrt{n}}$$
, or even $\alpha_n = \frac{1}{\log n}$?

Recency



Belief that Player 1 plays Heads over 200 plays of the two-player matching pennies game under classical fictitious play (top), under a modified fictitious play with $\alpha_n = \frac{1}{\sqrt{n}}$ (middle), and with $\alpha_n = \frac{1}{\sqrt{n}}$ $\frac{1}{\log n}$ (bottom)

Stochastic fictitious play

In fictitious play, players always choose pure actions

 \Rightarrow strategies never converge to mixed strategies

(beliefs do, but played strategies do not)

Stochastic fictitious play

Instead consider smooth best responses:

$$\beta_{\tau}^{i}(\sigma^{-i}) = \operatorname*{argmax}_{\pi^{i} \in \Delta^{i}} \left\{ r^{i}(\pi^{i}, \sigma^{-i}) + \tau v(\pi^{i}) \right\}$$

For example
$$\beta_{\tau}^{i}(\sigma^{-i})(a^{i}) = \frac{\exp\{r^{i}(a^{i},\sigma^{-i})/\tau\}}{\sum_{a\in A^{i}}\exp\{r^{i}(a,\sigma^{-i})/\tau\}}$$

Stochastic fictitious play

Instead consider smooth best responses:

$$\beta_{\tau}^{i}(\sigma^{-i}) = \operatorname*{argmax}_{\pi^{i} \in \Delta^{i}} \left\{ r^{i}(\pi^{i}, \sigma^{-i}) + \tau v(\pi^{i}) \right\}$$

For example
$$\beta_{\tau}^{i}(\sigma^{-i})(a^{i}) = \frac{\exp\{r^{i}(a^{i},\sigma^{-i})/\tau\}}{\sum_{a\in A^{i}}\exp\{r^{i}(a,\sigma^{-i})/\tau\}}$$

Strategies evolve according to

$$\sigma_{n+1} = \sigma_n + \frac{1}{n+1} \left\{ \beta_{\tau}(\sigma_n) + M_{n+1} - \sigma_n \right\} \quad \text{where } \mathbb{E}[M_{n+1} \mid \sigma_n] = 0$$

Convergence

$$\sigma_{n+1} = \sigma_n + \frac{1}{n+1} \left\{ \beta_{\tau}(\sigma_n) - \sigma_n + M_{n+1} \right\}$$

Convergence

$$\sigma_{n+1} = \sigma_n + \frac{1}{n+1} \{ \beta_{\tau}(\sigma_n) - \sigma_n + M_{n+1} \}$$

$$\in \sigma_n + \frac{1}{n+1} \{ \mathbf{b}_{\epsilon}(\sigma_n) - \sigma_n + M_{n+1} \}$$

Convergence

$$\sigma_{n+1} = \sigma_n + \frac{1}{n+1} \{ \beta_{\tau}(\sigma_n) - \sigma_n + M_{n+1} \}$$

$$\in \sigma_n + \frac{1}{n+1} \{ \mathbf{b}_{\epsilon}(\sigma_n) - \sigma_n + M_{n+1} \}$$

But can now consider the effect of using smooth best response β_{τ_n} with $\tau_n \to 0...$

... it means that $\epsilon_n \rightarrow 0$, resulting in a GWFP!

Random beliefs

(Friedman and Mezzetti 2005)

Best response 'assumes' complete confidence in:

- knowledge of the reward functions
- \bullet beliefs σ about opponent strategy

Random beliefs

(Friedman and Mezzetti 2005)

Best response 'assumes' complete confidence in:

- knowledge of the reward functions
- beliefs σ about opponent strategy

Random beliefs

(Friedman and Mezzetti 2005)

Best response 'assumes' complete confidence in:

- knowledge of the reward functions
- beliefs σ about opponent strategy

Uncertainty in the beliefs $\sigma_n \longleftrightarrow$ distribution on belief space

Belief distributions

• The belief about player j is that $\pi^j \sim \mu^j$

•
$$\mathbb{E}_{\mu^j}[\pi^j] = \sigma^j$$
, the focus of μ^j .

Belief distributions

 \bullet The belief about player j is that $\pi^j \sim \mu^j$

•
$$\mathbb{E}_{\mu^j}[\pi^j] = \sigma^j$$
, the focus of μ^j .

Response to random beliefs: sample $\pi^{-i} \sim \mu^{-i}$ and play $a^i \in b^i(\pi^{-i})$

Let $\tilde{b}^i(\mu^{-i})$ be the resulting mixed strategy

Random belief equilibrium

A random belief equilibrium is a set of belief distributions μ^i such that the focus of μ^i is equal to the mixed strategy played by *i*:

$$\mathbb{E}_{\mu^i}[\pi^i] = \tilde{b}^i(\mu^{-i})$$

A refinement of Nash equilibria when μ^i depends on ϵ and $\operatorname{Var}_{\mu^j_\epsilon}(\pi^j) \to 0$ as $\epsilon \to 0$.

