Implementing Numerical Methods for Complex Options

Nick Webber

Nick Webber: Implementing Numerical Methods for Complex Options

Motivation

Lots of different options to value.

Industry environment:

Expensive to have tailored valuation tools for each option, Need a generic tool, capable of valuing broad classes of options.

Implication:

Need to be able to describe the options you can value.

This paper: works the other way around.

- 1) Come up with a formal definition of a generic option,
- 2) Describes a generic valuation algorithm.

Key Questions

What is a derivative?How to define an option?Encapsulates the option contract.

What is a model? How to specify eg the processes in a model?

What is valuation?How to define and employ valuation methods?Explicit solution?Monte Carlo?

In each case must:

Define the scope of what a valuation algorithm can do.

The option

Simple European call option: Attributes are maturity time T, strike X.

But can have:

Option payoffs depending on path statistics, Early exercise (exchange into a range of alternative options), Exercise can be: Mandatory, conditional, voluntary. Many underlying assets.

The model:

Many state variables; hard to simulate.

Usually no explicit solutions; usually do not know distributions.

Key ideas:

An option is a (particular sort of) graph.

Valuation methods operate on graphs.

Valuation methods can be generic: widely applicable.

Formal specification of an Option

An option is a set $\{\tau, \partial, E_1, \dots, E_N, F_1, \dots, F_M\}$ where $0 \le \tau \le T_{max}$ is the end time of the option, Final time of the current exchange bundle. ∂ is the continuous dividend yield received by option holder, (will be zero. Ignored in the sequel.)

Exchange specifications:

E_i, i = 1,...,N, $N \ge 0$, exchanges active over $[0, \tau]$, 'initial' F_j, j = 1,...,M, $M \ge 0$, mandatory exchanges at τ only, 'terminal'.

Exchange specifications?

- $\mathbf{E} = \{ \mathcal{P}, \mathcal{M}, \mathbf{O}, \mathbf{R} \}.$
 - \mathcal{P} , Condition: true if can exchange, else false.
 - \mathcal{M} , Choice type: mandatory or discretionary.
 - (O, R), An option-rebate pair that is entered into upon exchange.

Recursive definition:

Assume each branch terminates after finite number of steps. Implies that the option definition:

Includes static replication trading strategies,

Excludes continuous trading strategies.

Upon an Exchange

If exchanged at $0 \le t \le \tau$, immediately receive

i) The option O,

ii) Cash of R(t, $g_1(\omega), \dots, g_q(\omega)$), (may be negative.)

Condition:

Function of path statistics, eg, if a barrier has been hit.

Choice type:

Marked-point process, values in symbol set $\{M, D\}$.

Function of path statistics, but in practice constant.

(Ignore exchanges at option of counterparty.)

Rebate:

Function R(t, $g_1(\omega_t), \dots, g_q(\omega_t)$) of path statistics, g_i of the path to date ω .

Basic examples

Formulation contains most (all?) plain and exotic options.

Distinguished option: 0. Zero options, has no exchanges or cash-flows.

Call option, strike X:

c = {T, F₁},
F₁ = {true, M, 0, R},
$$R(x) = (x - X)_+, g(\omega_T) = S_T.$$

American put option, strike X:

c = {T, E₁},
E₁ = {true, D, 0, R},
$$R(x) = (X - x)_+, g(\omega_T) = S_T.$$

Certain cash-flow:

To get a certain cash-flow of R at time T,

 $c = \{T, F_1\},\$ $F_1 = \{true, M, 0, R\},\$

where R defines the cash-flow.

Up and out Barrier call option, strike X:

$$\begin{split} \mathbf{c} &= \{ \mathbf{T}, \, \mathbf{E}_1, \, \mathbf{F}_1 \}, \\ \mathbf{E}_1 &= \{ \mathbf{S}_t > \mathbf{U}, \, \mathbf{M}, \, \mathbf{0}, \, \mathbf{0} \}, \\ \mathbf{F}_1 &= \{ \text{true}, \, \mathbf{M}, \, \mathbf{0}, \, \mathbf{R} \}, \\ \mathbf{R}(\mathbf{x}) &= (\mathbf{x} - \mathbf{X})_+, \, \, \mathbf{g}(\boldsymbol{\omega}_T) = \mathbf{S}_T. \end{split}$$

Up and in Barrier option:

$$\begin{split} b &= \{T, E_1, F_1\}, \\ E_1 &= \{S_t > U, M, c, 0\}, \\ F_1 &= \{true, M, 0, 0\}, \end{split}$$

where c is the underlying call option maturing at T.

