
Nick Webber: Implementing Numerical Methods for Complex Options 1

Implementing Numerical
Methods for Complex Options

Nick Webber

Nick Webber: Implementing Numerical Methods for Complex Options 2

Motivation

Lots of different options to value.

Industry environment:
 Expensive to have tailored valuation tools for each option,
 Need a generic tool, capable of valuing broad classes of options.

Implication:
 Need to be able to describe the options you can value.

This paper: works the other way around.
 1) Come up with a formal definition of a generic option,
 2) Describes a generic valuation algorithm.

Nick Webber: Implementing Numerical Methods for Complex Options 3

Key Questions

What is a derivative? How to define an option?
 Encapsulates the option contract.

What is a model? How to specify eg the processes in a model?

What is valuation? How to define and employ valuation methods?
 Explicit solution? Monte Carlo?

In each case must:
 Define the scope of what a valuation algorithm can do.

Nick Webber: Implementing Numerical Methods for Complex Options 4

The option

Simple European call option:
 Attributes are maturity time T, strike X.

But can have:
 Option payoffs depending on path statistics,
 Early exercise (exchange into a range of alternative options),
 Exercise can be: Mandatory, conditional, voluntary.
 Many underlying assets.

The model:
 Many state variables; hard to simulate.
 Usually no explicit solutions; usually do not know distributions.

Nick Webber: Implementing Numerical Methods for Complex Options 5

Key ideas:

 An option is a (particular sort of) graph.

 Valuation methods operate on graphs.

 Valuation methods can be generic: widely applicable.

Nick Webber: Implementing Numerical Methods for Complex Options 6

Formal specification of an Option

An option is a set
 {τ, ∂, E1,…,EN, F1,…,FM}
where 0 ≤ τ ≤ Tmax is the end time of the option,
 Final time of the current exchange bundle.
 ∂ is the continuous dividend yield received by option holder,
 (will be zero. Ignored in the sequel.)

Exchange specifications:
 Ei, i = 1,…,N, N ≥ 0, exchanges active over [0, τ], ‘initial’
 Fj, j = 1,…,M, M ≥ 0, mandatory exchanges at τ only, ‘terminal’.

Nick Webber: Implementing Numerical Methods for Complex Options 7

Exchange specifications?

E = {P, M, O, R}.
 P, Condition: true if can exchange, else false.
 M, Choice type: mandatory or discretionary.
 (O, R), An option-rebate pair that is entered into upon exchange.

Recursive definition:
 Assume each branch terminates after finite number of steps.
Implies that the option definition:
 Includes static replication trading strategies,
 Excludes continuous trading strategies.

Nick Webber: Implementing Numerical Methods for Complex Options 8

Upon an Exchange
If exchanged at 0 ≤ t ≤ τ, immediately receive
 i) The option O,
 ii) Cash of R(t, g1(ω),…,gq(ω)), (may be negative.)

Condition:
 Function of path statistics, eg, if a barrier has been hit.
Choice type:
 Marked-point process, values in symbol set {M, D}.
 Function of path statistics, but in practice constant.
 (Ignore exchanges at option of counterparty.)
Rebate:
 Function R(t, g1(ωt),…,gq(ωt)) of path statistics, gi of the path to date ω.

Nick Webber: Implementing Numerical Methods for Complex Options 9

Basic examples
Formulation contains most (all?) plain and exotic options.
Distinguished option: 0. Zero options, has no exchanges or cash-flows.

Call option, strike X:
 c = {T, F1},
 F1 = {true, M, 0, R},
 R(x) = (x - X)+, g(ωT) = ST.

American put option, strike X:
 c = {T, E1},
 E1 = {true, D, 0, R},
 R(x) = (X - x)+, g(ωT) = ST.

Nick Webber: Implementing Numerical Methods for Complex Options 10

Certain cash-flow:
To get a certain cash-flow of R at time T,
 c = {T, F1},
 F1 = {true, M, 0, R},
where R defines the cash-flow.

Up and out Barrier call option, strike X:
 c = {T, E1, F1},
 E1 = {St > U, M, 0, 0},
 F1 = {true, M, 0, R},
 R(x) = (x - X)+, g(ωT) = ST.