 \bullet In fictitious play, σ_n^j is the MLE of π^j

- ullet In fictitious play, σ_n^j is the MLE of π^j
- Fudenberg and Levine (1998): if the prior is $\text{Dirichlet}(\alpha)$, then the posterior is $\text{Dirichlet}(\alpha + \kappa)$

\downarrow

Fictitious play is doing Bayesian learning, with best replies taken with respect to the expected opponent strategy

• Start with priors μ_0^j

- Start with priors μ_0^j
- After observing actions for n steps, have posteriors μ_n^j

- Start with priors μ_0^j
- After observing actions for n steps, have posteriors μ_n^j
- Select actions using response to random beliefs (i.e. mixed strategy $\tilde{b}^i(\mu_n^{-i}))$

Convergence

Can show:

- $\tilde{b}^i(\mu_n^{-i}) \in b_{\epsilon_n}(\sigma_n^{-i})$
- So the beliefs follow a GWFP process

Unfortunately it is the beliefs, not the strategies.

Learning the game

Best response 'assumes' complete confidence in:

- knowledge of the reward functions
- beliefs σ about opponent strategy

KLearning the game

Best response 'assumes' complete confidence in:

- knowledge of the reward functions
- beliefs σ about opponent strategy

Learn reward matrices using reinforcement learning ideas:

- at iteration n, observe joint action \boldsymbol{a}_n and reward $R^i(\boldsymbol{a}_n) = r^i(\boldsymbol{a}_n) + \epsilon_n$
- update estimates σ^{-i} of opponent strategies
- update estimate $Q^i(oldsymbol{a}_n)$ of $r^i(oldsymbol{a}_n)$

Assume all joint actions a are played infinitely often. Can show:

- $Q_n^i({oldsymbol a}) o r^i({oldsymbol a})$ for all ${oldsymbol a}$
- Best responses with to σ_n^{-i} with respect to Q_n^i are ϵ_n -best responses with respect to r^i
- So the beliefs follow a GWFP process

Potentially very useful in DCOP games (Chapman, Rogers, Jennings and Leslie 2008)

Coblivious learners

What if players are oblivious to opponents?

Each individual treats the problem a multi-armed bandit

Can we expect equilibrium play?

Best response/inertia

Suppose individuals (somehow by magic) actually know $Q^i(a^i)=r^i(a^i,\pi_n^{-i})$

They can adjust their own strategy towards a best response:

$$\pi_{n+1}^{i} = (1 - \alpha_{n+1})\pi_{n}^{i} + \alpha_{n+1}b^{i}(\pi^{-i})$$

Strategies converge, not just beliefs

But it's just not possible

- Player i actually faces a multi-armed bandit
- So can learn $Q^i(a^i)$ by playing all actions infinitely often
- Then adjust π^i

Actor-critic learning

 $Q_{n+1}^{i}(a_{n+1}^{i}) = Q_{n}^{i}(a_{n+1}^{i}) + \lambda_{n+1} \left\{ R_{n+1} - Q_{n}(a_{n+1}^{i}) \right\}$ $\pi_{n+1}^{i} = \pi_{n}^{i} + \alpha_{n} \left\{ b^{i}(Q_{n}^{i}) - \pi_{n}^{i} \right\}$

Actor-critic learning

$$Q_{n+1}^{i}(a_{n+1}^{i}) = Q_{n}^{i}(a_{n+1}^{i}) + \lambda_{n+1} \left\{ R_{n+1} - Q_{n}(a_{n+1}^{i}) \right\}$$
$$\pi_{n+1}^{i} = \pi_{n}^{i} + \alpha_{n} \left\{ b^{i}(Q_{n}^{i}) - \pi_{n}^{i} \right\}$$

With all players adjusting simultaneously, need to be careful

If $\frac{\alpha_n}{\lambda_n} \to 0$, the system can be analysed as if all players have accurate Q values.

Convergence

- Can show that $|Q_n^i(a^i) r^i(a^i, \pi_n^{-i})| \to 0$
- So best responses with respect to the Q^i 's are $\epsilon\text{-best}$ responses to π_n^{-i}
- So the π_n follow a GWFP process

We have a process under which played strategy converges to Nash equilibrium

Conclusions

- Generalised weakened fictitious play is a class that is closely related to the best response dynamics
- \bullet All GWFP processes converge to Nash equilibrium in zero-sum games, potential games, and generic $2\times m$ games
- GWFP encompasses numerous models of learning in games:
 - Fictitious play with greater weight on recent observations
 - Stochastic fictitious play with vanishing smoothing
 - Random belief learning
 - Fictitious play while learning the reward matrices
 - An oblivious actor-critic process

