Calibrating Spread Options using a Seasonal Forward Model

Matthew Dixon¹

¹Institute for Computational and Mathematical Engineering, Stanford University.

Workshop on Computational Methods for Pricing and Hedging Exotic Options, July the 12th, '08

- Outline the pricing of spread options
- 2 Review a two-factor seasonal commodities model
- Describe a calibration algorithm based on principal components
- Present a numerical example of a heating rate option

Background

- Recent surge of interest in commodity derivatives
- In many cases, only the forward prices of the commodity assets are market observables
- Manage exposure to loss through holding commodity derivatives
- Credit risk models must accurately predict the underlying correlated dynamics of the term structure
- Interest rate derivative modeling techniques are useful but limited, e.g. seasonality

Overview of Approaches

- Ribeiro and Hodges ¹ and Barlow et al. ² respectively apply Kalman filters to calibrate commodity spot prices.
- Cortazar and Schwartz ³ perform a least squares regression on $InF_t(T)$.
- Borovkova and Geman⁴ propose a seasonality model for a wider class of seasonal commodity futures.
- Borovkova and Geman ⁵ apply principal component analysis to deseasonalized futures prices under the real-world measure.

¹ Diana Ribeiro and Stewart Hodges [2004], A Two-Factor Model for Commodity Prices and Futures Valuation, Technical report, Financial Options Research Center, Warwick Business School.

² M. Barlow, Y. Gusev and M. Lai [2004], Calibration of Multifactor Models in Electricity Markets, Int. J. Theo. Appl. Finance, 7(2), pp. 101-120.

³G. Cortazar and E.S. Schwartz [2003], Implementing a stochastic model for oil futures, Energy Economics 25, pp. 215â238.

⁴ S. Borovkova and H. Geman [2006], Seasonal and stochastic effects in commodity forward curves, Rev Deriv Res (9), pp. 167-186.

⁵S. Borovkova and H. Geman [2006], Analysis and Modelling of Electricity Futures, Studies in Nonlinear Dynamics Econometrics, Volume 10, Issue 3, Article 6.

Risk Neutral Pricing

• The risk neutral price *V*(*t*) of a time *T* expiring option on the spread of two forward contracts is

 $V(t) = \exp\{-r\tau\}\mathbb{E}_t^*(|F_1(T, T_1) - F_2(T, T_2) - K|^+)$

- The risk neutral conditional expectation $\mathbb{E}_t^*(\cdot) := \mathbb{E}^*(\cdot | \mathfrak{F}_t)$
- *F_i(t, T)* denotes the time *t* value of a forward contract to deliver the underlying *S*(*T*) at time *T*
- *F*₁(*t*, *T*₁) and *F*₂(*t*, *T*₂) may reference difference underlyings *S*₁(*t*) and *S*₂(*t*)

Examples of Spread Options (I)

Heating rate Option

The risk neutral price of a heating rate/spark-spread (call) option
^a is

$$V(t) = \exp\{-r\tau\}\mathbb{E}_t^*(|F_{\rho}(T,T_{\rho}) - H_{\text{eff}}F_g(T,T_g) - K|^+)$$

- $F_{\rho}(t, T_{\rho})$ is the time $T_{\rho} \ge T$ expiring forward power contract
- *F_g*(*t*, *T_g*) is the time *T_g* ≥ *T* expiring forward natural gas contract
- *H*_{eff} is a fixed energy efficiency factor
- K is the strike of the option expiring at time T

^aDaily strip of heating rate options:

$$V_{t} = \exp\{-r\tau\} \sum_{m=1,d=1}^{N_{m},N_{d}^{m}} h_{d}^{m} \mathbb{E}_{t}^{*}(|F_{p}(T,T_{p}) - H_{\text{eff}}F_{g}(T,T_{g}) - K|^{+}).$$

Examples of Spread Options (II)

Calender Spread Option

• The risk neutral price of a calender spread (call) option is

$$V(t) = \exp\{-r\tau\}\mathbb{E}_t^*(F(T,T_1) - F(T,T_2) - K|^+)$$

- $F(t, T_i)$ is the time $T_i \ge T$ expiring forward contract
- K is the strike of the option expiring at time T