Nick Webber: Implementing Numerical Methods for Complex Options 11

Up and in Barrier option:
 b = {T, E1, F1},
 E1 = {St > U, M, c, 0},
 F1 = {true, M, 0, 0},
where c is the underlying call option maturing at T.

Discrete dividends: Represented as a compound option.
Sequence of dividend dates: 0 = t0 < t1 < ... < tN = Tmax.
eg, Europe call, c0, discrete dividend di at times ti.
 ci = {ti+1, Fi}, i = 0,…,N-2,
 Fi = {true, M, ci+1, di+1},
 cN-1 = {tN, FN-1},
 FN-1 = {true, M, 0, R}, for a payoff R.

Nick Webber: Implementing Numerical Methods for Complex Options 12

Bermudan options: Represent as a compound option.
Times 0 = t0 < t1 < ... < tN = Tmax.

eg, Bermudan option c0, exercisable at ti, i = 1,…,N, payoff function R.
 ci = {ti+1, F1

i, F2
i}, i = 0,…,N-2

 F1
i = {true, D, 0, R},

 F2
i = {true, D, ci+1, 0},

 cN-1 = {tN, FN-1},
 FN-1 = {true, M, 0, R}.

Underlying has constant time of maturity?
 Could define with a condition true only at reset times.

Nick Webber: Implementing Numerical Methods for Complex Options 13

Exchange Specifications

General exchange specification, E , {P, M, O, R}, ta < tb,
Terminal exchanges, F, {P, M, O, R}, ta = tb,
Unconditional mandatory cash, ER, {true, M, 0, R},
Unconditional discretionary cash, EA, {true, D, 0, R},
Conditional mandatory cash, EP, {P, M, 0, R},
Conditional cash, EV, {P, M, 0, R},
Conditional mandatory into Europeans, EB, {P, M, O, R}, O∈E,
Conditional into Europeans, EM, {P, M, O, R}, O∈E,
Conditional mandatory exchanges, EG, {P, M, O, R}, O∈O,

Nick Webber: Implementing Numerical Methods for Complex Options 14

Option types (i)

(N, M) Option specification Symbol Name
(*,*), O, General options,
(0,*), F1∈ER, C, General compound options,
(0,1), C1, Mandatory compound options,
(0,1), F1∈ER, E, European options,
(0,2), C2, General chooser options,
(0,2), F1,F2∈EB∩F, CR, Restricted compound options,
(0,2), F1∈ER, F2∈EB∩F, CC, Ordinary chooser options,

Nick Webber: Implementing Numerical Methods for Complex Options 15

Option types (ii)

(N, M) Option specification Symbol Name
(1,0), E1∈EA, AV, Simple vanilla Americans,
 E1∈EV, V, Vanilla options,
 E1∈EM, M, American compound options,
(1,1), E1∈EP, F1∈ER, R, Rebates,
 E1∈EA, F1∈ER, A, Simple American options,
 E1∈EB, F1∈ER, B1, Simple barrier options,
 E1∈E2, F1∈ER, GR, Restricted barrier options,
(2,1), F1∈ER, E1,E2∈EB, B2, Duplex barrier options,
(*,*), {Ei}∪{Fj}∈EG , G, General barrier options,

Nick Webber: Implementing Numerical Methods for Complex Options 16

Graph theoretic formulation

Represent an option as a graph.
 Vertices are options,
 Edges are exchange specifications.

Valuation algorithms operate on graph data structures.

Option graphs are a bit special.
Underlying data structure is a:
 Directed acyclic rooted terminated ordered bi-edged graph,
 Augmented with edge data.

Acyclic? Can relax this.

Nick Webber: Implementing Numerical Methods for Complex Options 17

Directed:
 Exchanges are in one direction only,
Acyclic:
 Can’t exchange back into a previously held option (non-returning)
Rooted:
 Has a single common ancestor vertex – the option you are valuing.
Terminated:
 All exchanges end in an exchange into the zero option 0.
Ordered:
 Maturity dates provide an edge-consistent vertex ordering.
Bi-edged:
 Edges are one of two colours: Indigo (initial) or Turquoise (terminal).
Augmented:
 Edges have data attached: condition/rebate/choice type.

