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Why this is a Great Time to be a Math Finance PhD Student

• The credit crisis showed that standard models give rise to highly

correlated model risk. There’s a felt need for new modeling tech-

nology.

• Massively parallel multi-core architectures are a major technology

shock that is bound to have repercussions on model building.

• Innovations in Math Finance can lead to innovations in the base

sciences, such as probability, numerical analysis, economics.
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The Courant Condition

This is the stability condition for explicit Euler discretization schemes.

In the context of parabolic PDEs of use in financial modeling, the

Courant condition typically implies that the time step should not be

longer than just a few hours for explicit methods to be applicable.
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The Twin Curses of Numerical Analysis

• The curse of the Courant condition

• The curse of dimensionality (path dependent options and baskets)

• Noisy Sensitivities

It turns out that these three difficulties are all intertwined with each

other.

By resolving the curse of the Courant condition at the engineering

level (as opposed to avoiding it) one can make substantial progress

toward resolving the other two.
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Computer Technology and the Courant Condition

Traditionally, fast memory has been a scarce resource. This technical

limitation motivated the development of

• sparse matrix linear algebra methods

• weakly (i.e. marginally) stable methods which allow for a time

step longer than dictated by the Courant condition

• chipsets optimized to double precision arithmetics (about 10 times

slower than chips optimized to single precision with the same num-

ber of transistors)
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Computer Technology and the Courant Condition

Nowadays the technology environment has changed.

• There is enough system memory (most real-life applications I im-
plement require not more than 1GB)

• Very efficient implementations of full matrix-matrix multiplication
algorithms, i.e. dgemm/sgemm, are available

• Massively parallel multi-core architectures with fast on-chip inter-
connects (like GPUs, FPGAs, CELL BE) are available, implement
dgemm/sgemm and are optimized to single precision.

In the new technology environment, there is a strong motivation to
devise strongly stable algorithms that respect the Courant condition
as opposed to marginally stable ones that avoid it.
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Explicit Methods can be fast (in addition to being accurate)!
Sample benchmarks for a semiparametric interest rate model, 672

dimensional lattice, 3 hours time step, maturities from short to 30-

into-20 years.

Task GPU-O GPU-D Host-O Speedup
Initialization 4.79 5.16 3.77 0.79
Calibration to

term structure (392 GF) 2.42 2.88 61.88 25.57
585 Bermuda swaptions

(580 GF) 3.61 3.97 85.30 23.62
30240 Bermuda swaptions

(830 GF) 5.14 5.65 138.68 26.98
12 callable CMS spread range
accruals snowballs (1620 GF) 10.02 11.04 134.59 13.43

GPU: Tesla D870, Host: 4-core Xeon.

GPU-O: using the GPU sgemm with host side optimized code.
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GPU-D: using the GPU sgemm with host side debug code.

Host-O: using the host dgemm only.



Explicit methods can be fast (in addition to being accurate)!

Sample benchmarks for a CDO model, 125 reference names, 600 di-

mensional lattice, 1 hours time step, maturities up to 10 years.

Task CPU Time Memory requirement
Preprocessing 137.57 sec 308 MB

Single Name Calibration 2.69 sec 77 MB
CDO Tranche Pricing 8.63 sec 181 MB

Execution times on a single processor Xeon machine, 2 GHz, with a

nVidia Tesla GPU coprocessor.
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The Key Concept is Smoothing

The Courant condition ensures a degree of smoothness that is lost in

unconditionally stable methods with longer time steps.

If one respects the Courant condition, then probability kernels are

smooth, meaning smoothness is numerically observed even if initial

(or final) conditions are delta functions or first or second derivatives

of delta functions.
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Operator Methods for Direct Kernel Manipulation

If the Courant condition is respected, then one can evaluate efficiently

probability kernels and the resulting kernels are smooth.

A number of new numerical methods becomes available if one can

manipulate kernels directly. These methods help one tackle high di-

mensional situations in new ways.
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Constructive Probability

Numerical Analysis is an eminently constructive field: algorithms need

to be communicated to computing machines in the form of software

codes. To work at the intersection between Numerical Analysis and

Probability Theory one needs to simplify the mathematical and logical

framework.

No Axiom of Countable Additivity

No Axiom of Choice

No Principle of the Excluded Middle

Different meaning of existence qualifiers ∃: One can claim that an

object exists only if one can construct it explicitly
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Constructive Probability

Probability is reduced to Numerical Linear Algebra and leverages on

multi-core technology as opposed to leveraging on special function

valuation

New mathematical landscapes are revealed

Focus on smoothness and kernel manipulations

One learns how to avoid the curse of dimensionality and Montecarlo

simulations
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Plan for the rest of the talk

X Introduction

♦ A Toy Model

� Smoothness and Convergence Estimates

� Semi-parametric Modeling

� Path Dependencies (Abelian, non-Abelian, moment methods)

� Dynamic Conditioning

� Constructive Probability Theory

� Dynamic Conditioning Model for CDOs

� Stochastic Monetary Policy Model for Interest Rate Derivatives
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The fundamental problem of fundamental solutions

Semi-parametric models are viable from the engineering viewpoint

at the condition that one is able to evaluate fundamental solutions

(i.e. probability kernels) with a low noise-to-signal ratio. Low noise is

needed not only with respect to the uniform norm for the kernel, but

also with respect to its derivatives with respect to the arguments and

the internal parameter sensitivities.

