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Introduction 
 
• In the world of derivatives modelling we take market (risk-neutral) dynamics as given and 

from that calculate derivatives prices: 
 

Market (model) dynamics => Derivatives prices 
 
• But what if there is a feedback loop: 
 

Derivatives hedging => Market dynamics 
 
• … what would be the consequence for derivatives prices? 
 

Derivatives hedging => Market dynamics => Derivatives prices 
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The Curse of the Hedger 
 
• Suppose banks do (possibly exotic) derivatives transactions with clients and that the banks 

delta hedge these derivatives but the clients do not. 
 
• Then the delta hedging activity of the banks may affect the dynamics of the underlying: 
 
• If banks are long Gamma then banks need to sell as underlying goes up and buy as the 

underlying goes down.  
 the banks’ hedging demand will slow market movement 
 decrease realised volatility. 

 
• If banks are short Gamma then banks need to buy as underlying goes up and sell as the 

underlying goes down. 
 the banks’ hedging demand will accelerate market movement 
 increase realised volatility. 

 
• Mechanics work against the hedger and for the non-hedger. 
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• The effect of this is a function of market liquidity or more precisely the price elasticity of the 
market plus the net size of the derivatives positions being dynamically hedged. 

 
• The banks will typically be short Gamma at some levels and long at others. This would create 

volatility skews and smiles. 
 
• The feedback effect has to be incorporated in the pricing of derivatives structures – either 

implicitly or explicitly. 
 
• Should we concentrate more efforts on quantifying feedback effects rather than attempting to 

extend our pricing models with stochastic volatility, jumps, etc?  
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Extreme Examples of Feedback Effects 
 
• Pinning: if an investor succeeds in selling very large option positions to hedgers in an illiquid 

market it may be possible to pin the stock at the strike at expiration due to very large buy 
orders below the strike and very large sell orders above. Historical examples (2001) of hedge 
funds successfully doing this in exchange traded equity options, Avellaneda and Lipkin 
(2006). 

 
• Market crash: investors buying downside protection from portfolio insurers that delta hedge 

their position. When market drops portfolio insurers need to sell which will accelerate rapid 
down moves. The market crash of 1987 was partly blamed on the portfolio insurance 
strategies sold by Leland-O’Brian-Rubinstein and others. It is not difficult to believe this, as 
the total outstanding notional under the portfolio insurance programs [i.e. naked delta hedged 
options (at 15% vol)] was USD 60,000,000,000. 
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More Relevant Examples of Feedback Effects 
 
• Credit markets: Synthetic CDO mezzanine tranches being delta hedged in the CDS market. 

The mezz tranche is like a call spread on the expected loss (or index credit spread), hence 
long convexity for low credit spreads and short convexity for high credit spreads. 
Was this causing credit spreads and credit spread volatility to collapse before August 2007 – 
and explode after August 2007?  

 
• Long dated FX: Does the hedging of USD/JPY PRDC structures sold to Japanese retail 

clients affect the dynamics of USD/JPY FX and is this causing the USD/JPY implied 
volatility skew? Recently: observed drop in USD/JPY and increased volatility is consistent 
dealers being increasingly short gamma as USD/JPY falls. 

 
• Rates: How does the large amount of outstanding digital (range accrual) trades on ratres or 

spreads affect yield curve dynamics? 
 
• Hedge funds: Could CPPI structures and unmatched options on hedge funds trigger a hedge 

fund crash?  
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• Stock market: Could CPPI structures trigger a real stock market crash?  
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A Simple Model 
 
• Assume zero rates and dividends. 
 
• Suppose there are two types of active investors: Fundamental investors and hedgers. 
 
• Fundamental investors’ demand for the underlying is: 
 

( ) ( ( ) ( ))a t A x t S t= ⋅ −  
 
• … where A is a constant, ( )S t  is the current spot price of the underlying, and x  is the “true” 

price -- a stochastic process with dynamics: 
 

( ) ( ) , (0) 0dx t dW t xσ= =  
 
• If the difference between the “true” and the spot price goes up the fundamental investor wants 

to buy more and vice versa. 
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Hedging Demand 
 
• The hedgers have done derivatives transactions with their clients -- who are assumed not to 

trade the underlying stock.  
 