Nick Webber: Implementing Numerical Methods for Complex Options 18

Graphs
Underlying data structure is an:
 directed acyclic rooted terminated ordered bi-edged graph,
 augmented with edge data.

A graph is a set G = (V, E) of vertices and edges.
 a) a set of vertices, V,
 b) a set of edges, E.
An edge e is (u, v) ∈ V × V; multiple edges are allowed.
If e = (u,v) ∈ E then e is a (directed) edge from u to v.

Projection operators πi : E → V, i = 1,2,
 π1(u,v) = u, projection onto the parent node,
 π2(u,v) = v, projection onto the child node.
For e ∈ E also write pe and ce (or ep and ec) for π1(e) and π2(e).

Nick Webber: Implementing Numerical Methods for Complex Options 19

Acyclic directed graphs

A chain of edges is a sequence e1,…,eN such that
 for all i = 2,…,N-1, π1(ei) = π2(ei-1),

A cycle is a chain e1,…,eN such that π2(eN) = π1(e1).

A graph is acyclic if it contains no cycles.

An option corresponding to an acyclic graph
cannot return to a previous state.

eg, a European call option with an up-barrier turning it into a European put,
the European put has a down barrier turning it back into the European call.

Nick Webber: Implementing Numerical Methods for Complex Options 20

Root vertices

For v ∈ V,
 a parent vertex is a u ∈ V such that (u, v) ∈ E,
 a child vertex is a u ∈ V such that (v, u) ∈ E,

A root vertex is one that has no parents, ie
 v is a root vertex if there exists no u ∈ V such that (u, v) ∈ E.

A graph G is rooted if it has exactly one root vertex.

Write * ∈ V for the unique root vertex in a rooted graph.
If G is rooted acyclic then for all v ∈ V then ∃ a chain e1,…,eN such that
 π1(e1) = * and π2(eN) = v.

Nick Webber: Implementing Numerical Methods for Complex Options 21

Leaf vertices

A leaf vertex is one that has no children, ie
 v is a leaf vertex if there exists no u ∈ V such that (v, u) ∈ E.

A graph is terminated if it has a exactly one leaf vertex.

Write ° ∈ V for the unique leaf vertex.
If G is acyclic terminated then ∀ v ∈ V then ∃ a chain e1,…,eN such that
 π1(e1) = v and π2(eN) = °.

For an option the leaf node is the zero option,
one that has no cash flows, ever.

Nick Webber: Implementing Numerical Methods for Complex Options 22

Ordered
We suppose ∃ an edge-compatible ordering ≤ on V, ie ≤ : V × V → st
 i) ∀u, v ∈ V either u ≤ v or v ≤ u,
 ii) ∀u, v, w ∈ V if u ≤ v and v ≤ w the u ≤ w.
 iii) If (u, v) ∈ E then u ≤ v.

We suppose we have selected a map t : V → st u ≤ v iff t(u) ≤ t(v).
In a graph with cycles, if u ≤ v and v ≤ u then t(u) = t(v)

We may write ut or tu for t(u).
By convention set t(*) > 0, t(°) = ∞, so
 0 < t(*) ≤ t(u) < t(°)
for all ° ≠ u ∈ V.
For an option, t(v) is the end time or maturity time of the option v.

Nick Webber: Implementing Numerical Methods for Complex Options 23

Bi-edged graphs

Vertices and edges may be coloured,
ie marked by a property taking values in a (finite) set (of eg colours).

Bi-edged?: Edges take one of two colours, eg indigo and turquoise.
Set E = EI ∪ ET, the union of indigo edges and turquoise edges.

For an option:
 Indigo edges correspond to initial exchanges.
 Turquoise edges correspond to terminal exchanges,

For v ∈ V write
 PI(v) for the parent vertices of v connected to v by indigo edges,
 PT(v) for the parent vertices of v connected to v by turquoise edges.