Discrete dividends: Represented as a compound option. Sequence of dividend dates: $0 = t_0 < t_1 < ... < t_N = T_{max}$. eg, Europe call, c_0 , discrete dividend d_i at times t_i . $c_i = \{t_{i+1}, F_i\}, i = 0, ..., N-2,$ $F_i = \{true, M, c_{i+1}, d_{i+1}\},$ $c_{N-1} = \{t_N, F_{N-1}\},$ $F_{N-1} = \{true, M, 0, R\}, for a payoff R.$

Bermudan options: Represent as a compound option.

Times $0 = t_0 < t_1 < ... < t_N = T_{max}$.

eg, Bermudan option c_0 , exercisable at t_i , i = 1,...,N, payoff function R. $c_i = \{t_{i+1}, F^1_i, F^2_i\}, i = 0,...,N-2$ $F^1_i = \{true, D, 0, R\},$ $F^2_i = \{true, D, c_{i+1}, 0\},$ $c_{N-1} = \{t_N, F_{N-1}\},$ $F_{N-1} = \{true, M, 0, R\}.$

Underlying has constant time of maturity?

Could define with a condition true only at reset times.

Exchange Specifications

General exchange specification,	${\mathcal E},$	$\{\mathcal{P}, \mathcal{M}, O, R\}, t_a < t_b,$
Terminal exchanges,	Ŧ,	$\{\mathcal{P}, \mathcal{M}, O, R\}, t_a = t_b,$
Unconditional mandatory cash,	$\mathcal{E}_{\mathrm{R}},$	$\{true, M, 0, R\},\$
Unconditional discretionary cash,	$\mathcal{E}_{\mathrm{A}},$	{true, D, 0 , R},
Conditional mandatory cash,	$\mathcal{E}_{\mathrm{P}},$	$\{\mathcal{P}, \mathbf{M}, 0, \mathbf{R}\},\$
Conditional cash,	$\mathcal{E}_{\mathrm{V}},$	$\{\mathcal{P}, \mathcal{M}, 0, \mathbf{R}\},\$
Conditional mandatory into Europeans,	$\mathcal{E}_{\mathrm{B}},$	$\{\mathcal{P}, \mathbf{M}, \mathbf{O}, \mathbf{R}\}, \mathbf{O} \in \mathbf{E},$
Conditional into Europeans,	$\mathcal{E}_{\mathrm{M}},$	$\{\mathcal{P}, \mathcal{M}, \mathbf{O}, \mathbf{R}\}, \mathbf{O} \in \mathbf{E},$
Conditional mandatory exchanges,	$\mathcal{E}_{\mathrm{G}},$	$\{\mathcal{P}, \mathbf{M}, \mathbf{O}, \mathbf{R}\}, \mathbf{O} \in O,$

Option types (i)

(N, M)	Option	specification	Symbol	Name
	1	L	v	

- (*,*), O, $(0,*), F_1 \in \mathcal{E}_R, C,$
- $(0,1), C_1,$
- (0,1), $F_1 \in \mathcal{E}_R$, E, (0,2), C_2 ,
- $(0,2), \quad F_1, F_2 \in \mathcal{E}_B \cap \mathcal{F}, \qquad C_R,$
- $(0,2), \quad F_1 \in \mathcal{E}_R, \ F_2 \in \mathcal{E}_B \cap \mathcal{F}, \quad \mathcal{C}_C,$
- General options,
 General compound options,
 Mandatory compound options,
 European options,
 General chooser options,
 Restricted compound options,
 Ordinary chooser options,

Option types (ii)

(N, M)	Option specification	
(1,0),	$E_1 \in \mathcal{E}_A$,	
	$E_1 \in \mathcal{E}_V$,	
	$E_1 \in \mathcal{E}_M$,	
(1,1),	$\mathcal{E}_1 \in \mathcal{E}_P, F_1 \in \mathcal{E}_R,$	

