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@ Outline the pricing of spread options
@ Review a two-factor seasonal commodities model

© Describe a calibration algorithm based on principal
components

© Present a numerical example of a heating rate option



Overview

Background

@ Recent surge of interest in commodity derivatives

@ In many cases, only the forward prices of the commodity
assets are market observables

@ Manage exposure to loss through holding commodity
derivatives

@ Credit risk models must accurately predict the underlying
correlated dynamics of the term structure

@ Interest rate derivative modeling techniques are useful but
limited, e.g. seasonality



Overview

Overview of Approaches

© Ribeiro and Hodges * and Barlow et al. 2 respectively
apply Kalman filters to calibrate commodity spot prices.

@ Cortazar and Schwartz 2 perform a least squares
regression on InF(T).

© Borovkova and Geman # propose a seasonality model for a
wider class of seasonal commodity futures.

© Borovkova and Geman ®° apply principal component
analysis to deseasonalized futures prices under the
real-world measure.

lDiana Ribeiro and Stewart Hodges [2004], A Two-Factor Model for Commaodity Prices and Futures Valuation,
Technical report, Financial Options Research Center, Warwick Business School.

2M. Barlow, Y. Gusev and M. Lai [2004], Calibration of Multifactor Models in Electricity Markets, Int. J. Theo.
Appl. Finance, 7(2), pp. 101-120.
G. Cortazar and E.S. Schwartz [2003], Implementing a stochastic model for oil futures, Energy Economics 25,
pp. 2154238.
S. Borovkova and H. Geman [2006], Seasonal and stochastic effects in commodity forward curves, Rev Deriv
Res (9), pp. 167-186.

S. Borovkova and H. Geman [2006], Analysis and Modelling of Electricity Futures, Studies in Nonlinear
Dynamics Econometrics, Volume 10, Issue 3, Article 6.




Pricing Spread Options on Forwards

Risk Neutral Pricing

@ The risk neutral price V (t) of a time T expiring option on
the spread of two forward contracts is

V(t) = exp{—r7}E;(|F1(T,T1) — Fo(T,T2) — K|T)

@ The risk neutral conditional expectation Ef(-) := E*(-|3t)

@ Fi(t, T) denotes the time t value of a forward contract to
deliver the underlying S(T) attime T

@ F4(t, T1) and Fy(t, T2) may reference difference
underlyings S;(t) and S(t)




Pricing Spread Options on Forwards

Examples of Spread Options ()

Heating rate Option

@ The risk neutral price of a heating rate/spark-spread (call)
option
ais

V(t) = exp{—r7}E{ (|Fp(T,Tp) — HeriFg (T, Tg) — K|¥)

@ Fp(t,Tp) isthe time Ty > T expiring forward power contract

@ Fy(t, Ty) is the time Ty > T expiring forward natural gas
contract

@ Heg is a fixed energy efficiency factor
@ K is the strike of the option expiring at time T

2Daily strip of heating rate options:

N, N .
Vi =exp{—r7} > "1 G- ha'Ef ([Fp(T, Tp) — HertFo (T, Tg) — K|%).




Pricing Spread Options on Forwards

Examples of Spread Options (II)

Calender Spread Option

@ The risk neutral price of a calender spread (call) option is

V(t) = exp{—rr}E{(F(T, T1) — F(T, T2) — K| )

® F(t,T;)is the time T; > T expiring forward contract
@ K is the strike of the option expiring at time T




Pricing Spread Options on Forwards




Pricing Spread Options on Forwards

Kirk’'s Formula

@ There exists a closed form expression for V(t)

V(t) = exp{—r7}(Fa(t, T2) + K)(F(t, T)N(dy) — N(d-)),

@ where ©
Fa(t, T1)
F(t,T;T,Ty) i = —————,
CTTe ) = B 1)) +K
InF(t, T
g, MFT) oV
o\T 2
d_ = dl — 0'\/’7’.
@ F(t,T) is assumed to be a Martingale w.r.t. the risk neutral
measure
dF(t,T) = oF(t, T)dW,".
6 > E10)

