Complex evolutionary systems in behavioural finance I

Expectations feedback systems

Florian Wagener

CeNDEF
University of Amsterdam

Dynamics in Games and Economics

The Marshallian cross

Demand $d(p)$ decreases Supply $s(p)$ increases
At equilibrium $p=\bar{p}$ and

$$
\bar{q}=d(\bar{p})=s(\bar{p})
$$

Walrasian auctioneer: "As if" dynamics

$$
\dot{p}=d(p)-s(p)
$$

Only when $\dot{p}=0$ the good is traded

Surplus I

Consumer's surplus

$$
C S=\int_{0}^{\bar{q}}\left(d^{-1}(q)-\bar{p}\right) d q=\int_{\bar{p}}^{p_{0}} d(p) \mathrm{d} p
$$

Producer's surplus

$$
P S=\int_{0}^{\bar{q}}\left(\bar{p}-s^{-1}(q)\right) \mathrm{d} q=\int_{0}^{\bar{p}} s(p) \mathrm{d} p
$$

Equilibrium \bar{p} maximises total surplus (= welfare)

Surplus II

Surplus is lower if $p>\bar{p}$

or if $p<\bar{p}$

The hog-cycle

Production usually costs time
Production decisions have to taken in time period $t-1$, based on the expected price p_{t}^{e}, instead of the yet unknown market price p_{t}
Supply in period t is independent of p_{t}
Expected price is based on known data

$$
p_{t}^{e}=f\left(p_{t-1}, p_{t-2}, \cdots\right)
$$

Market equilibrium

$$
d\left(p_{t}\right)=s\left(p_{t}^{e}\right)
$$

Evolution

$$
p_{t}=d^{-1}\left(s\left(p_{t}^{e}\right)\right)=F\left(p_{t}^{e}\right)
$$

Expectations feedback system

The system

$$
\begin{array}{rlr}
p_{t}^{e} & =f\left(p_{t-1}, p_{t-2}, \cdots\right) & \text { perceived dynamics } \\
p_{t} & =F\left(p_{t}^{e}\right) & \text { actual dynamics }
\end{array}
$$

forms an expectations feedback system
Very common situation in economics
Central question: how are expectations formed?

Naive expectations: the cobweb

A very simple expectation rule is "nothing changes"

$$
p_{t}^{e}=p_{t-1}
$$

The expectations feedback system then reads as

$$
p_{t}=F\left(p_{t-1}\right)=d^{-1}\left(s\left(p_{t-1}\right)\right)
$$

Since

$$
F^{\prime}(p)=\frac{s^{\prime}(p)}{d^{\prime}(F(p))}
$$

there is at most one fixed point $p=\bar{p}$, the fundamental price
This point is asymptotically stable if $\left|F^{\prime}(\bar{p})\right|<1$, that is, if

$$
\left|s^{\prime}(\bar{p})\right|<\left|d^{\prime}(\bar{p})\right|
$$

Dynamics under naive expectations

Stable cobweb dynamics

Unstable cobweb dynamics

Linear expectation rules I

A more general family of expectation rules is

$$
p_{t}^{e}=\alpha+\beta\left(p_{t-1}-\alpha\right)
$$

Example: subfamily that forecasts correctly if $p=\bar{p}$:

$$
p_{t}^{e}=\bar{p}+\beta\left(p_{t-1}-\bar{p}\right)
$$

Note: $\beta=1$ is the naive case
Expectations feedback system

$$
p_{t}=F\left(\bar{p}+\beta\left(p_{t-1}-\bar{p}\right)\right)
$$

Linear expectation rules II

Introduce price deviations from \bar{p}

$$
x_{t}=p_{t}-\bar{p}
$$

Expectation rule

$$
x_{t}^{e}=\beta x_{t-1}
$$

Expectations feedback system

$$
\begin{aligned}
x_{t} & =F\left(\bar{p}+\beta x_{t-1}\right)-\bar{p} \\
& =\tilde{F}\left(\beta x_{t-1}\right)
\end{aligned}
$$

with $\tilde{F}(x)=F(\bar{p}+x)-\bar{p}$ and

$$
\tilde{F}(0)=0
$$

Linear expectation rules III: example

Price evolution is determined by the parametrised family of dynamical systems

$$
x_{t}=\tilde{F}\left(\beta x_{t-1}\right)
$$

depending on the parameter β Example:

$$
\begin{aligned}
s(p) & =3 p^{2} \\
d(p) & =\max \left\{\frac{0.3}{p}-0.325,0\right\}
\end{aligned}
$$

