Conditional sampling for jump processes with Lévy copulas

Naoufel El-Bachir

ICMA centre
The University of Reading
Email: elbachir.naoufel@gmail.com

July 12th, 2008

Conditional sampling for Lévy copulas

 Series representation for a d-dimensional positive Lévy process with finite variation (Tankov (2003)):

$$X_t^k = \sum_{i=1}^{\infty} U_k^{-1}(\Gamma_i^k) \mathbf{1}_{\{V_i \in [0,t]\}}, \ k = 1, \dots, d, \ t \in [0,1]$$
 (1)

where $\{\Gamma_i^1\},\ldots,\{\Gamma_i^d\}$ are independent r.s. $\{\Gamma_i^1\}$ jump times of a SPP. F the Lévy copula. $(\Gamma_i^2,\ldots,\Gamma_i^d)$ conditionally on Γ_i^1 has distribution $\partial_{x_1}F(x_1,\ldots,x_d)|_{x_1=\Gamma_i^1}$. $\{V_i\}$ i.i.d. $\mathcal{U}_{[0,1]}$.

- To sample from the joint distribution $\partial_{x_1} F(x_1, \dots, x_d)|_{x_1 = \Gamma_i^1}$, use the general conditional sampling approach.
- When conditional sampling or numerical inversion of U_ks is too computationally expensive, use acceptance-rejection methods

Overview

Part I: Simulating dependent jump processes with Lévy copulas

- Conditional sampling with inverse Lévy method.
- Acceptance-rejection methods.

Part II: Archimedean Lévy copulas

- General results.
- Some parametric copulas.

Part III: Examples and applications

- Gamma processes with Gumbel Lévy copula.
- A stochastic default intensity model with dependent jumps.

Lévy processes

Definition

A *positive pure jump* Lévy process $(X_t)_{(t>0)}$ has stationary and independent positive jumps and is of finite variation, i.e.

$$\lim_{\Delta t_k o 0} \sum_{t_k < t} |X_{t_{k+1}} - X_{t_k}| < \infty$$
 where $0 = t_1 < t_2 < \cdots < t_n = t$ and

 $\Delta t_k = t_{k+1} - t_k$. The distribution of X_t for any time t > 0 is infinitely divisible and its characteristic function satisfies the Lévy-Khintchine formula:

$$\mathbb{E}\left[\mathbf{e}^{i\langle z,X_t\rangle}\right] = \mathbf{e}^{-t\Psi(z)}, \ z \in \mathbb{R}^d$$
 (2)

$$\Psi(z) = \int_{\mathbb{R}^d} \left(1 - e^{i\langle z, x \rangle}\right) \nu(dx) \tag{3}$$

where ν is a measure on $\mathbb{R}^d \setminus \{0\}$ such that $\int (1 \wedge |x|) \nu(dx) < \infty$.

→ 4回 → 4 直 → 4 直 → 9 Q (*)

Lévy tail mass integrals and copulas

Definition

The tail mass of the Lévy measure is

$$U(x_1,\ldots,x_d)=\nu([x_1,\infty)\times\cdots\times[x_d,\infty))$$
 for $(x_1,\ldots,x_d)\in\mathbb{R}^d\setminus\{0\}$ and such that $U(x_1,\ldots,x_d)=0$ if $x_j=\infty$ for some $j\in 1,\ldots,d$ and U is finite everywhere except at zero, $U(0,\ldots,0)=\infty$. The marginal Lévy measures have as their tail masses the margins $U_k(x_k)=U(0,\ldots,0,x_k,0,\ldots,0)$.

$$U_k(x_k) = U(0,\ldots,0,x_k,0,\ldots,0).$$

Definition

A *d*-dimensional Lévy copula is a *d*-increasing grounded function $F: [0,\infty]^d \to [0,\infty]$ with margins $F_k, k=1\ldots d$, which satisfy $F_k(u) = u, \forall u \in [0, \infty].$

A multivariate Lévy process = Lévy copula + marginal tail masses

Theorem (Tankov (2003))

Any d-dimensional tail mass U can be constructed as a Lévy copula taking the margins of U as arguments. Conversely, if F is a Lévy copula and U_1, \ldots, U_d are one-dimensional tail masses, then $U(x_1, \ldots, x_d) = F(U_1(x_1), \ldots, U_d(x_d))$ defines a d-dimensional tail mass.

