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Motivation 
 
Lots of different options to value. 
 
Industry environment: 
 Expensive to have tailored valuation tools for each option, 
 Need a generic tool,  capable of valuing broad classes of options. 
 
Implication: 
 Need to be able to describe the options you can value. 
 
This paper:  works the other way around. 
 1) Come up with a formal definition of a generic option, 
 2) Describes a generic valuation algorithm. 
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Key Questions 
 
What is a derivative? How to define an option? 
       Encapsulates the option contract. 
 
What is a model?   How to specify eg the processes in a model? 
 
What is valuation?  How to define and employ valuation methods? 
       Explicit solution?  Monte Carlo? 
 
In each case must: 
 Define the scope of what a valuation algorithm can do. 
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The option 
 
Simple European call option:   
 Attributes are maturity time T,  strike X. 
 
But can have: 
 Option payoffs depending on path statistics, 
 Early exercise (exchange into a range of alternative options), 
  Exercise can be:  Mandatory,  conditional,  voluntary. 
 Many underlying assets. 
 
The model: 
 Many state variables;  hard to simulate. 
 Usually no explicit solutions;  usually do not know distributions. 
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Key ideas:   
 
 An option is a (particular sort of) graph. 
 
 Valuation methods operate on graphs. 
 
 Valuation methods can be generic:  widely applicable. 
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Formal specification of an Option 
 
An option is a set 
 {τ, ∂, E1,…,EN, F1,…,FM} 
where 0 ≤ τ ≤ Tmax is the end time of the option, 
   Final time of the current exchange bundle. 
  ∂ is the continuous dividend yield received by option holder, 
   (will be zero.  Ignored in the sequel.) 
 
Exchange specifications: 
 Ei,  i = 1,…,N,  N ≥ 0,  exchanges active over [0, τ],  ‘initial’ 
 Fj,  j = 1,…,M,  M ≥ 0,  mandatory exchanges at τ only,  ‘terminal’.
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Exchange specifications? 
 
E = {P,  M, O, R}. 
 P,   Condition:  true if can exchange,  else false. 
 M,   Choice type:  mandatory or discretionary. 
 (O, R),  An option-rebate pair that is entered into upon exchange. 
 
Recursive definition: 
 Assume each branch terminates after finite number of steps. 
Implies that the option definition:  
 Includes static replication trading strategies, 
 Excludes continuous trading strategies.
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Upon an Exchange 
If exchanged at 0 ≤ t ≤ τ,  immediately receive 
 i) The option O, 
 ii) Cash of R(t, g1(ω),…,gq(ω)),  (may be negative.) 
 
Condition: 
 Function of path statistics,  eg,  if a barrier has been hit. 
Choice type: 
 Marked-point process,  values in symbol set {M, D}. 
 Function of path statistics,  but in practice constant. 
  (Ignore exchanges at option of counterparty.) 
Rebate: 
 Function R(t, g1(ωt),…,gq(ωt)) of path statistics, gi of the path to date ω.
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Basic examples 
Formulation contains most (all?) plain and exotic options. 
Distinguished option:  0.  Zero options,  has no exchanges or cash-flows. 
 
Call option,  strike X:  
 c = {T, F1}, 
 F1 = {true,  M,  0, R}, 
   R(x) = (x - X)+,  g(ωT) = ST. 
 
American put option,  strike X: 
 c = {T, E1}, 
 E1 = {true,  D,  0,  R}, 
   R(x) = (X - x)+,  g(ωT) = ST.
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Certain cash-flow:   
To get a certain cash-flow of R at time T, 
 c = {T, F1}, 
 F1 = {true,  M,  0,  R}, 
where R defines the cash-flow. 
 