_ 2 2_Fo _9 Fao(t)
0" =01+ 0y ——S—~5 — 200192 {7k



Pricing Spread Options on Forwards

The Story so Far

@ The closed form expression for pricing spread options on
forward contracts assumes that F(t,T) = % is log
normal under the pricing measure

@ We have not yet specificed the dynamics of each forward
contract Fi(t, T;)



Forward Dynamics

Historical Natural Gas Forward Prices
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Figure: (Left) Expectation and (right) std. dev. of the Tet M3 natural
gas forward curve as a function of monthly maturity date T traded in
the month of July.



Forward Dynamics

A Seasonal Forward Model [GEMAN BOROVKOVA]

@ Borovkova and Geman ’ express forward prices in
component form

Fe(T) = Frexp(s(T) — w(7)7),

@ F, denotes the mean value of the curve T — F(t,T) at
each time t

@ ~;(7) is the stochastic convenience yield
@ s(T) is the seasonality function

7S. Borovkova and H. Geman, Seasonal and stochastic effects in commodity forward curves, Rev Deriv Res
(9), 2006, pp. 167-186



Forward Dynamics

A Seasonal Forward Model
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Figure: The historical Tet M3 natural gas forward curve at the start of
the time series (where T = 7) is separated into its constitutive
components, the seasonality s(T) and the the convenience yield
Yo(7).



Forward Dynamics

A Seasonal Forward Model

dInF; = a(m — InFy)dt + odw/™
de(r) = —a(r)(r) + 1(r)dw?

Two-Factor Forward Model 2

dInF(T) = [a(m — INEy) + 1(r)d(r)] dt+odWM —p(r)rdw4,

o Wt[ll and Wt[Z] are two independent Wiener processes

under the real-world measure




Forward Dynamics

A Seasonal Forward Model in the Pricing Measure

Risk Neutral Instrinsic Dynamics

dinF; = odw; ™
dy(r) = n(r)aw;

Risk Neutral Two-Factor Forward Model

dinF(T) = odW, ™ — p(r)rdw,

° Wt*[l] and Wt*[Z] are two independent Wiener processes

under the risk neutral measure




Calibration

Review of Methodology

© Compute the geometric average of the futures price 8
o1
InFe = ; InFy(T;)

@ Estimate the seasonality function from the historical futures
price series

§(T) = izn:InFti(T) — InFy
i=1

© Imply the convenience yield time series from the seasonal
forward model

In-F. — §(T)

Fe(T)

n(r) = -

8N is assumed to be a multiple of 12.



Calibration

The Covariance Matrix

@ The theoretical covariance matrix takes the form
v = / dre (T1)d 0 (T))

@ The implied (empirical) covariance matrix is

t=t,—1
Vi™ = Y An(TH)Aw(T))

t=t,



Calibration

Calibration of the Forward Model

Definition (Filtered box constrained calibration problem)

d<N
— 2
min 2 =RTVI'R —AZ =" (RkivijThle - 6kk>\k>
neSCRY K

@ The columns of R and principal diagonal elements of A are
the eigenvectors and eigenvalues of V'MP



Calibration

Calibration Algorithm

@ i = Ry is the solution vector projected onto the principal
component basis

@ Express the gradient V,,Z = RV;2

@ 2 is everywhere differentiable w.r.t. the projected solution
vector

@ Specify bounds on the solution vector (not on the projected
solution vector)

@ Use a gradient-based constrained non-linear optimization
algorithm (e.g. projected gradient methods with Armijo
rule.)