Series representation with conditional sampling

A d-dimensional positive Lévy process with finite variation admits the series representation:

$$X_t^k = \sum_{i=1}^{\infty} U_k^{-1}(\Gamma_i^k) \mathbf{1}_{\{V_i \in [0,t]\}}, \ k = 1, \dots, d, \ t \in [0,1]$$
 (4)

where $\{\Gamma_i^1\}$ are jump times of a SPP and for each $j=2,\ldots,d$:

$$\Gamma_k^j = f_j^{-1} \left(u_k^j \times \partial_{x_1, \dots, x_{j-1}} F(x_1, \dots, x_{j-1}, \infty, \dots, \infty) |_{x_1 = \Gamma_k^1, \dots, x_{j-1} = \Gamma_k^{j-1}} \right)$$
The function f_i is given by:

(5)

$$f_j(y) = \partial_{x_1,...,x_{j-1}} F(x_1,...,x_{j-1},y,\infty,...,\infty)|_{x_1 = \Gamma_k^1,...,x_{j-1} = \Gamma_k^{j-1}}$$

where u_k^j s are i.i.d. $\mathcal{U}_{[0,1]} \, \forall j = 2, \ldots, d$ and $\forall k \geq 1$.

Series representation with rejection method

Given a Lévy measure ν' such that $\frac{\nu}{\nu'} \le$ 1, another series representation is:

$$X_t^k = \sum_{i=1}^{\infty} J_i^k \mathbf{1}_{\{\frac{\nu}{\nu'}(J_i) \ge W_i\}} \mathbf{1}_{\{V_i \in [0,t]\}}, \ k = 1, \dots, d, \ t \in [0,1]$$
 (6)

where $J_i = (J_i^1, \dots, J_i^d)$ are jumps of the processes with measure ν' and $\{W_i\}$ are i.i.d. $\mathcal{U}_{[0,1]}$.

Lévy densities can be obtained by differentiation:

$$\nu(\mathbf{x}_1,\ldots,\mathbf{x}_d) = \frac{\partial^d F(\mathbf{y}_1,\ldots,\mathbf{y}_d)}{\partial \mathbf{y}_1\ldots\partial \mathbf{y}_d}\bigg|_{\mathbf{y}_1=U_1(\mathbf{x}_1),\ldots,\mathbf{y}_d=U_d(\mathbf{x}_d)} \nu_1(\mathbf{x}_1)\ldots\nu_d(\mathbf{x}_d)$$

Archimedean Lévy copulas

Definition

Archimedean Lévy copulas are Lévy copulas satisfying:

$$F(x_1,...,x_d) = \phi^{-1}(\phi(x_1) + \cdots + \phi(x_d))$$
 (8)

where ϕ is strictly decreasing from $[0,\infty]$ to $[0,\infty]$ with $\phi(0)=\infty$, $\phi(\infty)=0$ and such that its inverse ϕ^{-1} has derivatives up to the order d on $(0,\infty)$ satisfying $(-1)^k \frac{d^k}{dt^k} \phi^{-1}(t)>0$ for all $k=1,\ldots,d$.

Conditional sampling

Result

Let F be a d-dimensional Archimedean Lévy copula with generator ϕ . Then its marginal tail integrals can be simulated as follows:

- $\{\Gamma_i^1\}_{(j>0)}$ are jump times of a SPP.
- For each j > 0, simulate (d-1) i.i.d. $\mathcal{U}_{[0,1]}$: u_j^2, \ldots, u_j^d
- For each j > 0, Γ_j^k for k = 2, ..., d are given by:

$$\Gamma_{j}^{k} = \phi^{-1} \left(g_{k-1}^{-1} \left(u_{j}^{k} * g_{k-1} \left(\sum_{l=1}^{k-1} \phi(\Gamma_{j}^{l}) \right) \right) - \left(\sum_{l=1}^{k-1} \phi(\Gamma_{j}^{l}) \right) \right)$$
(9)

where
$$g_{k-1}(x) := (\phi^{-1})^{(k-1)}(x)$$

Clayton-Lévy copula

•
$$F(x_1,\ldots,x_d)=\left(\sum\limits_{j=1}^d x_j^{-\gamma}\right)^{-\frac{1}{\gamma}},\ \phi(u)=u^{-\gamma}\ \text{and}\ \phi^{-1}(t)=t^{-\frac{1}{\gamma}}$$

• The derivatives of ϕ^{-1} are given by:

$$g_k(x) = \frac{(-1)^k \prod_{j=1}^{k-1} (1+j\gamma)}{\gamma^k x^{k+\frac{1}{\gamma}}}$$
 (10)

$$g_k^{-1}(x) = \frac{(-1)^{\frac{k\gamma}{1+k\gamma}} \prod_{j=1}^{k-1} (1+j\gamma)^{\frac{\gamma}{1+k\gamma}}}{\gamma^{\frac{k\gamma}{1+k\gamma}} x^{\frac{\gamma}{1+k\gamma}}}$$
(11)