• The hedgers do not care about fundamentals or “true” prices, they just need to hedge their 

derivatives position. [So exactly like the good traders I know]. 
 
• The book value of the banks’ derivatives positions is ( , ( ))V t S t  -- assumed to come from some 

model. 
 
• The hedgers’ demand is thus the negative of the delta of their derivatives book value 
 

( ) ( , ( ))Sb t V t S t=−  
 
• …where subscripts denote partial derivatives /SV V S=∂ ∂ . 
 
• Note that the hedgers’ demand is only a function of the price of the underlying – the hedger 

does not care about the level of the fundamental variable.  



 12

Equilibrium 
 
• In equilibrium the demand of the fundamental investors and the hedgers must add up to zero 

(or some arbitrary constant): 
 

( ) ( ) 0

( ( ) ( )) ( , ( )) 0S

a t b t

A x t S t V t S t

+ =
⇓
⋅ − − =

 

 
• This specifies an implicit equation whose solution for S  gives the equilibrium price  
 

( , ( ))S S t x t=  
 
• We see that if there is no hedging demand ( 0b = ) then the price of the underlying must be 

equal to the “true” price S x≡  -- which is why we called it the “true” price. 
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Volatility 
 
• If we Ito expand the equilibrium condition we get [compressing drift terms] 
 

( ( ) ( )) ( , ( )) ( ) ( ) 0SSA dx t dS t V t S t dS t O dt⋅ − − + =  
 
• From this we can relate the volatility of the price of the underlying to the volatility of the 

“true” price: 
 

1( ) ( ) ( )1 ( , ( )) /SS
dS t dW t O dtV t S t Aσ= ++  

 
• We see that 
 

- Hedgers’ Gamma<0 => volatility up 
 

-  Hedgers’ Gamma>0 => volatility down 
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• The magnitude of the effect is determined by the number of fundamental investors to the size 
of the Gamma of the hedgers: /SSV A . 

 
• Extreme cases: 
 

- If the hedgers’ Gamma goes to +infinity (for example at option expiration) volatility 
goes to zero. This is the pinning effect described by Avellaneda and Lipkin (2006). 

 
- If the ratio of Gamma to fundamentalist market share goes to -1 then volatility will go 

to infinity, ie the market is unstable and we have a potential crash or explosive 
scenario. 

 
• More interesting case: 
 

- If the hedgers are gamma long for some S  and gamma short for others the described 
effect will create local volatility and thus volatility smiles. 

 
• Resurrection of local volatility? This shows where local volatility could come from. 
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Instability? 
 
• We saw that  
 

1( ) ( ) ( )1 ( , ( )) /SS
dS t dW t O dtV t S t Aσ= ++  

 
• If the hedgers are short one standard European call option with expiry T  and strike K  , and 

the hedgers are calculating the value of their portfolio on the model ( ) ( )dS t dW tσ= , then  
 

1 1( , ) / ( )SS S K
t T

S KV t S A AT t T t
φ
σ σ =

→

−=− → −∞
− −

 

 
• Hence, there are spots where the model will blow. This seems problematic. 
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Smearing 
 
• A way of avoiding the instability is to assume that the option positions in the hedgers’ 

portfolio are distributed across strikes by a continuous distribution: 
 

( ) [ ( ( ) ) ( ) ]Q
tV t E S T K p K dK+= −∫  

 
• If ( ) ~ (( ) / )K Kp K Kφ μ σ−  we have that the ratio of Gamma to fundamental demand is given by 
 

2 2 21 11 ( , ) / 1 ( ) , ( )K
KSS

SV t S A v T tv v A
μφ σ σ−+ = − = − +  

 
• It follows that the model is stable (1 / 0SSV A+ > ) as long as  
 

1 1
2 K

A σπ
>  

 
• This idea was introduced in Frey and Stremme (1994). 
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The One-Period Fundamental Investors: Is A Constant? 
 
• If the fundamental investors know that ( ) 0b T+ =  then ( ) ( )S T x T+ = .  
 
