Complex evolutionary systems in behavioural finance I Expectations feedback systems

Florian Wagener

CeNDEF University of Amsterdam

Dynamics in Games and Economics

The Marshallian cross

Demand d(p) decreases Supply s(p) increases At equilibrium $p = \bar{p}$ and

$$ar{q}=d(ar{p})=s(ar{p})$$

Walrasian auctioneer: "As if" dynamics

 $\dot{p} = d(p) - s(p)$

Only when $\dot{p} = 0$ the good is traded

Surplus I

Consumer's surplus

$$CS = \int_0^{ar q} \left(d^{-1}(q) - ar p
ight) \mathrm{d} q = \int_{ar p}^{p_0} d(p) \mathrm{d} p$$

Producer's surplus

$$PS = \int_0^{ar q} ig(ar p - s^{-1}(q)ig) \, \mathrm{d} q = \int_0^{ar p} s(p) \mathrm{d} p$$

Equilibrium p maximises total surplus (= welfare)

Surplus II

Surplus is lower if $p > \bar{p}$

The hog-cycle

Production usually costs time

Production decisions have to taken in time period t - 1, based on the

expected price p_t^e , instead of the yet unknown market price p_t

Supply in period *t* is independent of p_t

Expected price is based on known data

$$p_t^e = f(p_{t-1}, p_{t-2}, \cdots)$$

Market equilibrium

$$d(p_t) = s(p_t^e)$$

Evolution

$$p_t = d^{-1}\left(s(p_t^e)\right) = F\left(p_t^e\right)$$

Expectations feedback system

The system

 $p_t^e = f(p_{t-1}, p_{t-2}, \cdots) \qquad \text{perceived dynamics}$ $p_t = F(p_t^e) \qquad \text{actual dynamics}$

forms an expectations feedback system

Very common situation in economics

Central question: how are expectations formed?

Naive expectations: the cobweb

A very simple expectation rule is "nothing changes"

$$p_t^e = p_{t-1}$$

The expectations feedback system then reads as

$$p_t = F(p_{t-1}) = d^{-1}(s(p_{t-1}))$$

Since

$$F'(p)=rac{s'(p)}{d'(F(p))}$$

there is at most one fixed point $p = \bar{p}$, the *fundamental price* This point is asymptotically stable if $|F'(\bar{p})| < 1$, that is, if

$$|s'(ar{p})| < |d'(ar{p})|$$

Dynamics under naive expectations

Stable cobweb dynamics

Unstable cobweb dynamics

8/22

ŝ

Linear expectation rules I

A more general family of expectation rules is

$$\boldsymbol{p}_t^{\boldsymbol{e}} = \alpha + \beta(\boldsymbol{p}_{t-1} - \alpha)$$

Example: subfamily that forecasts correctly if $p = \bar{p}$:

$$\boldsymbol{p}_t^{\boldsymbol{e}} = \bar{\boldsymbol{p}} + \beta(\boldsymbol{p}_{t-1} - \bar{\boldsymbol{p}})$$

Note: $\beta = 1$ is the naive case

Expectations feedback system

$$p_t = F\left(\bar{p} + \beta(p_{t-1} - \bar{p})\right)$$

Linear expectation rules II

Introduce price deviations from \bar{p}

 $x_t = p_t - \bar{p}$

Expectation rule

 $x_t^e = \beta x_{t-1}$

Expectations feedback system

$$\begin{aligned} x_t &= F(\bar{p} + \beta x_{t-1}) - \bar{p} \\ &= \tilde{F}(\beta x_{t-1}) \end{aligned}$$

with $\tilde{F}(x) = F(\bar{p} + x) - \bar{p}$ and

$$\tilde{F}(0) = 0$$

Linear expectation rules III: example

Price evolution is determined by the parametrised family of dynamical systems

$$x_t = \tilde{F}(\beta x_{t-1})$$

depending on the parameter β Example:

$$s(p) = 3p^2,$$

 $d(p) = \max\left\{\frac{0.3}{p} - 0.325, 0\right\}$

Linear expectation rules IV: stability analysis

Fixed points are solutions of

$$x = \tilde{F}(\beta x)$$

If
$$|\beta \tilde{F}'(\beta x)| < 1$$
 (> 1)

the fixed point is asymptotically stable (unstable)