• Given Γ_k^1 , $(\Gamma_k^2, \dots, \Gamma_k^d)$ are sampled according to:

$$\Gamma_k^j = \left[\left((\Gamma_k^1)^{-\gamma} + \dots + (\Gamma_k^{j-1})^{-\gamma} \right) \left(u_k^{\frac{\gamma}{\gamma(1-k)-1}} - 1 \right) \right]^{-\frac{1}{\gamma}}$$

Gumbel-Lévy copula

•
$$F(x_1,...,x_d) = \exp \left[\left(\sum_{j=1}^d (\log(x_j+1))^{-\gamma} \right)^{-\frac{1}{\gamma}} \right] - 1,$$

 $\phi(u) = (\log(u+1))^{-\gamma} \text{ and } \phi^{-1}(t) = e^{t^{-1/\gamma}} - 1$

• The derivatives of ϕ^{-1} are given by:

$$g_k(x) = e^{w(x)} \sum \frac{k!}{1!^{m_1} \dots k!^{m_k} m_1! \dots m_k!} \prod_{j: m_j \neq 0} (w^{(j)}(x))^{m_j} (13)$$

$$w(x) = x^{-1/\gamma} (14)$$

$$w^{(I)}(x) = (-1)w^{(I-1)}(x)\left(\frac{1}{\gamma} + I - 1\right)x^{-1}$$
 (15)

where the summation in equation (13) is over all k—tuples (m_1, \ldots, m_k) of non-negative integers satisfying the constraint $m_1 + 2m_2 + 3m_3 + \cdots + km_k = k$. The coefficients represent the number of partitions of a size-k set into m_j parts of size j, for $j = 1, \ldots, k$.

Frank-Lévy copula

•
$$F(x_1, ..., x_d) = -\frac{1}{\gamma} \log \left[1 - \prod_{j=1}^d (1 - e^{-\gamma x_j}) \right],$$

 $\phi(u) = -\log(1 - e^{-\gamma u}) \text{ and } \phi^{-1}(t) = -\frac{1}{\gamma} \log(1 - e^{-t})$

• The derivatives of ϕ^{-1} are given by:

$$g_k(x) = \frac{(-1)^k}{\gamma} \sum_{j=1}^k \frac{(j-1)!}{(1-e^{-x})^j} e^{-jx} S(k,j)$$
 (16)

where S(k, j) is a Stirling number of the second kind:

$$S(k,j) = \frac{1}{j!} \sum_{l=0}^{j} (-1)^{j-l} {j \choose l} I^{k}$$

Tankov-Lévy copula

•
$$F(x_1, ..., x_d) = \frac{1}{\gamma} \log \left[1 + \left(\sum_{i=1}^d \frac{e^{-\gamma x_i}}{1 - e^{-\gamma x_i}} \right)^{-1} \right], \ \phi(u) = \frac{e^{-\gamma u}}{1 - e^{-\gamma u}} \ \text{and}$$

$$\phi^{-1}(t) = \frac{1}{\gamma} \log \frac{1+t}{t}$$

• The derivatives of ϕ^{-1} are given by:

$$g_k(x) == (-1)^k \frac{1}{\gamma} \frac{(k-1)!}{x^k} (1-w^k) \text{ where } w = \frac{x}{1+x}$$
 (17)

Gumbel-Lévy copula for gamma processes

- (Z^1,\ldots,Z^d) gamma processes with $\nu_i(x)=\theta^ix^{-1}e^{-\alpha^ix}\mathbf{1}_{\{x>0\}}$. $U_i(x)=\theta^i\Gamma(\alpha^ix)$, where $\Gamma(a)=\int_a^\infty t^{-1}e^{-t}dt$
- Jump dependence specified by a Gumbel Lévy copula.
- To avoid numerical inversions of $\Gamma(a)$, we can use the rejection method. $\nu_i'(x) = \frac{\theta^i}{x(1+\alpha^i x)} \mathbf{1}_{\{x>0\}}$. $U_i'(x) = \theta^i \log \frac{1+\alpha^i x}{\alpha^i x}$ and $U_i'^{-1}(x) = \frac{1}{\alpha^i (e^{x/\theta^i}-1)}$.
- The univariate processes Z_t^i for i = 1, ..., d are given by:

$$Z_t^i = \sum_{k=1}^{\infty} J_k^i \mathbf{1}_{\{\frac{\nu}{\nu'}(J_k^1, \dots, J_k^d) \ge W_k\}}$$
 (18)

where
$$J_k^i = U_i'^{-1} \left(\frac{\Gamma_k^i}{t} \right)$$
.