Kirk's Formula

There exists a closed form expression for V(t)

$$V(t) = \exp\{-r\tau\}(F_2(t, T_2) + K)(F(t, T)N(d_+) - N(d_-)),$$

where ⁶

$$F(t, T; T_1, T_2) := \frac{F_1(t, T_1)}{F_2(t, T_2) + K},$$
$$d_+ = \frac{\ln F(t, T)}{\sigma \sqrt{\tau}} + \frac{\sigma \sqrt{\tau}}{2},$$
$$d_- = d_1 - \sigma \sqrt{\tau}.$$

• *F*(*t*, *T*) is *assumed* to be a Martingale w.r.t. the risk neutral measure

$$dF(t,T) = \sigma F(t,T) dW_t^*.$$

The Story so Far

- The closed form expression for pricing spread options on forward contracts assumes that $F(t, T) = \frac{F_1(t,T_1)}{F_2(t,T_2)+K}$ is log normal under the pricing measure
- We have not yet specificed the dynamics of each forward contract F_i(t, T_i)

Historical Natural Gas Forward Prices

Figure: (Left) Expectation and (right) std. dev. of the Tet M3 natural gas forward curve as a function of monthly maturity date T traded in the month of July.

A Seasonal Forward Model [GEMAN BOROVKOVA]

 Borovkova and Geman⁷ express forward prices in component form

$$F_t(T) = \bar{F}_t \exp(s(T) - \gamma_t(\tau)\tau),$$

- *F*_t denotes the mean value of the curve *T* → *F*(*t*, *T*) at each time *t*
- $\gamma_t(\tau)$ is the stochastic convenience yield
- s(T) is the seasonality function

⁷ S. Borovkova and H. Geman, Seasonal and stochastic effects in commodity forward curves, Rev Deriv Res (9), 2006, pp. 167-186

A Seasonal Forward Model

Figure: The historical Tet M3 natural gas forward curve at the start of the time series (where $T = \tau$) is separated into its constitutive components, the seasonality s(T) and the the convenience yield $\gamma_0(\tau)$.

A Seasonal Forward Model

Intrinsic Dynamics

$$dln\bar{F}_t = \alpha(m - ln\bar{F}_t)dt + \sigma dW_t^{[1]}$$
$$d\gamma_t(\tau) = -a(\tau)\gamma_t(\tau) + \eta(\tau)dW_t^{[2]}$$

Two-Factor Forward Model^a

 $aa'(\tau) = a(\tau) + 1$

$$dlnF_t(T) = \left[\alpha(m - \ln \bar{F}_t) + \gamma_t(\tau)a'(\tau)\right] dt + \sigma dW_t^{[1]} - \eta(\tau)\tau dW_t^{[2]}$$

• $W_t^{[1]}$ and $W_t^{[2]}$ are two independent Wiener processes under the real-world measure

A Seasonal Forward Model in the Pricing Measure

Risk Neutral Instrinsic Dynamics

$$egin{aligned} d& lnar{F}_t = \sigma d\mathcal{W}_t^{*[1]} \ d& \gamma_t(au) = \eta(au) d\mathcal{W}_t^{*[2]} \end{aligned}$$

Risk Neutral Two-Factor Forward Model

$$dlnF_t(T) = \sigma dW_t^{*[1]} - \eta(\tau)\tau dW_t^{*[2]},$$

• $W_t^{*[1]}$ and $W_t^{*[2]}$ are two independent Wiener processes under the *risk neutral* measure

Review of Methodology

Compute the geometric average of the futures price ⁸

$$ln\bar{F}_t = \frac{1}{N}\sum_{i=1}^N lnF_t(T_i)$$

Estimate the seasonality function from the historical futures price series

$$\hat{\mathbf{s}}(T) = \frac{1}{n} \sum_{i=1}^{n} ln F_{t_i}(T) - ln \bar{F}_{t_i}$$

Imply the convenience yield time series from the seasonal forward model

$$\gamma_t(au) = rac{In rac{ar{F}_t}{F_t(T)} - \hat{\mathbf{s}}(T)}{ au}.$$

⁸N is assumed to be a multiple of 12.