Up and out Barrier call option,  strike X: 
 c = {T, E1, F1}, 
 E1 = {St  > U,  M,  0,  0}, 
 F1 = {true,  M,  0,  R}, 
   R(x) = (x - X)+,  g(ωT) = ST.
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Up and in Barrier option: 
 b = {T, E1, F1}, 
  E1 = {St  > U,  M,  c,  0}, 
  F1 = {true,  M,  0,  0}, 
where c is the underlying call option maturing at T. 
 
Discrete dividends:  Represented as a compound option. 
Sequence of dividend dates:  0 = t0 < t1 < ... < tN = Tmax. 
eg,  Europe call,  c0,  discrete dividend di at times ti. 
 ci = {ti+1, Fi},  i = 0,…,N-2, 
  Fi = {true,  M,  ci+1,  di+1}, 
 cN-1 = {tN, FN-1}, 
  FN-1 = {true,  M,  0, R},  for a payoff R.
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Bermudan options:  Represent as a compound option. 
Times  0 = t0 < t1 < ... < tN = Tmax. 
 
eg,  Bermudan option c0,  exercisable at ti,  i = 1,…,N,  payoff function R. 
 ci = {ti+1, F1

i, F2
i},  i = 0,…,N-2 

  F1
i = {true,  D,  0,  R}, 

  F2
i = {true,  D,  ci+1,  0}, 

 cN-1 = {tN, FN-1}, 
  FN-1 = {true,  M,  0,  R}. 
 
Underlying has constant time of maturity? 
 Could define with a condition true only at reset times.
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Exchange Specifications 
 
General exchange specification,   E ,  {P, M, O, R}, ta < tb, 
Terminal exchanges,      F,  {P, M, O, R}, ta = tb, 
Unconditional mandatory cash,   ER,  {true, M, 0, R}, 
Unconditional discretionary cash,  EA,  {true, D, 0, R}, 
Conditional mandatory cash,   EP,  {P, M, 0, R}, 
Conditional cash,      EV,  {P, M, 0, R}, 
Conditional mandatory into Europeans, EB,  {P, M, O, R},  O∈E, 
Conditional into Europeans,    EM,  {P, M, O, R},  O∈E, 
Conditional mandatory exchanges,  EG,  {P, M, O, R},  O∈O,
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Option types (i) 
 
(N, M) Option specification Symbol Name 
(*,*),      O,  General options, 
(0,*), F1∈ER,    C,  General compound options, 
(0,1),      C1,  Mandatory compound options, 
(0,1), F1∈ER,    E,  European options, 
(0,2),      C2,  General chooser options, 
(0,2), F1,F2∈EB∩F,  CR,  Restricted compound options, 
(0,2), F1∈ER, F2∈EB∩F, CC,  Ordinary chooser options, 
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Option types (ii) 
 
(N, M) Option specification   Symbol Name 
(1,0), E1∈EA,      AV,  Simple vanilla Americans, 
  E1∈EV,      V,  Vanilla options, 
  E1∈EM,      M,  American compound options, 
(1,1), E1∈EP, F1∈ER,    R,  Rebates, 
  E1∈EA,  F1∈ER,    A,  Simple American options, 
  E1∈EB, F1∈ER,    B1,  Simple barrier options, 
  E1∈E2, F1∈ER,    GR,  Restricted barrier options, 
(2,1), F1∈ER, E1,E2∈EB,    B2,  Duplex barrier options, 
(*,*), {Ei}∪{Fj}∈EG ,   G,  General barrier options, 
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Graph theoretic formulation 
 
Represent an option as a graph. 
 Vertices are options, 
 Edges are exchange specifications. 
 
Valuation algorithms operate on graph data structures. 
 
Option graphs are a bit special. 
Underlying data structure is a: 
 Directed acyclic rooted terminated ordered bi-edged graph, 
 Augmented with edge data. 
 