(1,1),	$\mathcal{L}_1 \in \mathcal{L}_P, \Gamma_1 \in \mathcal{L}_R,$
	$E_1 \in \mathcal{E}_A, F_1 \in \mathcal{E}_R,$
	$E_1 \in \mathcal{E}_B, F_1 \in \mathcal{E}_R,$
	$E_1 \in \mathcal{E}_2, F_1 \in \mathcal{E}_R,$
$(2 \ 1)$	Γ σ σ Γ Γ σ σ

 $(2,1), \quad F_1 \in \mathcal{E}_R, E_1, E_2 \in \mathcal{E}_B,$ $(*,*), \{E_i\} \cup \{F_i\} \in \mathcal{E}_G,$

 $\mathcal{V},$

Symbol Name

R,

G,

- Simple vanilla Americans, \mathcal{A}_{V} ,
 - Vanilla options,
- М, American compound options,

Rebates,

Simple American options, А,

- Simple barrier options, \mathcal{B}_1 ,
- Restricted barrier options, $G_{\rm R}$,
- Duplex barrier options, \mathcal{B}_2 ,
 - General barrier options,

Graph theoretic formulation

Represent an option as a graph. Vertices are options, Edges are exchange specifications.

Valuation algorithms operate on graph data structures.

Option graphs are a bit special.

Underlying data structure is a:

Directed acyclic rooted terminated ordered bi-edged graph, Augmented with edge data.

Acyclic? Can relax this.

Directed:

Exchanges are in one direction only,

Acyclic:

Can't exchange back into a previously held option (non-returning) **Rooted**:

Has a single common ancestor vertex – the option you are valuing. **Terminated**:

All exchanges end in an exchange into the zero option **0**.

Ordered:

Maturity dates provide an edge-consistent vertex ordering.

Bi-edged:

Edges are one of two colours: Indigo (initial) or Turquoise (terminal). **Augmented**:

Edges have data attached: condition/rebate/choice type.

Graphs

Underlying data structure is an:

directed acyclic rooted terminated ordered bi-edged graph, augmented with edge data.

A graph is a set G = (V, E) of vertices and edges.

- a) a set of vertices, V,
- b) a set of edges, E.

An edge e is $(u, v) \in V \times V$; multiple edges are allowed. If $e = (u,v) \in E$ then e is a (directed) edge from u to v.

Projection operators $\pi_i : E \rightarrow V$, i = 1,2,

 $\pi_1(u,v) = u$, projection onto the parent node, $\pi_2(u,v) = v$, projection onto the child node.

For $e \in E$ also write p_e and c_e (or e_p and e_c) for $\pi_1(e)$ and $\pi_2(e)$.

Acyclic directed graphs

A chain of edges is a sequence e_1, \dots, e_N such that for all $i = 2, \dots, N-1$, $\pi_1(e_i) = \pi_2(e_{i-1})$,

A cycle is a chain e_1, \ldots, e_N such that $\pi_2(e_N) = \pi_1(e_1)$.

A graph is acyclic if it contains no cycles.

An option corresponding to an acyclic graph cannot return to a previous state.

eg, a European call option with an up-barrier turning it into a European put, the European put has a down barrier turning it back into the European call.

Root vertices

For $v \in V$, a parent vertex is a $u \in V$ such that $(u, v) \in E$, a child vertex is a $u \in V$ such that $(v, u) \in E$,

A root vertex is one that has no parents, ie v is a root vertex if there exists no $u \in V$ such that $(u, v) \in E$.

A graph G is rooted if it has exactly one root vertex.

Write $* \in V$ for the unique root vertex in a rooted graph. If G is rooted acyclic then for all $v \in V$ then \exists a chain e_1, \dots, e_N such that $\pi_1(e_1) = *$ and $\pi_2(e_N) = v$.

Leaf vertices

A leaf vertex is one that has no children, ie v is a leaf vertex if there exists no $u \in V$ such that $(v, u) \in E$.

A graph is terminated if it has a exactly one leaf vertex.