The Covariance Matrix

The theoretical covariance matrix takes the form

$$V_{ij}^{Th} = \int_{t_1}^{t_2} d\gamma_t(T_i) d\gamma_t(T_j)$$

• The implied (empirical) covariance matrix is

$$V_{ij}^{lmp} = \sum_{t=t_1}^{t=t_2-1} \Delta \gamma_t(T_i) \Delta \gamma_t(T_j)$$

n Numerical Experiments: Heating Rate Option

Calibration of the Forward Model

Definition (Filtered box constrained calibration problem)

$$\min_{\eta \in \mathcal{S} \subset \mathbb{R}^N_+} \hat{z} = |\mathbf{R}^T \mathbf{V}^{Th} \mathbf{R} - \Lambda|_2^2 = \sum_{k,l}^{d \leq N} \left(\mathbf{R}_{kl} \mathbf{V}_{lj}^{Th} \mathbf{R}_{jl} - \delta_{kk} \lambda^k \right)^2$$

 The columns of *R* and principal diagonal elements of Λ are the eigenvectors and eigenvalues of V^{Imp}

Calibration Algorithm

- Express the gradient $abla_\eta \hat{z} = R \nabla_{\hat{\eta}} \hat{z}$
- \hat{z} is everywhere differentiable w.r.t. the projected solution vector
- Specify bounds on the solution vector (not on the projected solution vector)
- Use a gradient-based constrained non-linear optimization algorithm (e.g. projected gradient methods with Armijo rule.)

Overview

- Tet M3 and Conn NE natural gas and peak electricity futures prices (USD)
- Montly increments up to two year futures contracts with full historical data over the period Nov-04 to Sep-07
- Perform Shapiro-Wilks and Box-Ljung tests on log returns to measure normality and stationarity
- Compare the performance of numerous constrained optimization algorithms ⁹ provided in the opensource c++ library Opt++ ¹⁰.

⁹C.T. Kelley [1999], Iterative Methods for Optimization, Frontiers in Applied Mathematics 18, SIAM.

¹⁰http://csmr.ca.sandia.gov/opt++

Numerical Experiments: Heating Rate Option

Time series analysis

Time Series Analysis: Natural Gas Futures

Numerical Experiments: Heating Rate Option

Time series analysis

Time Series Analysis: Electricity Futures

Numerical Experiments: Heating Rate Option

Parameter estimation

Estimated Seasonality

Figure: The seasonality of Tet M3 natural gas and Conn NE peak electricity forwards.

Parameter estimation

Correlation between Natural gas and Electricity Convenience Yields

Numerical Experiments: Heating Rate Option

Parameter estimation

Convenience Yield Volatility Term-Structure

Figure: The calibrated convenience yield volatility term-structure of Tet M3 natural gas and Conn NE peak electricity forwards.

Constrained optimization algorithms

Performance Comparison of Constrained Optimization Algorithms

Figure: The gradient projection method.

Constrained optimization algorithms

Performance Comparison of Constrained Optimization Algorithms

Figure: The projected BFGS method.

Constrained optimization algorithms

Performance Comparison of Constrained Optimization Algorithms

Figure: The interior reflective Newton method.

Constrained optimization algorithms

Performance Comparison of Constrained Optimization Algorithms

Figure: The finite difference interior point method.

Constrained optimization algorithms

Performance Comparison of Constrained Optimization Algorithms

Figure: The quasi-newton interior point method.

Constrained optimization algorithms

Performance Comparison of Constrained Optimization Algorithms

Figure: The BC quasi-newton method.

Numerical Experiments: Heating Rate Option

Constrained optimization algorithms

Performance Comparison of Constrained Optimization Algorithms

Constrained optimization algorithms

Principal Component Analysis: Natural Gas and Electricity Futures

Numerical Experiments: Heating Rate Option

Constrained optimization algorithms

Heating Rate Call Price (USD)

Numerical Experiments: Heating Rate Option

Constrained optimization algorithms

Error in Heating Rate Call Price (USD) with 3 PCs

Numerical Experiments: Heating Rate Option

Constrained optimization algorithms

Error in Heating Rate Call Price (USD) with 5 PCs

Numerical Experiments: Heating Rate Option

Constrained optimization algorithms

Error in Heating Rate Call Price (USD) with 10 PCs

Constrained optimization algorithms

Summary

- The accurate calibration of non-storable spread options to the observed underlying forward contracts is challenging
- First deseasonalize historical time series of log returns and perform PCA on the correlated convenience yield returns
- The volatility term-structure can be captured with only a few principal components
- Preliminary results suggest that the combination of a seasonal forward model, PCA and a gradient based constrained optimization algorithm is efficient and robust (avoid simulated annealing/genetic algorithms)
- Future directions:
 - Automate the selection of the number of principal components according to errors in the greeks.
 - Fit uncorrelated GARCH processes for the volatility w.r.t. each of the principal components.