Acyclic?  Can relax this.
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Directed: 
 Exchanges are in one direction only, 
Acyclic: 
 Can’t exchange back into a previously held option (non-returning) 
Rooted: 
 Has a single common ancestor vertex – the option you are valuing. 
Terminated: 
 All exchanges end in an exchange into the zero option 0. 
Ordered: 
 Maturity dates provide an edge-consistent vertex ordering. 
Bi-edged: 
 Edges are one of two colours:  Indigo (initial) or Turquoise (terminal). 
Augmented: 
 Edges have data attached:  condition/rebate/choice type.
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Graphs 
Underlying data structure is an: 
 directed acyclic rooted terminated ordered bi-edged graph, 
 augmented with edge data. 
 
A graph is a set G = (V, E) of vertices and edges. 
 a) a set of vertices,  V, 
 b) a set of edges,   E. 
An edge e is (u, v) ∈ V × V;  multiple edges are allowed. 
If e = (u,v) ∈ E then e is a (directed) edge from u to v. 
 
Projection operators πi : E → V,  i = 1,2, 
 π1(u,v) = u, projection onto the parent node, 
 π2(u,v) = v, projection onto the child node. 
For e ∈ E also write pe and ce (or ep and ec) for π1(e) and π2(e).
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Acyclic directed graphs 
 
A chain of edges is a sequence e1,…,eN such that 
 for all i = 2,…,N-1,  π1(ei) = π2(ei-1), 
 
A cycle is a chain e1,…,eN such that π2(eN) = π1(e1). 
 
A graph is acyclic if it contains no cycles. 
 
An option corresponding to an acyclic graph 
cannot return to a previous state. 
 
eg,  a European call option with an up-barrier turning it into a European put, 
the European put has a down barrier turning it back into the European call.
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Root vertices 
 
For v ∈ V, 
 a parent vertex is a u ∈ V such that (u, v) ∈ E, 
 a child vertex is a u ∈ V such that (v, u) ∈ E, 
 
A root vertex is one that has no parents,  ie 
 v is a root vertex if there exists no u ∈ V such that (u, v) ∈ E. 
 
A graph G is rooted if it has exactly one root vertex. 
 
Write * ∈ V for the unique root vertex in a rooted graph. 
If G is rooted acyclic then for all  v ∈ V then ∃ a chain e1,…,eN such that 
 π1(e1) = * and  π2(eN) = v.
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Leaf vertices 
 
A leaf vertex is one that has no children,  ie 
 v is a leaf vertex if there exists no u ∈ V such that (v, u) ∈ E. 
 
A graph is terminated if it has a exactly one leaf vertex. 
 
Write ° ∈ V for the unique leaf vertex. 
If G is acyclic terminated then ∀ v ∈ V then ∃ a chain e1,…,eN such that 
 π1(e1) = v and  π2(eN) = °. 
 
For an option the leaf node is the zero option, 
one that has no cash flows,  ever.
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Ordered 
We suppose ∃ an edge-compatible ordering ≤ on V,  ie ≤ : V × V →  st 
 i) ∀u, v ∈ V either u ≤ v or v ≤ u, 
 ii) ∀u, v, w ∈ V if u ≤ v and v ≤ w the u ≤ w. 
 iii) If (u, v) ∈ E then u ≤ v. 
 
We suppose we have selected a map t : V →  st u ≤ v iff t(u) ≤ t(v). 
In a graph with cycles,  if u ≤ v and v ≤ u then t(u) = t(v) 
 
We may write ut or tu for t(u). 
By convention set t(*) > 0,  t(°) = ∞,  so 
 0 < t(*) ≤ t(u) < t(°) 
for all ° ≠ u ∈ V. 
For an option,  t(v) is the end time or maturity time of the option v.
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Bi-edged graphs 
 
Vertices and edges may be coloured,   
ie marked by a property taking values in a (finite) set (of eg colours). 
 
Bi-edged?:  Edges take one of two colours,  eg indigo and turquoise. 
Set E = EI ∪  ET,  the union of indigo edges and turquoise edges. 
 