• So if the fundamental investor does not trade between now and T , then his wealth at 

expiration is 
 

( ) ( )( ( ) ( )) ( )V T a t x T S t V t= − +  
 
• …and he maximizes expected utility of the exponential form 
 

( )
( )

sup [ ]V T
t

a t
E e γ−  

 
• …then the problem of instability is eliminated as fundamental investor demand is 
 

2
( ) ( )( ) ( , ( )) / ( ) ( )

( ) SS S
x t S ta t V t S t a t O T t

T tγσ
−= ⇒ = −
−

 

 
• Fundamental investor demand increases (uncertainty decreases) as we approach maturity.  
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The Multi-Period Fundamental Investors 
 
• In the previous section we assumed that the fundamental investor invested as if he was not 

going to rebalance his portfolio between current time t  and some maturity T . It seems more 
realistic to assume that he can dynamically rebalance his portfolio.  

 
• This leads to an investment problem in which the fundamental investor updates his portfolio 

dynamically 
 

( ) ( ) ( ) ( ) ( )( )
{ ( )} { ( )}

sup [ ] sup [ ]
T T
t t

u t u t

V t a u dS u a u dS uV t
t t

a u a u
E e e E e

γ γ γγ

≥ ≥

− − −−∫ ∫=  

 
• It is easier to attack the discrete version of the problem where the control a  is only updated at 

the discrete dates 0 10 nt t t T= < < < =… : 
 

1
1( )( ( ) ( ))

{ ( )}
( ) sup [ ]

n
j jj

j i
i

i j i

a t S t S t

ti
a t

K t E e
γ

−

+
=

≥

− −∑
≡  
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• We note: 
 

1
1

11
1

1

1

( )( ( ) ( ))
( )( ( ) ( ))

( ) { ( )}

( )( ( ) ( ))
1( )

( ) sup [ sup [ ]]

sup [ ( )]

n
j jj

j ii ii
i i

i i j i

i ii
i

i

a t S t S t
a t S t S t

t ti
a t a t

a t S t S t
t ia t

K t E e E e

E e K t

γ
γ

γ

−

+
= ++

+
≥ +

+

− −
− −

− −
+

∑
=

=

 

 
• By which we have broken down the multi period problem as a sequence of one-dimensional 

optimization problems that can be solved backwards and recursively. 
 
• The first order condition ( ) / ( ) 0i iK t a t∂ ∂ =  gives us that the optimal position â  needs to solve 
 

1 1ˆ ( ) ˆ ( )
1 1 1 ˆ ˆ0 [ ( ) ( )] ( ) [ ( )] ( , ) ( ) ( , )i i

i i

aS t aS t
t ti i i ii i iE S t e K t S t E e K t L t a S t M t aγ γ+ +− −

+ + += − ≡ −  
 
• Note that we assume price taking behaviour here: The fundamental investor takes the 

observed price as and changes his portfolio holdings accordingly.  
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• We note that ,L M  solve 
 

1

1

( )2
1 1 1

( )2
1 1

10 , ( , ) ( ) ( )2
10 , ( , ) ( )2

i

i

aS t
xxt i i i

aS t
xxt i i

L L L t a S t e K t

M M M t a e K t

γ

γ

σ

σ

+

+

−
+ + +

−
+ +

= + =

= + =
 

 
• At the same time equilibrium dictates that  ( ) ( , ( ))i i iSa t V t S t= . Plugging this into the FOC yields 

that the equilibrium price Ŝ  satisfies 
 

ˆ ˆ ˆ0 ( , ( , )) ( , ( , ))i i i iS SL t V t S SM t V t S= −  
 
• This is solved for each level of x  and from this we obtain ˆ ˆ( , ( ))S S t x t=  and ready to move one 

step backward by using ˆˆ ˆˆ ˆ( ) ( , ) , ( , )aS
i i SK t e M t a a V t Sγ= = . 

 
• The spot volatility can now be found as 
 

ˆ ˆ( ) ( ) ( ) ( )xdS t S t dW t O dtσ= +  
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• This seems complicated (and it is) but it is a feasible exercise for the toy models like 
dx dWσ=  where FD is applicable. Numerical pricing runs in less than 1 second. 

