Complex evolutionary systems in behavioural finance Heterogeneous agent models

Florian Wagener

CeNDEF University of Amsterdam

Dynamics in Games and Economics

Recapitulation of first lecture

Hog-cycle model

 $d(p_t) = s(p_t^e)$

- · Economic decisions are determined by expectations
- Expectations feed back into the dynamics of the system
- · Key problem: how are expectations formed?
 - Rational expectations?
 - Learning?
 - If not rational, what else wilderness of bounded rationality

Cobweb experiment I

Hommes, Sonnemans, Tuinstra & van der Velden (2007) Six sellers $i = 1, \dots, 6$ making price predictions Reward for correct predictions

$$\Pi_{i,t} = \max\left\{1300 - 260(p_t - p_{i,t}^e)^2, 0\right\}$$

Individual supply

$$s(p_{i,t}^e) = 1 + \tanh \lambda(p_{i,t}^e - 6)$$

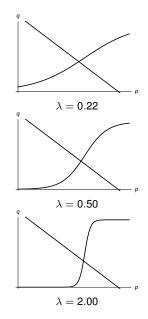
Linear demand (demand shocks $\varepsilon_t \sim \mathcal{N}(0, \sigma^2)$)

$$d(p_t) = a - bp_t + \varepsilon_t$$

Equilibrium

$$d(p_t) = \sum_{i=1}^6 s(p_{i,t}^e)$$

Cobweb experiment II



Treatments

	λ	$s'(ar{p})/d'(ar{p})$
Stable	0.22	-0.87
Unstable	0.50	-1.96
Strongly unstable	2.00	-7.75

Ň

Cobweb experiment III

stable: $\lambda = 0.22$ unstable: $\lambda = 0.50$ strongly unstable: $\lambda = 2.00$

Experimental results (one group out of six)

Both in the unstable and in the strongly unstable treatment, the volatility is significantly higher than expected under full rationality

Evolutionary competition of beliefs

Brock & Hommes (1997, 1998)

Central idea: let different expectation rules compete

- Successful expectation rules get more followers
- If agents try hard, small differences in success rates matter
- Take information costs into account

Asset pricing model

Wealth dynamics of an investor

$$W_{t+1} = R(W_t - p_t z_{ht}) + (p_{t+1} + y_{t+1}) z_{ht}$$

Variables

- W_t: wealth at time t
- R = 1 + r: gross rate of risk-free return
- pt: price of risky asset at time t
- *z_t*: number of shares
- y_{t+1} : dividends at time t + 1

Assets II

Utility of investor (of type h)

$$\mathscr{U}_{ht} = \mathbf{E}_{ht} W_{t+1} - \frac{a}{2} \operatorname{Var}_{ht} W_{t+1}$$

where

- E_{ht}X_{t+1} = E_h(X_{t+1}|ℱ_t) expected value of X_{t+1} of a type-h investor, based on information ℱ_t up to and including time t
- **Var**_{*ht*} $X_{t+1} =$ **Var**_{*h*} $(X_{t+1}|\mathscr{F}_t)$ variance of X_{t+1} that is expected by a type-*h* investor

Assumptions:

$$\mathbf{E}_{ht} \mathbf{p}_{t+1} = \mathbf{p}_{ht+1}^{e}, \quad \mathbf{E}_{ht} \mathbf{y}_{t+1} = \bar{\mathbf{y}},$$
$$\mathbf{Var}_{ht} \mathbf{p}_{t+1} = 0, \quad \mathbf{Var}_{ht} \mathbf{y}_{t+1} = \sigma^{2}$$

Assets III

Utility can be written as

$$\mathscr{U}_{ht} = RW_t + (p_{ht+1}^e + \bar{y} - p_t)z_{ht} - \frac{a\sigma^2}{2}z_{ht}^2$$

Maximising U_{ht} with respect to z_{ht} yields

$$z_{ht} = \frac{p_{ht+1}^e + \bar{y} - Rp_t}{a\sigma^2}$$

The function $z_{ht} = z_{ht}(p_t)$

- is the demand function of a type-h investor;
- depends on expectation of *future* price;
- has the same sign as the expected excess return

