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Introduction

Option scope = ”path dependent” =⇒ what can be done without simulation?

• Discrete observation — typical in market models.

• Linear/logical, e.g. TARN, Snowball (non-callable), Snowblade, LPI.

Model scope = discrete Market Models (dMM)

• Libor Forward Models (BGM type).

• Other LFM-like models, e.g. Swap MM [Jam97], Inflation MM [Mer05, Ken08].

• Volatility smiles.

Challenges

• dMMs describe the dynamics of a curve not a point (unlike stock price).

• Volatility smiles.
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Reminder: LFM, LSM

• A Libor Forward Model (LFM) is based on a discrete set of spanning forward
rates F (t, Ti−1, Ti).

• Directly describe the dynamics of observable market quotes of tradeables.

In the Ti-forward measure we have for the LFM model:

dF (t, Ti−1, Ti) = σi(t) F (t, Ti−1, Ti) dWi(t)

where t ≤ Ti−1, with instantaneous correlation dWi(t)dWj(t) = ρi,jdt.
Similarly under the Libor Swap Model (LSM) the forward swap rate is a martingale

under the Cα,β-annuity measure:

dS(t)α,β = S(t)α,βσα,β(t)dWα,β(t)
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Example Payoffs

TARN Target Note, e.g.

• Target 20%; maturity 20Y; annual; observes 1Y Euribor

• Coupon is the 1Y forward, until 20% is reached, then the note
redeems.

Snowball (non-callable) e.g.

• Maturity 5Y; quarterly; observes 3M Euribor

• Coupon is 3M Euribor + previous coupon.

Snowblade = Snowball + TARN.

LPI Limited Price Indexation, e.g.

• Maturity 20Y; annual; observes YoY RPI, collared [0%, 5%].

• Final coupon is sum of all observations.
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Related Work

• [HW04] CDO pricing without simulation based on factor model. Either use
Fourier Transforms for computing return distributions or bucketing method.

• [dIO06] latest of several papers pricing discretely observed products where the
main assumption is independence of the returns per period. Payoffs: Asian;
Guaranteed Return.

• [HJJ01] Predictor-corrector method allowing high accuracy for single steps up to
20 years in LFM.

Our contributions:

• Development of Fixed Income adaptation of [HW04].

• Pseudo-analytic TARN and Snowblade pricing in dMM without simulation.

• Inclusion of a volatility smile in Fixed Income context.



Path-
Dependent
in LMM

C.Kenyon

Introduction

Method:
No Smile

Method:
With Smile

Conclusions

References

Basic Method . . . in words

1 Express dynamics of the observables in a common measure (e.g.
of the last payoff).

2 Approximate the drifts by freezing-the-forwards with their t = 0
values.

3 Condition the joint discrete observation distributions on their most
significant driving factors.

4 Calculate the conditional option price given that the conditional
observation distributions are independent.

5 Integrate out the driving factors.
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Basic Method: Comments

• In general, in Fixed Income ”path-dependent” products are not path-dependent
in the Equity sense of discrete observations of a single underlying.

• Usually they look at different underlyings at different discrete times.

• E.g. coupon(n) = coupon(n-1) + 6mLibor, the 6mLibor is a different product at each
observation.

• The correlation between the observation distributions is the terminal correlation
of the underlyings not their instantaneous correlation.

• Accuracy depends on two approximations:

1 change of measure;

2 number of driving factors.

• Speed depends on:

1 number of driving factors;

2 build-up method for payoff distribution.

3 implementation details (not covered but see later)
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Common Forward Measure in LFM

Standard machinery, e.g. Brigo & Mercurio 2006 Chapter 2, gives for LFM (Chapter
6), change measure by multiplying by ratio of old numeraire / new numeraire:

i > k, dFk(t) = −σk(t)Fk(t)
iX

j=k+1

ρk,jτjσj(t)Fj(t)

1 + τjFj(t)
dt

+ σk(t)Fk(t)dW k

We approximate the drift by freezing-the-forwards at t = 0 value to obtain:

i > k, dFk(t) = −σk(t)Fk(0)
iX

j=k+1

ρk,jτjσj(t)Fj(0)

1 + τjFj(0)
dt

+ σk(t)Fk(t)dW k

This means that we can take a single step to the maturity of each observation
distribution, and the joint distribution is multivariate Lognormal (however recall
[HJJ01]).
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Common Swap Measure in LSM