For an option: 
 Indigo edges correspond to initial exchanges. 
 Turquoise edges correspond to terminal exchanges, 
 
For v ∈ V write 
 PI(v) for the parent vertices of v connected to v by indigo edges, 
 PT(v) for the parent vertices of v connected to v by turquoise edges.
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Start times 
 
Define the (effective) start time at a vertex. 
 
The start time of a vertex v ∈ V is ts(v) for  ts : V → R st 

 i) ts(*) = 0 (by convention) 
 ii) for v ∈ V,  v ≠ *,  ts(v) = min{ {ts(u)}u ∈ PI(v) ∪  {t(u)}u ∈ PT(v)}. 
 
The start time of an option is the earliest time at which 
an exchange into the option may take place. 
 
The final time: 
 Define tmax = maxv ∈ V\°{t(v)}. 
tmax is the greatest maturity time occurring in the option specification
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Exchange times 
Let Tv be the set of times when an exchange into v may take place. 
Have 

 Tv = 
( )
∪

vPu I∈
[ts(u), t(u)] ∪

( )
∪

vPu T∈
{t(u)}  

   ⊆ [ts(v), t(v)] ⊆ [ts(*), t(v)] = [0, t(v)], 
so ts(v) = min{ t ∈ Tv }. 
 
Let Te be the set of times when an exchange through e may take place. 
Then Te = [ts(ep), t(ep)], if e ∈ EI, 
  Te = {t(ep)},  if e ∈ ET, 
 
A vertex v is exchange-active at time t if t ∈ Tv, 
An edge e is exchange-active at time t if t ∈ Te.
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Vertex and edge data 
 
Vertices and edges may contain data, 
 fV : V → DV, 
 fE : E → DE, 
for data sets DV and DE. 
 
In a directed graph: 
 Edge data:  Mediates the channel between parent and child vertices. 
 Vertex data: State information,  eg the yield δ. 
 
For an option: 
 Edge data:  The condition,  rebate and exchange type functions. 
 (Vertex data: Just the maturity time.) 
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Examples:   
 Indigo edge: 
 Turquoise edge: 
 Root vertex: 
 Terminal vertex: 
 Ordinary vertex: 
 
 
 
 
 
 
 
 

*
°
●

*

°

true,  D,  put 

T

°

true,  M,  call 

T*
European call  American put 

*

°

true,  D,  put 

T

°

true,  M,  call 

T*
European call  American put 
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In-barrier options are structurally different to out-barrier options. 

*

°

true, M, call S > U, M, 0 

T
Up and out Barrier call 

°

true, M, call 

true, M, 0 

T*

•

S < L, M, 0 

Down and in Barrier call 

T
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Bermudan put 
Represented as compound options.   
Exercisable at 0 = t0 < t1 < ... < tN = Tmax. 
 
   Ordinary       Reset interval of τ 
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Valuation algorithms 
 
Underlying data structure:  a graph. 
 Vertex objects representing options, 
 Edge objects representing exchange specifications. 
 
Attach to each vertex a vertex-method object.  Controls: 
 i) Times for which option values need to be constructed, 
 ii) Production of continuation values at that vertex, 
 ii) Comparison of values for each possible exchange. 
 
Attach to each edge an edge-method object.  Controls: 
 Mediation between its parent and child vertices.
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Algorithm steps 
 
Numerical methods differ,  but two main stages. 
May be trivial in a given method 
 i) Roll-forward: Generate sets of states,   
      (may not proceed strictly forward). 
 ii) Roll-back:  Computes sets of values 
 
Roll-back at a given step has four stages: 
 i) Get states for that time 
 ii) Compute continuation values from option values at other slices 
 iii) Assemble non-continuation (exercise) values 
 iv) Compare values from continuation and non-continuation values 
  to find option values 
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Algorithms 
 
1) Traverse the graph,  perhaps more than once, 
 with some traversal method. 
 
2) Maintain data.  Two types: 
  a) On the graph,  ie on nodes and/or vertices, 
  b) Independent to the graph. 
 