Finite series approximations

• Finite series approximation for $(Z_t^{\prime i})$ with density $\nu_i^{\prime}(x)$:

$$Z_{\tau^{i},t}^{\prime i} := \sum_{\{k: \Gamma_{k}^{i} < \tau^{i}\}} U_{i}^{\prime - 1}(\Gamma_{k}^{i})$$
 (19)

Expected error of the approximation on one path:

$$\mathbb{E}[\epsilon_t^i] = t \int_0^{U_i'^{-1}(\tau^i)} x \nu_i'(dx)$$
 (20)

• $\int_0^y x \nu_i(dx) = \frac{\theta^i}{\alpha^i} (1 - e^{-\alpha^i y})$. For a target expected error of 10^{-2} , truncate the jumps that are smaller than $y = -\frac{1}{\alpha^i} \log(1 - \frac{\alpha^i}{\theta^i} 10^{-2})$

Finite series approximations

Figure: A simulated trajectory of a Gamma subordinator with Lévy density $\nu(x) = \theta x^{-1} e^{-\alpha x} \mathbf{1}_{\{x>0\}}$ on the unit interval with parameters $\alpha = 1$ and $\theta = 3$. The path was generated by series approximation and rejection method using the auxiliary Lévy density $\nu'(x) = \frac{\theta}{x(1+\alpha x)} \mathbf{1}_{\{x>0\}}$ neglecting all

 $\Gamma_k \ge \tau =$ 17.15. This is equivalent to omitting jumps smaller than 3.3 \times 10 and amounts to an average of 15.42 terms per path.

Implementing the rejection method for Gumbel-Lévy copula

 For ν', we can either use the same Lévy copula F or a different Lévy copula F' so that

$$\frac{\nu}{\nu'}(x_1,\ldots,x_d) = \frac{\partial_{y_1\ldots y_d}^d F(y_1,\ldots,y_d)|_{y_1=U_1(x_1),\ldots,y_d=U_d(x_d)}}{\partial_{y_1\ldots y_d}^d F'(y_1,\ldots,y_d)|_{y_1=U_1'(x_1),\ldots,y_d=U_d'(x_d)}} \prod_{i=1}^d \frac{\nu_i}{\nu_i'}(x_i)$$

- In the multivariate case, finding a good candidate for ν' can be a difficult task. For example, figure (2) presents the plot of the ratio $\frac{\nu}{\nu'}$ with F=F' in a bivariate case.
- Figure (3) presents a plot for the same problem where this time F' is Clayton Lévy copula and the marginals ν'_i have a larger parameter θ' .

Implementing the rejection method for Gumbel-Lévy copula

Figure: Graph of the ratio of Lévy densities $\frac{\nu}{\nu'}(x_1,x_2)$ where ν and ν' are generated with the same Gumbel Lévy copula with parameter $\gamma=3$. The marginal Lévy densities satisfy $\nu_1(x)=\nu_2(x)=\theta x^{-1}e^{-\alpha x}$ and $\nu'_1(x)=\nu'_2(x)=\frac{\theta}{x(1+\alpha x)}$ with parameters $\alpha=1$ and $\theta=3$.

Implementing the rejection method for Gumbel-Lévy copula

Figure: Graph of the ratio of Lévy densities $\frac{\nu}{\nu'}(x_1,x_2)$ where ν and ν' are generated with a Gumbel Lévy copula with parameter $\gamma=3$ and a Clayton Lévy copula with parameter $\gamma=2$ respectively. The marginal Lévy densities satisfy $\nu_1(x)=\nu_2(x)=\theta x^{-1}e^{-\alpha x}$ and $\nu'_1(x)=\nu'_2(x)=\frac{\theta'}{x(1+\alpha' x)}$ with parameters $\alpha=\alpha'=1$, $\theta=3$ and $\theta'=7$.