Proposition
S(t)α,β-forward-swap-rate dynamics in the Sγ,β-forward-swap-rate measure,

γ > α. The dynamics of the forward swap rate S(t)α,β under the numeraire Cγ,β ,
γ > α is given by:

dS(t)α,β = m
γ,β

S(t)α,βdt + σα,β(t)S(t)α,βdW,

m
γ,β =

βX
h,k=α+1

µhµkτhτkFPhFPkρh,kσhσkFhFk,

µh =
FPα,β

Ph−1
i=α+1 τiFPα,i +

Pβ
i=h

τiFPα,i

(1 − FPα,β)
“Pβ

i=α+1 τi FPα,i

”2

µk =

“Pβ
i=k

τiFPα,i

” “Pβ
i=γ+1 τiFPα,i

”
−

„Pβ
i=max(k,γ+1) FPα,i

« “Pβ
i=α+1 τiFPα,i

”
Pβ

i=γ+1 τi FPα,i

where W is a Qγβ standard Brownian motion.

Where

FPα,i :=
P (t, Ti)

P (t, Tα)
=

iY
j=α+1

FPj

FPj :=
1

1 + τjFj



Path-
Dependent
in LMM

C.Kenyon

Introduction

Method:
No Smile

Method:
With Smile

Conclusions

References

Terminal Correlation

This is the relevant correlation for pricing, and potentially totally different from the
instantaneous correlation (as emphasized by Rebonato). Consider two lognormal
processes Gi, Gj in a common measure:

dGk = Gkµk + Gkσk(t)dWk k = i, j

for pricing we want ρTerminal := ρ(Gi(Ti), Gj(Tj)). Then their distributions at times
t, s are:

X (t) = eW (t)
R t
0 σ+µt

Y(s) = eρW (s)
R s
0 ν+Z(t)

√
1−ρ2

R s
0 ν+ηt

where W, Z are Standard Normals; and ρ is the instantaneous correlation. Hence,
elementary considerations and Ito’s isometry lead to:

ρTerminal(X (t),Y(s)) =
eρ

R min(s,t)
0 σν − 1q

(e
R t
0 σ2 − 1)

q
(e

R s
0 ν2 − 1)
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Pricing with Independent Observations:
Asian & GRR

If the observation distributions are independent and the payoff underlying is
essentially linear . . .

• Asian: payoff underlying P =
Pn

i=1 XTi
; payoff max(P −K, 0).

• GRR: payoff underlying P =
Pn−1

i=1 qi
XTn
XTi

; payoff P + max(K − P, 0)

. . . then many techniques are available; essentially these are variations on convolution.

• Fourier Transform: convolution is multiplication in Fourier-space.

• Numerically fastest when number of points representing distributions is a power of two.

• Laplace Transform: ditto

• Hull & White bucketing: avoids transform/inverse-transform cost; potentially
slower; allows for non-linear transformations (without going into distribution
theory).
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Pricing with Independent Observations:
TARN

• Targets introduce another layer of complexity because there is now logic at each
coupon (a trigger), that is not only a convolution.

• When you reach the trigger level redemption occurs.

• To calculate the payoff of a coupon it is necessary and sufficient to know the
state trigger underlying and the coupon underlying.

observation coupon underlying state trigger underlying
a a 0
b b a
c c a + b
d d a + b + c

• Coupon underlying and state trigger underlying are independent.

• a, b, c, and d are also independent.
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Pricing with Independent Observations:
TARN

• We can represent the previous argument as follows, let:

X̂n−1 =

i=n−1X
i=1

Xi ∼ X1 ⊗ . . .⊗Xn−1

Y ∼ Xn ⊗ (IK × X̂n−1)

Then:

Pn =

(
K − Y + 100, Y ≥ K

Xn, otherwise

where

IK(u) =

(
1 u < K

0 otherwise

• This depends on the independence of X̂n−1 and Xn.

• We can calculate this by adapting the bucketing algorithm of [HW04] (with
stochastic recovery rates), or by using transforms/inverse-transforms plus
arithmetic operations.
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Pricing with Independent Observations:
Snowball→Snowblade

• From the proceeding discussion a (non-callable) Snowball is just a repeated Asian
underlying:

Pn = X̂n ∼ X1 ⊗ . . .⊗Xn

• Direct to calculate in any of the standard methods for independent observations.