For an option valuation algorithm: 
 Vertex data:   Construction times and values for each option, 
 Edge data:    Condition,  rebate and exchange type values, 
 Independent data:  States for each construction time.
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Option Valuation Algorithms 
 
Construction times at a vertex, T̂v: 
 Times at which option values must be computed. 
 
Construction times required at: 
 i) Discretised exchange times,  T~ v, 
 ii) Additional times as required by the algorithm. 
 
Mesh times: 
 All times at which values must be constructed, 
 Contains all construction times for individual vertices.
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Discrete Exchange Times 
 
Given exchange times Tv, for v ∈ V,  set 
 Tv = { t ∈ Tv | t = t(v);  t = ts(u),  u ∈ PI(v);  t = t(u),  u ∈ PT(v) }, 
the start and end times in Tv. 
 
For v ∈ V,  a set of discrete exchange times for v with refinement ε > 0 is 
a set T~ v = {ti}i ∈ Iv ⊆ Tv,  for some index set Iv,  st 
 i) Tv ⊆ T~ v, 
 ii) ∀t ∈ Tv ∃ ti ∈ T~ v st | t - ti | < ε/2. 
 
A set of discrete exchange times is regular if  
∀ i ∈ Iv,  ∃ Δt > 0 st ti = t0 + kiΔt for some t0 and 0 ≤ ki ∈ Z.
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Algorithm construction times 
 
A method is long-step roll-back if 
 option values at time t1 can be computed to within acceptable accuracy 
 directly from those at time t2 > t1, 
 for any t2. 
 
A method is short-step roll-back if 
 option values at time t1 can be computed to within acceptable accuracy 
 from those at time t2 > t1, 
 only if t2 is close enough to t1. 
ie,  results are accurate to within δ only if |t2 - t1| < ε.
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Algorithm construction times 
 
Have a discrete exchange times T~ v. 
If the algorithm is short-step need to add algorithm construction times. 
 
A set of construction times is T̂v = {ti}i ∈ I′v ⊆ [ts(v), t(v)] st 
 i) Tv ⊆ T̂v, 
 ii) ∀t ∈ [ts(v), t(v)] ∃ ti ∈ T̂v st | t - ti | < ε/2. 
 
If the algorithm is long-step roll-back set T̂v = T~ v. 
 
A set of construction times is regular if  
 ∀ i ∈ I′v,  ∃ Δt > 0 st ti = t0 + kiΔt for some t0 and 0 ≤ ki ∈ Z.
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Mesh times 
 
Mesh times:  times on the graph when option values must be computed 
 
Set T = ∪

\Vv∈
{ts(v), t(v)}. 

T̂  = {ti}i ∈ I,  I = {0,…,N},  is a set of mesh times with refinement ε > 0 if 
 i) ti-1 < ti,  ∀ i ∈ I\{0}, 
 ii) | ti - ti-1 | < ε,  ∀ i ∈ I\{0}, 
 iii) T̂v ⊆ T̂  ∀ v ∈ V\°. 
 
A set of mesh times T̂  is regular if  
 ∀ i ∈ I,  ∃ Δt > 0 st ti = kiΔt for some t0 and 0 ≤ ki ∈ Z 

(in practice,  a multiple of a whole number of days) and complete if 
 ti = iΔt ∀ i ∈ I.



Nick Webber:  Implementing Numerical Methods for Complex Options 38 

Option Valuation Algorithms 
 
Have found: i) Construction times T̂v for each vertex, 
    ii) Mesh times T̂  for the graph as whole. 
 
Mesh times: 
 If algorithm is long-step roll-back assume T̂ is complete, 
 If algorithm is short-step roll-back assume T̂ is regular. 
 