Heterogeneous expectations I

H competing boundedly rational expectation rules A fraction n_{ht} of the sellers believes p_{ht}^e to be correct Aggregate demand $d(p_t)$ at time *t*

$$d(p_t) = \sum_{h=1}^{H} n_{ht} z_{ht} (p_t) = \sum_{h=1}^{H} n_{ht} \frac{p_{ht+1}^{e} + \bar{y} - Rp_{ht}}{a\sigma^2}$$

Fixed aggregate supply $s(p_t) = z^s$ Market equilibrium

$$Rp_t = \bar{y} + \sum_{h=1}^{H} n_{ht} p_{ht+1}^e - a\sigma^2 z^s$$

Fundamental price

What if all investors are fully rational?

Market equilibrium

 $Rp_t = \bar{y} + p_{t+1} - a\sigma^2 z^s$

Only one bounded solution

$$\bar{p} = \frac{\bar{y} - a\sigma^2 z^s}{R - 1} = \frac{\bar{y} - a\sigma^2 z^s}{r}$$

Note: \bar{p} is the *net present value* of the dividend stream $\{y_t\}$ defining the risky asset

Risk premium = expected return - risk free rate

$$RP = \frac{\bar{y}}{\bar{p}} - r = \frac{a\sigma^2 z^s}{\bar{y} - a\sigma^2 z^s}r$$

Henceforth: $z^s = 0$

Heterogeneous expectations II

Price deviations

 $x_t = p_t - \bar{p}$

Market equilibrium in price deviations

$$Rx_t = \sum_{h=1}^{H} n_{ht} x_{ht+1}^{e}$$

Expectations of the form

$$x_{ht+1}^{e} = f_{ht} = f_{h}(x_{t-1}, \cdots, x_{t-L})$$

To close the model, the evolution of the fractions n_{ht} has to be specified

Heterogeneous expectations III

Agents are assumed to be pragmatic about beliefs, picking those that perform best according to some *fitness criterion* U_{ht-1} , e.g.

- last realised profit
- risk-adjusted profit
- (average) prediction error

Last realised profit

$$U_{ht-1} = (p_{t-1} + y_{t-1} - Rp_{t-2})z_{ht-2} - C_h$$
$$= (x_{t-1} - Rx_{t-2} + \delta_{t-1})\frac{f_{ht-2} - Rx_{t-2}}{a\sigma^2} - C_h$$

where

• C_h: information cost for obtaining predictor h

•
$$\delta_t = \mathbf{y}_t - \bar{\mathbf{y}}$$

Heterogeneous expectations III

Individual agents obtain a noisy signal \tilde{U}_{ht-1} about the fitnesses U_{ht-1} with

 $\tilde{U}_{ht-1} = U_{ht-1} + \varepsilon_{iht-1};$

the ε_{iht-1} are iid and $\mathbf{E}\varepsilon_{iht-1} = \mathbf{0}$

Extreme cases

- If $Var_{\varepsilon_{iht-1}} = 0$, agents choose *h* such that U_{ht-1} is maximal
- If $Var_{\varepsilon_{iht-1}} = \infty$, agents choose a predictor at random

For doubly exponentially iid ε_{iht-1} , we have

$$n_{ht} = \frac{\mathrm{e}^{\beta U_{ht-1}}}{\sum_{h=1}^{H} \mathrm{e}^{\beta U_{ht-1}}}$$

Intensity of choice β is inversely related to **Var**(ε_{iht})

Heterogeneous expecations IV

Evolution law

$$x_t = \frac{1}{R} \sum_{h=1}^{H} n_{ht} f_h(x_{t-1}, \cdots)$$

where

$$n_{ht} = \frac{e^{\beta U_{ht-1}}}{Z_{t-1}}$$
$$U_{ht} = \frac{1}{a\sigma^2} (x_{t-1} - Rx_{t-2} + \delta_{t-1}) (f_{ht-2} - Rx_{t-2}) - C_h$$