If
$$|\beta F'(\beta x)| = 1$$

usually a bifurcation occurs

Linear expectation rules V: bifurcations

Types of one-dimensional bifurcations

- Saddle-node (SN): two fixed point are created, one stable, one unstable
- Period-doubling (PD): a fixed point changes its stability, period-2 cycle is created
- Transcritical (TC): two fixed points exchange stability

Linear expectation rules VI: dynamics

Types of dynamics

- β > β_{PD}: Period-doubling cascade, resulting in chaotic dynamics
- β_{SN} < β < β_{PD}: Globally attracting fundamental fixed point
- β_{TC} < β < β_{SN}: Fundamental coexisting with non-fundamental fixed point
- β_{PD} < β < β_{TC}: Two non-fundamental fixed points coexisting
- β < β_{PD}: Non-fundamental fixed point coexisting with period-doubling cascade and chaotic dynamics

Rational expectations I

Most fixed expectation rules are criticised

- Systematic forecasting errors
- Welfare losses ("Market knows best")

Radical solution: rational expectations

 $p_t^e = p_t$

The expectations feedback system for rational expectations reads as

$$p_t = F(p_t)$$

which has as its unique solution

$$p_t = \bar{p}$$

Rational expectations II

Rationale (not a proof!)

- By *learning* the system, agents minimise their forecasting errors down to 0
- Other beliefs should do worse and should be outcompeted

For

- Maximises welfare
- No forecasting errors

Against

- Is the rationale correct?
- Adequate description of reality?

Learning I

We have now two expectation formation rules

- Linear
 - $x_t^e = \beta x_{t-1}$
 - Easy to implement
 - Too many parameters
- Rational

•
$$x_t^e = x_t$$

- Good properties
- Hard to implement

One way to reconciliate them is to assume that agents learn β using econometric techniques (Evans & Honkapohja, 2001)

Learning II

Given the time series x_0, x_1, \dots, x_t , sellers estimate the model

$$\mathbf{x}_t = \beta \mathbf{x}_{t-1}$$

using least squares, by minimising

$$\beta \mapsto \sum_{s=1}^{t} (x_s - \beta x_{s-1})^2$$

The minimiser is

$$\hat{\beta}_t = \frac{a_t}{b_t} = \frac{\frac{1}{t} \sum_{s=1}^t x_{s-1} x_s}{\frac{1}{t} \sum_{s=1}^t x_{s-1}^2}$$

Learning III

At each time step, sellers use the best available model:

$$x_t = \tilde{F}\left(\frac{a_{t-1}}{b_{t-1}}x_{t-1}\right)$$

The quantities a_t and b_t can be computed recursively

$$\begin{aligned} a_t &= \frac{1}{t} \sum_{s=1}^t x_{s-1} x_s \\ &= \frac{t-1}{t} \frac{1}{t-1} \sum_{s=1}^{t-1} x_{s-1} x_s + \frac{1}{t} x_{t-1} x_t \\ &= \left(1 - \frac{1}{t}\right) a_{t-1} + \frac{1}{t} x_{t-1} \tilde{F}\left(\frac{a_{t-1}}{b_{t-1}} x_{t-1}\right) \end{aligned}$$

Likewise

$$b_t = \left(1 - \frac{1}{t}\right)b_{t-1} + \frac{1}{t}x_{t-1}^2$$

Learning IV

Learning system

$$\begin{split} x_t &= \tilde{F}\left(\frac{a_{t-1}}{b_{t-1}}x_{t-1}\right) \\ a_t &= \left(1 - \frac{1}{t}\right)a_{t-1} + \frac{1}{t}x_{t-1}\tilde{F}\left(\frac{a_{t-1}}{b_{t-1}}x_{t-1}\right) \\ b_t &= \left(1 - \frac{1}{t}\right)b_{t-1} + \frac{1}{t}x_{t-1}^2 \end{split}$$

Again an expectational feedback system:

Perceived dynamics

$$\mathbf{x}_t^{\mathbf{e}} = \beta_t \mathbf{x}_{t-1}$$

Actual dynamics

$$x_t = \tilde{F}(x_t^e)$$

Learning V

Results

It seems that learning solves the expectation problem

However

- Assumes homogeneity of agents
- Can converge to non-rational equilibria
- Can fail to converge
- What about stock markets?

Summary

- · Economic decisions are determined by expectations
- Expectations feed back into the dynamics of the system
- Key problem: how are expectations formed?