Write $\circ \in V$ for the unique leaf vertex. If G is acyclic terminated then $\forall v \in V$ then \exists a chain e_1, \dots, e_N such that $\pi_1(e_1) = v$ and $\pi_2(e_N) = \circ$.

For an option the leaf node is the zero option, one that has no cash flows, ever.

Ordered

We suppose \exists an edge-compatible ordering \leq on V, ie \leq : V × V $\rightarrow \mathbb{R}$ st

```
i) \forall u, v \in V \text{ either } u \leq v \text{ or } v \leq u,
ii) \forall u, v, w \in V \text{ if } u \leq v \text{ and } v \leq w \text{ the } u \leq w.
iii) If (u, v) \in E then u \leq v.
```

We suppose we have selected a map $t : V \to \mathbb{R}$ st $u \le v$ iff $t(u) \le t(v)$. In a graph with cycles, if $u \le v$ and $v \le u$ then t(u) = t(v)

```
We may write ut or tu for t(u).
By convention set t(*) > 0, t(°) = ∞, so
0 < t(*) ≤ t(u) < t(°)</p>
for all ° ≠ u ∈ V.
For an option, t(v) is the end time or maturity time of the option v.
```

Bi-edged graphs

Vertices and edges may be coloured, ie marked by a property taking values in a (finite) set (of eg colours).

Bi-edged?: Edges take one of two colours, eg indigo and turquoise. Set $E = E^{I} \cup E^{T}$, the union of indigo edges and turquoise edges.

For an option:

Indigo edges correspond to initial exchanges. Turquoise edges correspond to terminal exchanges,

For $v \in V$ write

 $P^{I}(v)$ for the parent vertices of v connected to v by indigo edges, $P^{T}(v)$ for the parent vertices of v connected to v by turquoise edges.

Start times

Define the (effective) start time at a vertex.

The start time of a vertex $v \in V$ is $t^{s}(v)$ for $t^{s}: V \to \mathbb{R}$ st

i) $t^{s}(*) = 0$ (by convention) ii) for $v \in V$, $v \neq *$, $t^{s}(v) = \min\{\{t^{s}(u)\}_{u \in P^{I}(v)} \cup \{t(u)\}_{u \in P^{T}(v)}\}$.

The start time of an option is the earliest time at which an exchange into the option may take place.

The final time:

Define $t_{max} = max_{v \in V \setminus \circ} \{t(v)\}$.

 t_{max} is the greatest maturity time occurring in the option specification

Exchange times

Let T_v be the set of times when an exchange into v may take place. Have

$$T_{v} = \bigcup_{u \in P^{I}(v)} [t^{s}(u), t(u)] \bigcup_{u \in P^{T}(v)} \{t(u)\}$$
$$\subseteq [t^{s}(v), t(v)] \subseteq [t^{s}(*), t(v)] = [0, t(v)],$$
so $t^{s}(v) = \min\{t \in T_{v}\}.$

Let T_e be the set of times when an exchange through e may take place. Then $T_e = [t^s(e_p), t(e_p)], \text{ if } e \in E^I,$ $T_e = \{t(e_p)\}, \text{ if } e \in E^T,$

A vertex v is exchange-active at time t if $t \in T_v$, An edge e is exchange-active at time t if $t \in T_e$.

Vertex and edge data

Vertices and edges may contain data, $f^{V}: V \rightarrow D^{V},$ $f^{E}: E \rightarrow D^{E},$ for data sets D^{V} and D^{E} .

In a directed graph:

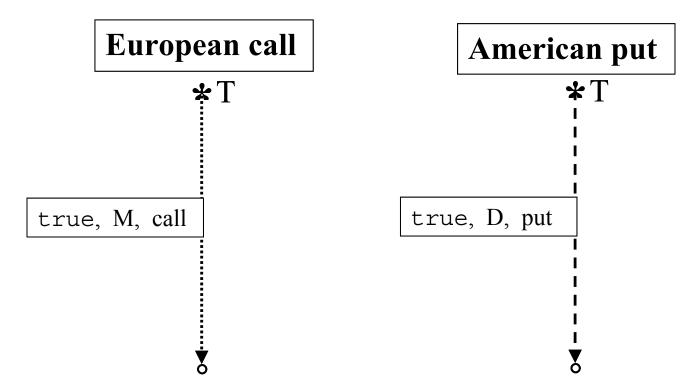
Edge data: Mediates the channel between parent and child vertices. Vertex data: State information, eg the yield δ .