Numerical Experiments: Heating Rate Option

Overview

@ Tet M3 and Conn NE natural gas and peak electricity
futures prices (USD)

@ Montly increments up to two year futures contracts with full
historical data over the period Nov-04 to Sep-07

@ Perform Shapiro-Wilks and Box-Ljung tests on log returns
to measure normality and stationarity

@ Compare the performance of numerous constrained
optimization algorithms ° provided in the opensource c++
library Opt++ 10,

°C.T. Kelley [1999], Iterative Methods for Optimization, Frontiers in Applied
Mathematics 18, SIAM.
Phttp://csmr.ca.sandia.gov/opt++



Numerical Experiments: Heating Rate Option
®0

Time series analysis

Time Series Analysis: Natural Gas Futures
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Numerical Experiments: Heating Rate Option
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Time series analysis

Time Series Analysis: Electricity Futures
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Numerical Experiments: Heating Rate Option
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Parameter estimation

Estimated Seasonality
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Figure: The seasonality of Tet M3 natural gas and Conn NE peak
electricity forwards.



Numerical Experiments: Heating Rate Option
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Parameter estimation

Correlation between Natural gas and Electricity Convenience
Yields
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Numerical Experiments: Heating Rate Option
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Parameter estimation

Convenience Yield Volatility Term-Structure
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Figure: The calibrated convenience yield volatility term-structure of
Tet M3 natural gas and Conn NE peak electricity forwards.



Numerical Experiments: Heating Rate Option
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Constrained optimization algorithms

Performance Comparison of Constrained Optimization Algorithms

n T
30 40 50 60
iterations

Figure: The gradient projection method.



Numerical Experiments: Heating Rate Option
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Constrained optimization algorithms

Performance Comparison of Constrained Optimization Algorithms
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Figure: The projected BFGS method.



Numerical Experiments: Heating Rate Option
00®0000000000

Constrained optimization algorithms

Performance Comparison of Constrained Optimization Algorithms
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Figure: The interior reflective Newton method.



Numerical Experiments: Heating Rate Option
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Constrained optimization algorithms

Performance Comparison of Constrained Optimization Algorithms
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Figure: The finite difference interior point method.



Numerical Experiments: Heating Rate Option
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Constrained optimization algorithms

Performance Comparison of Constrained Optimization Algorithms
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Figure: The quasi-newton interior point method.



Numerical Experiments: Heating Rate Option
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Constrained optimization algorithms

Performance Comparison of Constrained Optimization Algorithms
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Figure: The BC quasi-newton method.



Constrained optimization algorithms

Performance Comparison of Con
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Numerical Experiments: Heating Rate Option
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Numerical Experiments: Heating Rate Option
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Constrained optimization algorithms

Principal Component Analysis: Natural Gas and Electricity Futures
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Numerical Experiments: Heating Rate Option
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Constrained optimization algorithms

Heating Rate Call Price (USD)
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Numerical Experiments: Heating Rate Option
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Constrained optimization algorithms

Error in Heating Rate Call Price (USD) with 3 PCs
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Numerical Experiments: Heating Rate Option
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Constrained optimization algorithms

Error in Heating Rate Call Price (USD) with 5 PCs
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Numerical Experiments: Heating Rate Option
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Constrained optimization algorithms

Error in Heating Rate Call Price (USD) with 10 PCs
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Numerical Experiments: Heating Rate Option
000000000000e

Constrained optimization algorithms

Summary

@ The accurate calibration of non-storable spread options to
the observed underlying forward contracts is challenging

@ First deseasonalize historical time series of log returns and
perform PCA on the correlated convenience yield returns

@ The volatility term-structure can be captured with only a
few principal components

@ Preliminary results suggest that the combination of a
seasonal forward model, PCA and a gradient based
constrained optimization algorithm is efficient and robust
(avoid simulated annealing/genetic algorithms)

@ Future directions:

@ Automate the selection of the number of principal
components according to errors in the greeks.

@ Fit uncorrelated GARCH processes for the volatility w.r.t.
each of the principal components.



	Overview
	Pricing Spread Options on Forwards
	Forward Dynamics
	Calibration
	Numerical Experiments: Heating Rate Option
	Time series analysis
	Parameter estimation
	Constrained optimization algorithms