. . . so how about a Snowblade, i.e. a Snowball with a target return? Consider:

observation coupon underlying state trigger underlying
a a 0
b a + b a
c a + b + c 2a + b
d a + b + c + d 3a + 2b + c

• Coupon underlying and state trigger underlying are no longer independent.

• Hence we require a two-dimensional state rather than the 1-dimensional one we
used for the TARN.
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Pricing with Independent Observations:
Snowblade

• Requires the joint distribution of
Pn

1 Xi and
Pn−1

1 (n− i)Xi

• We can easily create this recursively. Let J(a, b) stand for the joint distribution
of a and b.

Let
ˆ̂
Xn−1 =

Pn−1
1 (n− i)Xi, and recall X̂n−1 =

Pn−1
1 Xi. Define:

Jn := J(X̂n,
ˆ̂
Xn−1)

Note that:
ˆ̂
Xn−1 =

ˆ̂
Xn−2 + X̂n−1 and we have J(

ˆ̂
Xn−2, X̂n−1) hence

Jn(x, y) = Jn−1(x, y − x)⊗ J(Xn, δ(0))

because the Jacobian is unity, Xn is independent of X̂n−1 as before, and Xn is

independent of
ˆ̂
Xn−1.

• We can now apply the same steps as for the TARN.
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Basic Method . . . in equations

The price of a path dependent instrument I of the types described is:

• For N coupons and M factors we have:

I =
i=NX
i=1

EQi [df(Ti) iPi]

=
i=NX
i=1

EQN [df(TN ) NPi]

=
i=NX
i=1

Z
e1

. . .

Z
eM

df(TN ) EQN |e1...eM [NPi|em, m = 1, . . . M ] de1 . . . deM

=

Z
e1

. . .

Z
eM

i=NX
i=1

df(TN ) EQN |e1...eM [NPi|em, m = 1, . . . M ] de1 . . . deM

in the case of Forwards, where Qi is the Ti-Forward measure of the ithpayment,
df() is the discount factor, and jPi is the payoff Pi with the Tj-Forward
numeraire.

• For every value of the factors the individual observation distributions (of the
underlying) are independent.
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Smile Extension Example — Mixture Model:
TARN

• Generic mixture distribution M :

M =

j=mX
j=1

λjGj , s.t.

j=mX
j=1

λj = 1, λj ≥ 0 ∀j

It is possible to create a process corresponding exactly to any given mixture.

• TARN

obs coupon underlying state trigger state trigger distribution
a a 0 none
b b a MT1 =

P
j λjX1,j

c c a + b MT1 + MT2 =
Pi=2

i=1

P
j λjXi,j

d d a + b + c MT1 + MT2 + MT3 =
Pi=3

i=1

P
j λjXi,j

• Relies on independence of MTi
, the conditional mixture distributions.

• Direct extension assuming that the mixture components have a common
correlation structure (usual assumption for mixtures).
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Smile Extensions

• Mixture distributions have direct analytic extension.

• N.B. Mixture distributions are not generally positively regarded for path dependent
options on a single underlying.

• However in Fixed Income, path dependent options do not rely on the path of a single
underlying.

• Uncertain parameter models with splitting scenario structure are generally
unsuitable for path dependent options because of scenario separation, i.e. only
one possible past per future.

=⇒ If make scenarios independent at each maturity, then cost is exponential number of

scenarios . . . intractable.

• If the conditional analytic distributions or conditional Fourier Transforms of the
terminal distributions are available, then any stochastic volatility model can be
used.

• N.B. The number of integrating factors must increase to take account of the volatility
drivers.
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Discussion and Conclusions

So far:

• Pseudo-analytic method for pricing strongly path-dependent options in discrete
Market Models (e.g. LFM, LSM).

• In general applicable when the joint distribution of the coupon underlying and
the state underlying are available.

• Examples of TARN, Snowball (non-callable), and Snowblade.

• Extension to include smiles.

Next steps:

• Numerical tests to identify best drift approximations and accuracy.

• Speed? Method dependent on mask + 1d/2d convolution + arithmetic
operations . . . ideal for GPU implementation.
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