Fundamentalists against trend followers I

Costly fundamentalists (type 1) vs cheap trend followers (type 2)

$$f_{1t} = 0$$
 $C_1 = 1$
 $f_{2t} = gx_{t-1}$ $C_2 = 0$

Evolution (with small supply shocks ε_t)

$$x_t = \frac{g}{R} n_{2t} x_{t-1} + \varepsilon_t$$

with $(a\sigma^2 = 1)$

$$U_{ht-1} = (x_{t-1} - Rx_{t-2})(f_{ht-2} - Rx_{t-2}) - C_h$$

and

$$n_{2t} = \frac{e^{\beta U_{2t-1}}}{e^{\beta U_{1t-1}} + e^{\beta U_{2t-1}}}$$

Fundamentalists against trend followers II

Only fitness differences are relevant

$$n_{2t} = \frac{e^{\beta U_{2t-1}}}{e^{\beta U_{1t-1}} + e^{\beta U_{2t-1}}} = \frac{1}{e^{\beta (U_{1t-1} - U_{2t-1})} + 1}$$

Compute

$$\beta U_{1t-1} - \beta U_{2t-1} = -\beta g x_{t-3} (x_{t-1} - R x_{t-2}) - \beta$$

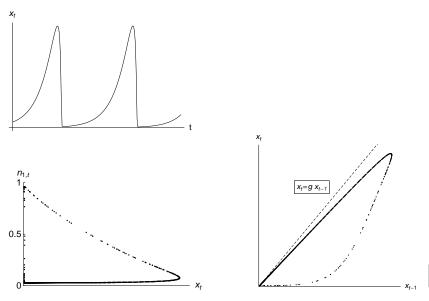
Evolution law

$$x_t = \frac{g}{R} \frac{x_{t-1}}{e^{-\beta g x_{t-3}(x_{t-1}-Rx_{t-2})-\beta}+1} + \varepsilon_t$$

Note: symmetry $x_t \mapsto -x_t$

Fundamentalists against trend followers III

Var ε_t = 0: deterministic skeleton (β = 3.6, g = 1.2, R = 1.1)

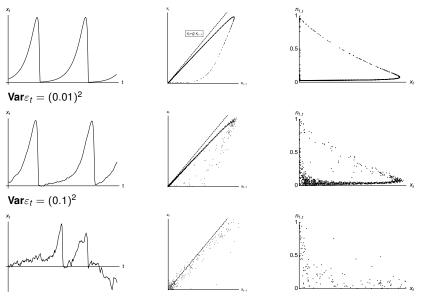


18/23

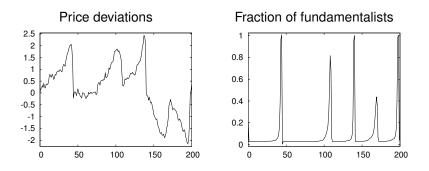
Û

Fundamentalists against trend followers IV

Var ε_t = 0: deterministic skeleton (β = 3.6, g = 1.2, R = 1.1)



Fundamentalists against trend followers IV



- Investors switch between expectation rules
- Long periods of building up overconfidence
- Sharp crashes

Expectations feedback system

Perceived dynamics (several types)

 $x_{ht+1}^e = f_h(x_{t-1}, \cdots)$

Actual dynamics

$$x_t = \sum_{h=1}^{H} n_{ht} x_{ht+1}^{e}$$

- Hog-cycle
 - negative feedback
 - tends to stabilise
- Stock market
 - positive feedback
 - tends to destabilise

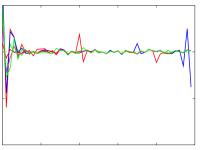
Experiment: comparing negative and positive feedback

Negative feedback

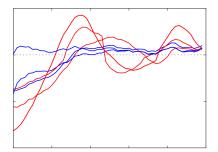
$$p_t = \frac{20}{21} \left(123 - \langle p_t^e \rangle \right) + \varepsilon_t$$

Positive feedback

$$p_t = rac{20}{21} \left(3 + \langle p_t^e
angle
ight) + arepsilon_t$$



where $\langle p_t^e \rangle = (1/6) \sum_{i=1}^6 p_{it}^e$ Group averages of six groups



Summary

- Goods market (Cobweb)
 - · expectations about current prices
 - negative feedback
 - tends to stabilisation
- Stock market
 - expectations about future prices
 - positive feedback
 - · long persistent deviations from fundamental
- · Rational beliefs cannot drive out boundedly rational beliefs
- Heterogeneous agent model with two types can describe price crashes