Default intensities with O-U Gamma processes

• Individual default intensities $\lambda^1, \dots, \lambda^d$ follow:

$$d\lambda_t^i = \kappa^i (\mu^i - \lambda_t^i) dt + dZ_t^i$$
 (21)

• To simulate the integrated O-U processes $\int_0^t \lambda_s^i ds$, note that:

$$\int_0^t \lambda_s^i ds = \kappa^i \mu^i t + \frac{\lambda_0^i}{\kappa^i} \left(1 - e^{-\kappa^i t} \right) + \frac{1}{\kappa^i} \left(Z_t^i - e^{-\kappa^i t} \int_0^t e^{\kappa^i s} dZ_s^i \right) \tag{22}$$

• $\int_0^t e^{\kappa^i s} dZ_s^i$ for i = 1, ..., d are given by:

$$\int_0^t \mathrm{e}^{\kappa^i s} dZ_s^i = \sum_{k=1}^\infty J_k^i \mathrm{e}^{\kappa^i t u_k} \mathbf{1}_{\{\frac{\nu}{\nu'}(J_k^1, \ldots, J_k^d) \geq W_k\}}$$

(23)

Asymmetric clustering of large jumps

- $\partial_x F(x, v)|_{x=y} = \mathbb{P}\left[\Gamma_j^2 \le v/\Gamma_j^1 = y\right]$ is non-increasing in y and $\forall y \in [0, v]$ we can deduce:

$$\partial_{x_1} F(v, v) \le \partial_{x_1} F(y, v) \le \partial_{x_1} F(0, v) \tag{24}$$

- Thus for "small" v, $\mathbb{P}\left[\Gamma_j^2 \leq v/\Gamma_j^1 \leq v\right] \approx \partial_{x_1} F(v,v)$
- $\partial_{x_1} F(v,v) = \frac{1}{2^{\frac{1+\gamma}{\gamma}}(v+1)^{1-2^{-1/\gamma}}}$ which is decreasing in v and increasing in γ with limit $\frac{1}{2^{\frac{1+\gamma}{\gamma}}}$ when $v \downarrow 0$

Portfolio default loss distribution

- $L_t = L_{GD} \sum_{k=1}^d \mathbf{1}_{\{\tau^k \leq t\}}$
- $\bullet \ \mathbb{E}\left[e^{-\eta L_t}\right] = \mathbb{E}\left[\prod_{k=1}^d \left[e^{-\eta L_{GD}}(1-e^{-\int_0^t \lambda_s^k ds}) + e^{-\int_0^t \lambda_s^k ds}\right]\right]$
- Simulate a number of paths for $\int_0^t \lambda_s^k ds$ for $k = 1, \dots, d$ and compute the M-C estimator of the Laplace transform for different values of η . Loss distribution obtained by Laplace transform inversion.

Portfolio total P&L distribution

- $PnL_t = \sum_{t=0}^{a} (V_t^k V_0^k)$ where V_t^k and V_0^k represent the values of the k^{th} zero-coupon at time t and time 0 respectively.
- $V_t^k = \mathbf{1}_{\{\tau^k > t\}} V_t^k + \mathbf{1}_{\{\tau^k < t\}} R_{ec}$
- $\bullet \ \widetilde{V}_t^k = \mathbb{E}\left[e^{-\int_t^{T_k} \lambda_s^k ds} | \sigma(\lambda_s^k : s \le t)\right]$
- $\mathbb{E}\left[e^{-\eta PnL_t}\right] =$ $\mathbb{E}\left[\prod_{t=1}^{a}\left[e^{-\eta(\widetilde{V}_{t}^{k}-V_{0}^{k})}e^{-\int_{0}^{t}\lambda_{s}^{k}ds}+e^{-\eta(R_{ec}-V_{0}^{k})}(1-e^{-\int_{0}^{t}\lambda_{s}^{k}ds})\right]\right]$
- The pre-default value of the defaultable ZCB is given by:

$$\widetilde{V}_t^k = \exp\left(-\frac{\lambda_t^k}{\kappa^k}(1 - e^{-\kappa^k(T_k - t)}) - \mu^k \left[(T_k - t) + \frac{e^{-\kappa^k(T_k - t)} - 1}{\kappa^k} \right] + \int_t^{T_k} \left(1 + \frac{1}{\kappa^k \alpha^k}(1 - e^{-\kappa^k(T_k - s)})\right)^{-\theta^k} ds$$

Concluding remarks: alternative to Lévy copulas

- If $\{\Gamma_k^i\}$ are jump times of a SPP then $\{U_i^{-1}(\Gamma_k^i)\}$ are distributed as ordered jumps of the process (X_t^i) .
- We can simply simulate $\{\Gamma_k^i\}$ s with dependent inter-arrival times using ordinary copulas.
- We loose the path information (times of jumps, simultaneous jumps) but can gain in efficiency and tractability.