Nick Webber: Implementing Numerical Methods for Complex Options 24

Start times

Define the (effective) start time at a vertex.

The start time of a vertex v ∈ V is ts(v) for ts : V → R st

 i) ts(*) = 0 (by convention)
 ii) for v ∈ V, v ≠ *, ts(v) = min{ {ts(u)}u ∈ PI(v) ∪ {t(u)}u ∈ PT(v)}.

The start time of an option is the earliest time at which
an exchange into the option may take place.

The final time:
 Define tmax = maxv ∈ V\°{t(v)}.
tmax is the greatest maturity time occurring in the option specification

Nick Webber: Implementing Numerical Methods for Complex Options 25

Exchange times
Let Tv be the set of times when an exchange into v may take place.
Have

 Tv =
()
∪

vPu I∈
[ts(u), t(u)] ∪

()
∪

vPu T∈
{t(u)}

 ⊆ [ts(v), t(v)] ⊆ [ts(*), t(v)] = [0, t(v)],
so ts(v) = min{ t ∈ Tv }.

Let Te be the set of times when an exchange through e may take place.
Then Te = [ts(ep), t(ep)], if e ∈ EI,
 Te = {t(ep)}, if e ∈ ET,

A vertex v is exchange-active at time t if t ∈ Tv,
An edge e is exchange-active at time t if t ∈ Te.

Nick Webber: Implementing Numerical Methods for Complex Options 26

Vertex and edge data

Vertices and edges may contain data,
 fV : V → DV,
 fE : E → DE,
for data sets DV and DE.

In a directed graph:
 Edge data: Mediates the channel between parent and child vertices.
 Vertex data: State information, eg the yield δ.

For an option:
 Edge data: The condition, rebate and exchange type functions.
 (Vertex data: Just the maturity time.)

Nick Webber: Implementing Numerical Methods for Complex Options 27

Examples:
 Indigo edge:
 Turquoise edge:
 Root vertex:
 Terminal vertex:
 Ordinary vertex:

*
°
●

*

°

true, D, put

T

°

true, M, call

T*
European call American put

*

°

true, D, put

T

°

true, M, call

T*
European call American put

Nick Webber: Implementing Numerical Methods for Complex Options 28

In-barrier options are structurally different to out-barrier options.

*

°

true, M, call S > U, M, 0

T
Up and out Barrier call

°

true, M, call

true, M, 0

T*

•

S < L, M, 0

Down and in Barrier call

T

Nick Webber: Implementing Numerical Methods for Complex Options 29

Bermudan put
Represented as compound options.
Exercisable at 0 = t0 < t1 < ... < tN = Tmax.

 Ordinary Reset interval of τ

●
●

●

°

*

●

t1

t2
t3

t4

t5

c1

c2

c3

c4
c5

true, D, 0

true, D, put

°

*t1

t2

t4

t5

c1

c2

c3

c4
c5

true, D, 0

true, D, 0

•

true, D, put

t1+τ t2+τ t3+τ t4+τ t5+τ • • • • •

t3

•
•

•

•

p1 p2 p3 p4 p5

Nick Webber: Implementing Numerical Methods for Complex Options 30

Valuation algorithms

Underlying data structure: a graph.
 Vertex objects representing options,
 Edge objects representing exchange specifications.

Attach to each vertex a vertex-method object. Controls:
 i) Times for which option values need to be constructed,
 ii) Production of continuation values at that vertex,
 ii) Comparison of values for each possible exchange.

Attach to each edge an edge-method object. Controls:
 Mediation between its parent and child vertices.

Nick Webber: Implementing Numerical Methods for Complex Options 31

Algorithm steps

Numerical methods differ, but two main stages.
May be trivial in a given method
 i) Roll-forward: Generate sets of states,
 (may not proceed strictly forward).
 ii) Roll-back: Computes sets of values

Roll-back at a given step has four stages:
 i) Get states for that time
 ii) Compute continuation values from option values at other slices
 iii) Assemble non-continuation (exercise) values
 iv) Compare values from continuation and non-continuation values
 to find option values

Nick Webber: Implementing Numerical Methods for Complex Options 32

Algorithms

1) Traverse the graph, perhaps more than once,
 with some traversal method.