 
• But, it is probably too heavy a methodology to implement for more complicated (MC) models 

such as multi factor interest rate models. 
 
• The fundamental investors are assumed to know the exact demand (Delta profile) of the 

hedgers. Can be rectified by adding in measures of random demand (noise traders): 
 

N N( ) ( , ( )) ( ) 0 , ( ) ( ) ( )S
fundamental noisetradershedgers

a t V t S t y t dy t y t dt dZ tκ ε− − = =− +
������	�����


 

 
• But this will increase the numerical complexity by another order (=> 2F problem). 
 
• Non-price taking behaviour can be incorporated in the solution methodology (Almgren and 

Chriss (1998)). In fact, the optimal liquidation problem of Almgren and Chriss is very easy to 
solve with the outlined methodology. 
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Is the Hedger Loosing Money to the Fundamental Investor?  
 
• Not necessarily. Remember that a hedger that lives in a market with volatility ϑ  but hedges 

and values off a volatility of σ  will have a book value that evolves according to (Dupire 
(1995)). So a Delta flat hedger book evolves according to 

 
2 21( ) ( ( ) ( ) ) ( )2 SSdV t t t V t dtϑ σ= −  

 
• So the hedger will on average not loose money as long as the pricing/hedging volatility σ  is 

chosen so that  
 

2 2
0

1
2

[ ( ( ) ( ) ) ( ) ] 0
T

SSE t t V t dtϑ σ− ≥∫  
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Numerical Example 
 
• Suppose the hedgers’ have entered a 10y swap where they pay their clients a high coupon as 

long as spot is below a certain strike against receiving a fixed coupon. So each net coupon is  
 

N1 2min(1,max( / 2 ) / )
short put spread long fixed

c k k S k c− +Δ − Δ +
��������������������	�������������������


 

 
• The hedgers have the right to cancel the swap on a Bermudan basis.  
 
• Parameters: 1 20.5%, 1%, 3%, 2%k k c c= Δ = = =  and 0.70%, 10σ γ= =  multi period investor. 
 
• Price at constant volatility 2.72% -- model price 1.12%. Time to calc = 0.2 seconds. 
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Local Volatility in Example 
 
• Local (normal) volatility as function of time and spot 
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Implied Volatility in Example 
 
• Implied (normal) volatility as function of expiry and strike 
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Delta, Gamma and Volatility 
 
• Realised volatility and hedgers’ Gamma are inversely related. 
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Implied Demand 
 
• From Dupire (1994) local volatility from butterfly and term spread on observed option prices: 
 

1/2( , )ˆ( , ) [2 ]( , )
T

KK

C T t K St S C T t K Sϑ = ==
= =

 

 
• Combining this with previous results yield  
 

( , ) 1( , ) ˆ( , )
S
x

b t S
a t S t S

σ
ϑ

= −  
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Practical Questions 
 
• Where do we get the hedgers’ portfolio from? 
 

- Use own portfolio as an educated guess. 
 
- Or we use the implied route. 

 
• How do we estimate risk aversion/market depth/liquidity? 
 

- Time series data of orders and price (?) 
 

- Implied volatility smiles. 
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Conclusion 
 
• If markets have finite liquidity the realised volatility and hedgers’ Gamma will be inversely 

related. 
 
• How much is a function of the risk aversion of fundamental investors and the magnitude of 

the Gamma of the hedgers. 
 
• As the hedgers are gamma short in some areas and gamma long in other areas this can create 

volatility skew/smiles. 
 
• Numerical solution is feasible in toy (FD) models but more difficult in more realistic (MC) 

models – particularly in multi factor models. Without further tricks and developments very 
difficult to solve model in a Monte-Carlo context. 

 
• Nonetheless, maybe we should devote more time to development of these types of models 

rather than keep on increasing model complexity with addition of stochastic volatility, jumps, 
etc. 
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• Theoretical question: is it possible to solve a “relevant” perpetual problem explicitly? 
[I think it is, but I’ve had no success so far]. 

 
 
 


