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Introduction

Background

Some models for the pricing and hedging of interest rate
derivatives:

» Short rate models: Stable and fast computations; not very
flexible w.r.t. calibration, smiles.

» LIBOR market models (LMM): Easy to understand, good
intuition of model behaviour, flexible/powerful calibration;
Computationally very (too) intense; Benchmark model.

» Markov-functional models (MFM).

» Introduced 1999 by Hunt, Kennedy & Pelsser.

» Main intuition: Short rate model efficiency (build on a lattice)
combined with the LMM flexibility.

» Quite popular in the city.

» Only solved for one- or two-dimensional driving state processes
— potentially limited correlation structure.
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Introduction

Aim of the paper

» Develop an n-dimensional Markov-functional interest rate
model (MFM).

» Investigate similarities and differences between the MFM and
the LMM — can we transfer the intuition from the LMM SDE
to the MFM?

» Investigate potential usefulness in practise: Price Targeted
Accrual Redemption Notes (TARNS).

Currently very popular in the market and are typically priced
using multifactor LIBOR market models (LMM).
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Introduction

Notation and Setup

> Set of increasing maturities:
today =0< Ti < To <+ < Ty < Thy1,

» Zero-coupon bonds: D;T,
» LIBOR forward rates: L}

» The rolling spot measure, N: The EMM using the discrete
savings account as numeraire.

Nt = DtTla t < T17 (]‘)
Ne = Dery, - [[(+alr), Ti<t<Tia (2)
j=1
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Introduction

The LIBOR market model SDE

Let

. t .
X = /a;dvvsz i=1,...,n 3)
0
awjawi = pidt (4)

Then, under N, each L is given by
. . T; . .
T.= Ly exp /0 (L, ... Lo, p)dt 4 x7, (5)

» Note: Stochastic drift term!
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Introduction

The LIBOR market model: Calibration

» o' Under the measure transformation N — Q'
(L}, ... Li o,p) = 0. Hence, L} is a lognormal martingale
— Caplet prices by the Black formula — o' are given directly
from market prices of caplets.

» Instantaneous correlations much harder! Due to efficiency one
must use approximation formulas:

[mm(T,,TJ) tp”dt

\/fo i Zdt\// 2dt

» The trader has a view about Terminal Correlations (typically
from historical estimation or implied from the Swaptions
market) and changes p¥s accordingly.

» Dangerous due to approximation errors?

Corr(log(LiTi), log(LjTj)) ~
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The n-dimensional Markov-functional model

Postulate _ o
T.=f(x7), i=1...,n (7)
where f' is some monotone function. The functional forms will be
found (numerically) by forward induction, forcing the model to be
» arbitrage free, and
» calibrated to Black's formula for Caplets.

To find the functional forms we use digital Caplets in Arrears
(DCiA). Value of a DCiA at time 0 under N:

1{L} > K}
N, '

i

Vi(K) = NoE" [ (8)

» Fact: Pricing DCiA (of all strikes) are equivalent to pricing
digital Caplets and Caplets.
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The n-dimensional Markov-functional model

Construction: Step 1/3

» Suppose we would like to know f/(x*).
Define

1{x} > x*}

Pifo*) N
J(X)—/VoE [ NTi

Compute the expectation by Monte Carlo integration

Sy m Ly o) 2 )

m = T2 (1 + arf! (< (wi))

(10)
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The n-dimensional Markov-functional model

Construction: Step 2/3

» Market prices of DCiA must be consistent with an arbitrage

free model.
» Want to mimick the lognormal LMM — choose the Black

model.

Search for the strike K(x*) such that

VI(K(x")) = J(x) (11)
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The n-dimensional Markov-functional model

Construction: Step 3/3

Conclude that '
f'(x*) = K(x¥) (12)

WHY:

NoE™ [I{L"T, > K(x*)}]

N,
. 1{x} > x*
J(x) = NoE [{XT"X} =
N
H{f(xf) > (")} L7, > f1(x")}
N T; _ N T
NoE [ s — NoE N ,

» Note: The monotonicity assumption is crucial.
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The n-dimensional Markov-functional model
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TARNs and Terminal correlations
Pricing tests

TARNSs: definition

Want to price TARN swaps.

Pay: 2Li7-i.
Continue until final maturity OR when total received coupon
is 10 %.

Need models with good views on Terminal correlations.

>
> Receive: Structured coupon; max(10% — 2L, 0).
>
>

v
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TARNs and Terminal correlations
Pricing tests

TARN prices

» initial LIBORs L} = max (2% + 0.5% T;, 10%)

> ol =20%,Vt,i

> Instantaneous correlations p¥ = exp {—0.05|T; — T;|}
» Notional 10 000.

5 10 15 20 25 30
LMM | -187.6 -729.2 -1095.3 -1270.5 -1338.0 -1362.5
MFM | -186.5 -719.2 -1067.4 -1230.9 -1294.0 -1316.7
vega | 10.3 21.6 20.6 14.9 10.3 7.5
corr | -1.7 -9.6 -18.2 -22.4 -24.4 -25.2
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TARNs and Terminal correlations

Pricing tests

Terminal correlations

LIBOR market model
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TARNs and Terminal correlations
Pricing tests

Matching the models

Idea: Matching the models Terminal correlations — similar

properties.
Test: Change the pYs for the MFM s.t. it matches the simulated

Terminal correlations of the LMM.
Results:

5 10 15 20 25 30
LMM | -187.6 -729.2 -10953 -12705 -1338.0 -1362.5
MFM | -186.5 -719.2 -1067.4 -1230.9 -1204.0 -1316.7
MFM | -187.0 -726.5 -1090.3 -1266.6 -1337.9 -1365.9
vega | 103 216 206 14.9 10.3 75

corr |-17 -96  -182 224 244 252
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TARNs and Terminal correlations
Pricing tests

TARN pricing summary

» Calibrate both models using the approximation formula —

» The MFM will give prices consistent with the formula.
» The LMM will not.

» Need a better approximation formula in order to calibrate the
LMM satisfactory.

» For the MFM this is straightforward.
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TARNs and Terminal correlations
Pricing tests

Punchlines

With the n-dimensional Markov-functional model we have a model
that is

» Very similar in spirit to the n-factor LIBOR market model.
» Arbitrage free
» Calibrated to the Caplet market

Moreover it resolves/improves two major problems with n-factor
LIBOR market models

» Calibration to Terminal correlations.

» Computation times (The MFM is up to 40 times faster in my
implementation).
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TARNs and Terminal correlations

Pricing tests

THANK YOU!
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