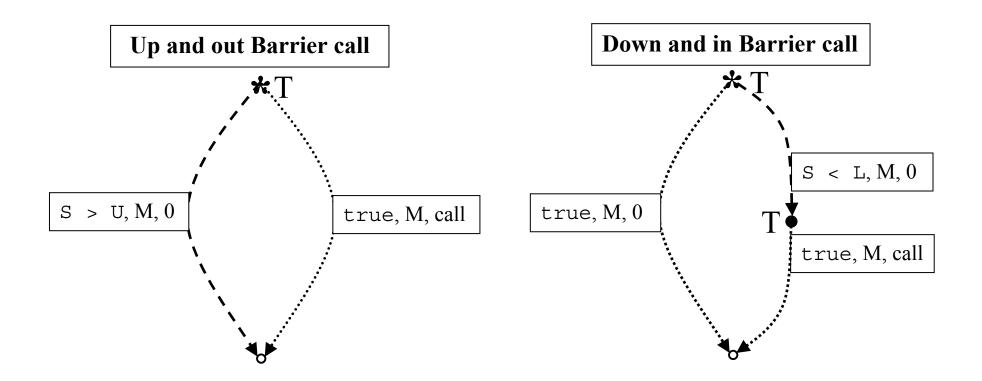
For an option:

Edge data: The condition, rebate and exchange type functions.(Vertex data: Just the maturity time.)

Examples:

Indigo edge:	
Turquoise edge:	•••••
Root vertex:	*
Terminal vertex:	0
Ordinary vertex:	•

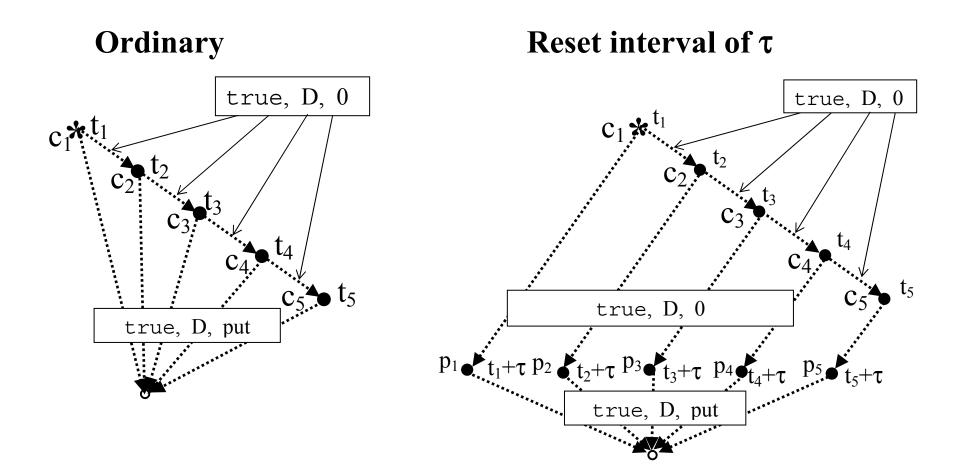




In-barrier options are structurally different to out-barrier options.

Bermudan put

Represented as compound options. Exercisable at $0 = t_0 < t_1 < ... < t_N = T_{max}$.



Valuation algorithms

Underlying data structure: a graph.

Vertex objects representing options,

Edge objects representing exchange specifications.

Attach to each vertex a vertex-method object. Controls:

- i) Times for which option values need to be constructed,
- ii) Production of continuation values at that vertex,
- ii) Comparison of values for each possible exchange.

Attach to each edge an edge-method object. Controls: Mediation between its parent and child vertices.