2) Maintain data. Two types:
 a) On the graph, ie on nodes and/or vertices,
 b) Independent to the graph.

For an option valuation algorithm:
 Vertex data: Construction times and values for each option,
 Edge data: Condition, rebate and exchange type values,
 Independent data: States for each construction time.

Nick Webber: Implementing Numerical Methods for Complex Options 33

Option Valuation Algorithms

Construction times at a vertex, T̂v:
 Times at which option values must be computed.

Construction times required at:
 i) Discretised exchange times, T~ v,
 ii) Additional times as required by the algorithm.

Mesh times:
 All times at which values must be constructed,
 Contains all construction times for individual vertices.

Nick Webber: Implementing Numerical Methods for Complex Options 34

Discrete Exchange Times

Given exchange times Tv, for v ∈ V, set
 Tv = { t ∈ Tv | t = t(v); t = ts(u), u ∈ PI(v); t = t(u), u ∈ PT(v) },
the start and end times in Tv.

For v ∈ V, a set of discrete exchange times for v with refinement ε > 0 is
a set T~ v = {ti}i ∈ Iv ⊆ Tv, for some index set Iv, st
 i) Tv ⊆ T~ v,
 ii) ∀t ∈ Tv ∃ ti ∈ T~ v st | t - ti | < ε/2.

A set of discrete exchange times is regular if
∀ i ∈ Iv, ∃ Δt > 0 st ti = t0 + kiΔt for some t0 and 0 ≤ ki ∈ Z.

Nick Webber: Implementing Numerical Methods for Complex Options 35

Algorithm construction times

A method is long-step roll-back if
 option values at time t1 can be computed to within acceptable accuracy
 directly from those at time t2 > t1,
 for any t2.

A method is short-step roll-back if
 option values at time t1 can be computed to within acceptable accuracy
 from those at time t2 > t1,
 only if t2 is close enough to t1.
ie, results are accurate to within δ only if |t2 - t1| < ε.

Nick Webber: Implementing Numerical Methods for Complex Options 36

Algorithm construction times

Have a discrete exchange times T~ v.
If the algorithm is short-step need to add algorithm construction times.

A set of construction times is T̂v = {ti}i ∈ I′v ⊆ [ts(v), t(v)] st
 i) Tv ⊆ T̂v,
 ii) ∀t ∈ [ts(v), t(v)] ∃ ti ∈ T̂v st | t - ti | < ε/2.

If the algorithm is long-step roll-back set T̂v = T~ v.

A set of construction times is regular if
 ∀ i ∈ I′v, ∃ Δt > 0 st ti = t0 + kiΔt for some t0 and 0 ≤ ki ∈ Z.

Nick Webber: Implementing Numerical Methods for Complex Options 37

Mesh times

Mesh times: times on the graph when option values must be computed

Set T = ∪

\Vv∈
{ts(v), t(v)}.

T̂ = {ti}i ∈ I, I = {0,…,N}, is a set of mesh times with refinement ε > 0 if
 i) ti-1 < ti, ∀ i ∈ I\{0},
 ii) | ti - ti-1 | < ε, ∀ i ∈ I\{0},
 iii) T̂v ⊆ T̂ ∀ v ∈ V\°.

A set of mesh times T̂ is regular if
 ∀ i ∈ I, ∃ Δt > 0 st ti = kiΔt for some t0 and 0 ≤ ki ∈ Z

(in practice, a multiple of a whole number of days) and complete if
 ti = iΔt ∀ i ∈ I.

Nick Webber: Implementing Numerical Methods for Complex Options 38

Option Valuation Algorithms

Have found: i) Construction times T̂v for each vertex,
 ii) Mesh times T̂ for the graph as whole.

Mesh times:
 If algorithm is long-step roll-back assume T̂ is complete,
 If algorithm is short-step roll-back assume T̂ is regular.

Algorithms have two phases:
 Roll-forward, generating states at each construction time.
 Roll-back, generating option values at each construction time.