Algorithms have two phases: 
 Roll-forward,  generating states at each construction time. 
 Roll-back,  generating option values at each construction time. 
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Examples of a few algorithms by step-type 
 

Roll-forward Algorithms 
by step type short-step long-step 

short-step LRS lattice, 
Interest rate MC 

Backwards induction lattice, 
Some interest rate MC, 
PDE 

Roll-back 

long-step Forwards induction lattice, 
Plain asset MC 
 

Direct integration methods, 
Some asset MC,  
Explicit solutions 

 
MC:     Long-step forward if process amenable 
Path-dependent MC: Usually short-step forward 
Interest rate MC:  Long-step back if can compute discount factor 
PDE methods:   Short-step back,  long-step forwards 
 
Options with I-exchanges are short step back.
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Vertex algorithm 
 
At a vertex v ∈ V,  receive a request for option values for time ti ≤ tv. 
 
 0) If values not found for end time tv,  compute them: 
   Ask each T-edge for its tv values and condition, 
   Compare them to get vertex v values for time tv. 
   (Comparison depends on edge exchange types.) 
 1) If values already found,  return them. 
 2) Let ti < tj be nearest future time at which values have been found. 
  If long-step back is possible: 
   Compute ti values from tj values and return them 
  If short-step back is necessary: 
   Compute values iteratively from tj values back to ti values. 
   Return ti values
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Computing ti values from ti+1 values 
 
From ti+1 values compute continuation values at ti, 
 Values at ti if have not exchanged up to ti, 
 but do so optimally thereafter. 
 
If there are no  I-edges: 
 Return continuation values. 
 
If there are I-edges: 
 Ask each I-edge for its ti values and condition, 
 Compare them with continuation values get values for time ti. 
 (Comparison depends on edge exchange types.) 
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Edge algorithm 
 
At an edge e ∈ E,  receive a request (from ep) 
for time ti ≤ tec values and condition. 
 
1) Compute condition for time ti. 
2) Where condition is true, 
  Ask ec for values at time ti. 
  Compute rebate values. 
  Return condition,  rebate + ec values. 
 
May be able to cache condition/rebate values it 
 1) Condition and rebate are time homogenous, 
 2) States are time homogenous.
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Independent data 
 
For mesh times construct sets of states:  slices. 
 
Write: 
 St for the (continuous) state space at time t. 
 S = ∪ t≥ts(*) St for the full state space. 
 
May have St1 ≡ St2 for all t1 and t2. 
 
Write St ⊆ St for a discrete set of states used by the algorithm at time t: 
 Construct option values at time t for states s ∈ St. 
 
St is a slice at time t.
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Slices 
 
Slices have: 
 i) A geometry, 
 ii) A mechanism to evolve forward (and maybe back) through time. 
 
The geometry: 
 Has dimension,  in practice small, 
 Spatial arrangement,  eg vector,  array,  icosahedral,  etc 
 
Evolutionary mechanism: 
 Based on continuous time process. 
Identical geometries and processes can have different state evolution 
 (eg order of branching;  different MC schemes.)
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Slices 
At each time,  compute option values for a set of states:  a slice. 
A slice has a geometry,  eg vector,  array,  hexagonal lattice,  etc. 
 
State manager object.  Responsible for: 
 1) Constructing slices, 
 2) Giving access to objects that request them. 
Has:  roll-forward,  roll-back and process objects. 
 
Nodes in a slice carry three types of information: 
 States:   Controlled by the slice manager, 
 Method data: Condition,  rebate and option values, 
 Option data: Temporary values used by numerical methods. 
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Components of an algorithm 
 
An algorithm specifies: 
 
 1) The geometry and manner of evolution of slices, 
 
 2) The computation of continuation values, 
 
 3) The way in which values from disparate edges 
  are compared to one another and the continuation values. 
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Conclusion 
 
Graphs are a natural way to define options. 
 
Valuation methods operate on these graphs. 
 
Valuation methods can be generic: 
 Widely applicable to large classes of options. 
 
Cost overhead? 
 Surprisingly small... 