Algorithm steps

Numerical methods differ, but two main stages. May be trivial in a given method

i) Roll-forward: Generate sets of states,

(may not proceed strictly forward).

ii) Roll-back: Computes sets of values

Roll-back at a given step has four stages:

- i) Get states for that time
- ii) Compute continuation values from option values at other slices
- iii) Assemble non-continuation (exercise) values
- iv) Compare values from continuation and non-continuation values to find option values

Algorithms

- 1) Traverse the graph, perhaps more than once, with some traversal method.
- 2) Maintain data. Two types:
 - a) On the graph, ie on nodes and/or vertices,
 - b) Independent to the graph.

For an option valuation algorithm:

Vertex data:Construction times and values for each option,Edge data:Condition, rebate and exchange type values,Independent data:States for each construction time.

Option Valuation Algorithms

Construction times at a vertex, \hat{T}_v :

Times at which option values must be computed.

Construction times required at:

- i) Discretised exchange times, \widetilde{T}_v ,
- ii) Additional times as required by the algorithm.

Mesh times:

All times at which values must be constructed, Contains all construction times for individual vertices.

Discrete Exchange Times

Given exchange times T_v , for $v \in V$, set $\overline{T}_v = \{ t \in T_v | t = t(v); t = t^s(u), u \in P^I(v); t = t(u), u \in P^T(v) \},$ the start and end times in T_v .

For $v \in V$, a set of discrete exchange times for v with refinement $\varepsilon > 0$ is a set $\widetilde{T}_v = \{t_i\}_{i \in I_v} \subseteq T_v$, for some index set I_v , st i) $\overline{T}_v \subseteq \widetilde{T}_v$, ii) $\forall t \in T_v \exists t_i \in \widetilde{T}_v \text{ st } | t - t_i | \le \varepsilon/2$.

A set of discrete exchange times is regular if $\forall i \in I_v, \exists \Delta t > 0 \text{ st } t_i = t_0 + k_i \Delta t \text{ for some } t_0 \text{ and } 0 \le k_i \in \mathbb{Z}.$

Algorithm construction times

A method is long-step roll-back if option values at time t_1 can be computed to within acceptable accuracy directly from those at time $t_2 > t_1$, for any t_2 .

A method is short-step roll-back if

option values at time t_1 can be computed to within acceptable accuracy from those at time $t_2 > t_1$,

only if t_2 is close enough to t_1 .

ie, results are accurate to within δ only if $|t_2 - t_1| < \epsilon$.

Algorithm construction times

Have a discrete exchange times $\widetilde{T}_{v}.$

If the algorithm is short-step need to add algorithm construction times.

A set of construction times is
$$\hat{T}_v = \{t_i\}_{i \in I'_v} \subseteq [t^s(v), t(v)]$$
 st
i) $\overline{T}_v \subseteq \hat{T}_v$,
ii) $\forall t \in [t^s(v), t(v)] \exists t_i \in \hat{T}_v$ st $|t - t_i| < \epsilon/2$.

If the algorithm is long-step roll-back set $\hat{T}_v = \tilde{T}_v$.

A set of construction times is regular if $\forall i \in I'_v, \exists \Delta t > 0 \text{ st } t_i = t_0 + k_i \Delta t \text{ for some } t_0 \text{ and } 0 \le k_i \in \mathbb{Z}.$

Mesh times

Mesh times: times on the graph when option values must be computed

$$\begin{array}{l} \text{Set } T = \bigcup_{v \in V \setminus \circ} \left\{ t^s(v), t(v) \right\}. \\ \hat{T} = \left\{ t_i \right\}_{i \in I}, \ I = \{0, \ldots, N\}, \ \text{is a set of mesh times with refinement } \epsilon > 0 \ \text{if} \\ i) \quad t_{i-1} < t_i, \ \forall \ i \in I \setminus \{0\}, \\ ii) \quad | \ t_i - t_{i-1} \mid < \epsilon, \ \forall \ i \in I \setminus \{0\}, \\ iii) \quad \hat{T}_v \subseteq \hat{T} \ \forall \ v \in V \setminus^{\circ}. \end{array}$$

A set of mesh times \hat{T} is regular if

 $\forall i \in I, \exists \Delta t > 0 \text{ st } t_i = k_i \Delta t \text{ for some } t_0 \text{ and } 0 \leq k_i \in \mathbb{Z}$

(in practice, a multiple of a whole number of days) and complete if $t_i = i\Delta t \ \forall \ i \in I$.