Nick Webber: Implementing Numerical Methods for Complex Options 39

Examples of a few algorithms by step-type

Roll-forward Algorithms
by step type short-step long-step

short-step LRS lattice,
Interest rate MC

Backwards induction lattice,
Some interest rate MC,
PDE

Roll-back

long-step Forwards induction lattice,
Plain asset MC

Direct integration methods,
Some asset MC,
Explicit solutions

MC: Long-step forward if process amenable
Path-dependent MC: Usually short-step forward
Interest rate MC: Long-step back if can compute discount factor
PDE methods: Short-step back, long-step forwards

Options with I-exchanges are short step back.

Nick Webber: Implementing Numerical Methods for Complex Options 40

Vertex algorithm

At a vertex v ∈ V, receive a request for option values for time ti ≤ tv.

 0) If values not found for end time tv, compute them:
 Ask each T-edge for its tv values and condition,
 Compare them to get vertex v values for time tv.
 (Comparison depends on edge exchange types.)
 1) If values already found, return them.
 2) Let ti < tj be nearest future time at which values have been found.
 If long-step back is possible:
 Compute ti values from tj values and return them
 If short-step back is necessary:
 Compute values iteratively from tj values back to ti values.
 Return ti values

Nick Webber: Implementing Numerical Methods for Complex Options 41

Computing ti values from ti+1 values

From ti+1 values compute continuation values at ti,
 Values at ti if have not exchanged up to ti,
 but do so optimally thereafter.

If there are no I-edges:
 Return continuation values.

If there are I-edges:
 Ask each I-edge for its ti values and condition,
 Compare them with continuation values get values for time ti.
 (Comparison depends on edge exchange types.)

Nick Webber: Implementing Numerical Methods for Complex Options 42

Edge algorithm

At an edge e ∈ E, receive a request (from ep)
for time ti ≤ tec values and condition.

1) Compute condition for time ti.
2) Where condition is true,
 Ask ec for values at time ti.
 Compute rebate values.
 Return condition, rebate + ec values.

May be able to cache condition/rebate values it
 1) Condition and rebate are time homogenous,
 2) States are time homogenous.

Nick Webber: Implementing Numerical Methods for Complex Options 43

Independent data

For mesh times construct sets of states: slices.

Write:
 St for the (continuous) state space at time t.
 S = ∪ t≥ts(*) St for the full state space.

May have St1 ≡ St2 for all t1 and t2.

Write St ⊆ St for a discrete set of states used by the algorithm at time t:
 Construct option values at time t for states s ∈ St.

St is a slice at time t.

Nick Webber: Implementing Numerical Methods for Complex Options 44

Slices

Slices have:
 i) A geometry,
 ii) A mechanism to evolve forward (and maybe back) through time.

The geometry:
 Has dimension, in practice small,
 Spatial arrangement, eg vector, array, icosahedral, etc

Evolutionary mechanism:
 Based on continuous time process.
Identical geometries and processes can have different state evolution
 (eg order of branching; different MC schemes.)

Nick Webber: Implementing Numerical Methods for Complex Options 45

Slices
At each time, compute option values for a set of states: a slice.
A slice has a geometry, eg vector, array, hexagonal lattice, etc.

State manager object. Responsible for:
 1) Constructing slices,
 2) Giving access to objects that request them.
Has: roll-forward, roll-back and process objects.

Nodes in a slice carry three types of information:
 States: Controlled by the slice manager,
 Method data: Condition, rebate and option values,
 Option data: Temporary values used by numerical methods.

Nick Webber: Implementing Numerical Methods for Complex Options 46

Components of an algorithm

An algorithm specifies:

 1) The geometry and manner of evolution of slices,

 2) The computation of continuation values,

 3) The way in which values from disparate edges
 are compared to one another and the continuation values.

Nick Webber: Implementing Numerical Methods for Complex Options 47

Conclusion

Graphs are a natural way to define options.

Valuation methods operate on these graphs.

Valuation methods can be generic:
 Widely applicable to large classes of options.

Cost overhead?
 Surprisingly small...