Linear expectation rules IV: stability analysis

Fixed points are solutions of

$$
\begin{aligned}
& x=\tilde{F}(\beta x) \\
& \text { If } \quad\left|\beta \tilde{F}^{\prime}(\beta x)\right|<1 \quad(>1)
\end{aligned}
$$

the fixed point is asymptotically stable (unstable)

$$
\text { If } \quad\left|\beta F^{\prime}(\beta x)\right|=1
$$

usually a bifurcation occurs

Linear expectation rules V: bifurcations

Types of one-dimensional bifurcations

- Saddle-node (SN): two fixed point are created, one stable, one unstable
- Period-doubling (PD): a fixed point changes its stability, period-2 cycle is created
- Transcritical (TC): two fixed
 points exchange stability

Linear expectation rules VI: dynamics

Types of dynamics

- $\beta>\beta_{\mathrm{PD}}$: Period-doubling cascade, resulting in chaotic dynamics
- $\beta_{\mathrm{SN}}<\beta<\beta_{\mathrm{PD}}$: Globally attracting fundamental fixed point
- $\beta_{\mathrm{TC}}<\beta<\beta_{\mathrm{SN}}$: Fundamental coexisting with non-fundamental fixed point
- $\beta_{\mathrm{PD}}<\beta<\beta_{\mathrm{TC}}$: Two non-fundamental fixed points coexisting
- $\beta<\beta_{\mathrm{PD}}$: Non-fundamental fixed point coexisting with period-doubling cascade and chaotic dynamics

Rational expectations I

Most fixed expectation rules are criticised

- Systematic forecasting errors
- Welfare losses ("Market knows best")

Radical solution: rational expectations

$$
p_{t}^{e}=p_{t}
$$

The expectations feedback system for rational expectations reads as

$$
p_{t}=F\left(p_{t}\right)
$$

which has as its unique solution

$$
p_{t}=\bar{p}
$$

Rational expectations II

Rationale (not a proof!)

- By learning the system, agents minimise their forecasting errors down to 0
- Other beliefs should do worse and should be outcompeted

For

- Maximises welfare
- No forecasting errors

Against

- Is the rationale correct?
- Adequate description of reality?

Learning I

We have now two expectation formation rules

- Linear
- $x_{t}^{e}=\beta x_{t-1}$
- Easy to implement
- Too many parameters
- Rational
- $x_{t}^{e}=x_{t}$
- Good properties
- Hard to implement

One way to reconciliate them is to assume that agents learn β using econometric techniques (Evans \& Honkapohja, 2001)

Learning II

Given the time series $x_{0}, x_{1}, \cdots, x_{t}$, sellers estimate the model

$$
x_{t}=\beta x_{t-1}
$$

using least squares, by minimising

$$
\beta \mapsto \sum_{s=1}^{t}\left(x_{s}-\beta x_{s-1}\right)^{2}
$$

The minimiser is

$$
\hat{\beta}_{t}=\frac{a_{t}}{b_{t}}=\frac{\frac{1}{t} \sum_{s=1}^{t} x_{s-1} x_{s}}{\frac{1}{t} \sum_{s=1}^{t} x_{s-1}^{2}}
$$

Learning III

At each time step, sellers use the best available model:

$$
x_{t}=\tilde{F}\left(\frac{a_{t-1}}{b_{t-1}} x_{t-1}\right)
$$

The quantities a_{t} and b_{t} can be computed recursively

$$
\begin{aligned}
a_{t} & =\frac{1}{t} \sum_{s=1}^{t} x_{s-1} x_{s} \\
& =\frac{t-1}{t} \frac{1}{t-1} \sum_{s=1}^{t-1} x_{s-1} x_{s}+\frac{1}{t} x_{t-1} x_{t} \\
& =\left(1-\frac{1}{t}\right) a_{t-1}+\frac{1}{t} x_{t-1} \tilde{F}\left(\frac{a_{t-1}}{b_{t-1}} x_{t-1}\right)
\end{aligned}
$$

Likewise

$$
b_{t}=\left(1-\frac{1}{t}\right) b_{t-1}+\frac{1}{t} x_{t-1}^{2}
$$

Learning IV

Learning system

$$
\begin{aligned}
& x_{t}=\tilde{F}\left(\frac{a_{t-1}}{b_{t-1}} x_{t-1}\right) \\
& a_{t}=\left(1-\frac{1}{t}\right) a_{t-1}+\frac{1}{t} x_{t-1} \tilde{F}\left(\frac{a_{t-1}}{b_{t-1}} x_{t-1}\right) \\
& b_{t}=\left(1-\frac{1}{t}\right) b_{t-1}+\frac{1}{t} x_{t-1}^{2}
\end{aligned}
$$

Again an expectational feedback system:

- Perceived dynamics

$$
x_{t}^{e}=\beta_{t} x_{t-1}
$$

- Actual dynamics

$$
x_{t}=\tilde{F}\left(x_{t}^{e}\right)
$$

Learning V

Results

It seems that learning solves the expectation problem

However

- Assumes homogeneity of agents
- Can converge to non-rational equilibria
- Can fail to converge
- What about stock markets?

Summary

- Economic decisions are determined by expectations
- Expectations feed back into the dynamics of the system
- Key problem: how are expectations formed?