Option Valuation Algorithms

Have found: i) Construction times \hat{T}_v for each vertex, ii) Mesh times \hat{T} for the graph as whole.

Mesh times:

If algorithm is long-step roll-back assume \hat{T} is complete, If algorithm is short-step roll-back assume \hat{T} is regular.

Algorithms have two phases:

Roll-forward, generating states at each construction time. Roll-back, generating option values at each construction time.

Examples of a few algorithms by step-type

Algorithms)	Roll-forward	
by step type	e	short-step long-step	
Roll-back	short-step	LRS lattice, Interest rate MC	Backwards induction lattice, Some interest rate MC, PDE
	long-step	Forwards induction lattice, Plain asset MC	Direct integration methods, Some asset MC, Explicit solutions

MC: Long-step forward if process amenable
Path-dependent MC: Usually short-step forward
Interest rate MC: Long-step back if can compute discount factor
PDE methods: Short-step back, long-step forwards

Options with I-exchanges are short step back.

Nick Webber: Implementing Numerical Methods for Complex Options

Vertex algorithm

At a vertex $v \in V$, receive a request for option values for time $t_i \leq t_v$.

- 0) If values not found for end time t_v, compute them: Ask each T-edge for its t_v values and condition, Compare them to get vertex v values for time t_v. (Comparison depends on edge exchange types.)
- 1) If values already found, return them.
- 2) Let $t_i < t_j$ be nearest future time at which values have been found. If long-step back is possible:

Compute t_i values from t_j values and return them If short-step back is necessary:

Compute values iteratively from t_{j} values back to t_{i} values. Return t_{i} values

Computing t_i values from t_{i+1} values

From t_{i+1} values compute continuation values at t_i , Values at t_i if have not exchanged up to t_i , but do so optimally thereafter.

If there are no I-edges: Return continuation values.

If there are I-edges:

Ask each I-edge for its t_i values and condition, Compare them with continuation values get values for time t_i. (Comparison depends on edge exchange types.)

Edge algorithm

At an edge $e \in E$, receive a request (from e_p) for time $t_i \le t_{e_c}$ values and condition.

- 1) Compute condition for time t_i.
- 2) Where condition is true, Ask e_c for values at time t_i . Compute rebate values. Return condition, rebate + e_c values.

May be able to cache condition/rebate values it

- 1) Condition and rebate are time homogenous,
- 2) States are time homogenous.

Independent data

For mesh times construct sets of states: slices.

Write:

 S_t for the (continuous) state space at time t. $S = \bigcup_{t \ge t^s(*)} S_t$ for the full state space.

May have $S_{t_1} \equiv S_{t_2}$ for all t_1 and t_2 .

Write $S_t \subseteq S_t$ for a discrete set of states used by the algorithm at time t: Construct option values at time t for states $s \in S_t$.

 S_t is a slice at time t.

Slices

Slices have:

- i) A geometry,
- ii) A mechanism to evolve forward (and maybe back) through time.

The geometry:

Has dimension, in practice small,

Spatial arrangement, eg vector, array, icosahedral, etc

Evolutionary mechanism:

Based on continuous time process.

Identical geometries and processes can have different state evolution

(eg order of branching; different MC schemes.)

Slices

At each time, compute option values for a set of states: a slice. A slice has a geometry, eg vector, array, hexagonal lattice, etc.

State manager object. Responsible for:

1) Constructing slices,

2) Giving access to objects that request them.

Has: roll-forward, roll-back and process objects.

Nodes in a slice carry three types of information:

States: Controlled by the slice manager,

- Method data: Condition, rebate and option values,
- Option data: Temporary values used by numerical methods.

Components of an algorithm

An algorithm specifies:

- 1) The geometry and manner of evolution of slices,
- 2) The computation of continuation values,
- 3) The way in which values from disparate edges are compared to one another and the continuation values.

Conclusion

Graphs are a natural way to define options.

Valuation methods operate on these graphs.

Valuation methods can be generic: Widely applicable to large classes of options.

Cost overhead? Surprisingly small...