Analytic solutions are useful precisely because they allow one to ex-

press the kernel in terms of special functions. The purpose is to find

numerical methods that yield the kernel to similar or higher accuracy

with a performance independent of the process specification.
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Pseudo-spectrum

spectral methods are not sufficient because of pseudo-spectrum patholo-

gies. Pseudo-spectrum emerges with particular virulence when the

drift is stochastic (as for instance one would have if one wanted to

adequately model the interest rate process in the example above).
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Smoothness and the Courant Condition

Even assuming infinite precision arithmetics, I also realized that dis-

cretization schemes are effective only if the time step is either zero or

satisfies the Courant condition.

Unconditionally stable methods are only weakly stable and they don’t

converge well in the uniform graph norm with respect to the Markov

generator. Instead, it is essential for operator methods to have con-

vergence in the uniform graph norm. This can only be ensured by

respecting the Courant condition.
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Linear Fast Exponetiation

I find that linear fast exponentiation allows one to satisfy the Courant

condition and still be the basis of efficient numerical methods.

Fast exponentiation based on more complex Pade approximants are

not as efficient empirically and can be proven not to converge in graph

norm in some particular cases.
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Finite versus double precision arithmetics

Empirically one observes that linear fast exponentiation performs very

well even in single precision. The ideal platform to carry out such

calculations is given by the emerging GPU hardware (nVidia CUDA,

IBM CELL BE, etc.)

Conversely, weakly stable methods require double precision arithmetics.

They also require less memory, reflecting the memory-precision trade-

off that historically took place.
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Convergence Estimates

One can prove convergence estimates in the graph norm for diffusions

even in case coefficients are rough (i.e. Hölder continuous), thus reob-

taining and refining results proven nonconstructively by Nash, Farbes,

Strook and Varadhan in the 50s and 60s. Such estimates extend to

join distributions between diffusions and Abelian processes including

stochastic integrals.
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Full versus sparse matrix numerical linear algebra

I mostly use BLAS level-3 methods based on sgemm and dgemm, the

matrix multiplication routines, with a preference for single precision.

I never take advantage of sparsity patterns, use LU factorizations or

SVD decompositions.
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Probability theory

Sigma algebras were invented and became a popular topic of study

because of the desire of describing processes with continuous state

spaces (as opposed to discrete Markov chains). Measure theory meth-

ods are unfortunately not constructive.

Semigroup methods for Galerkin schemes are useful to establish the

convergence of discretization schemes but not powerful enough to give

direct control on kernel convergence in the uniform graph norm and

path-dependent processes. My methods instead make use of renor-

malization group transformations.

Kernel convergence estimates can be considered as the first steps

leading to a fully constructive theory of stochatic processes based on

Markov chain approximations.
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Semi-parametric models are the natural model class

If the main computational engine is given by matrix-matrix multiplca-

tion routines as opposed to being given by special function evaluation

and random number generation, the natural model class to consider

is given by semi-parametric or even non-parametric models.

The reason again is smoothness, the low signal-to-noise level for sen-

sitivities, which allows one to calibrate.
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Why are semi-parametric models interesting?

The process for short term rates does not resemble one solvable in

closed form.
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Semi-parametric models for derivatives

Long dated derivatives and baskets are complex and have substantial

model risk. Different models that calibrate equally well give possibly

very different answers for prices and hedge ratios.

The better models are the ones which, in addition to calibrating, cap-

ture econometric evidence and embed economic views.
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Engineering Challenges

From the mathematical and engineering viewpoint, the challenge is to
devise models that are as flexible as possible but which still can be
calibrated.

Montecarlo methods are very flexible from the model specification
viewpoint but their applicability is limited by the necessity of cali-
brating. Calibration requires the availability of low-noise methods for
calibration targets, i.e. they ultimately need to be based on

• closed form solutions (possibly with Fourier integrals)

• asymptotic expansions

• lattice methods.
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Analytically solvable models

The majority of derivative models currently used is tractable in ana-

lytically closed form.

Several models are used. It appears that these models do not fit the

standard Lie classification scheme. In the years 2000-2003 I devel-

oped a more general classification scheme (with A. Kuznetsov) that

encompasses all known solvable models for which the probability ker-

nel is known in closed form. I also developed a second classification

scheme (with S. Lawi) for models for which the generating function

of the joint distribution between a diffusion process and a stochastic

integral can be expressed in closed form.

In this research, I used spectral methods and the theory of special

functions.
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Semi-parametric models are more general than the ones solvable in
closed form and this allows one to achieve a higher degree of agree-
ment with econometric evidence. My research was driven by the fol-
lowing real-world applications:

• A stochastic monetary model for interest rate derivatives

• A structural model for CDOs.

• A stochastic skew foreign exchange model.

• A 3-factor model for long dated equity derivatives and equity bas-
kets.

• A model for electric power derivatives.
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Abelian versus non-Abelian processes

The notion of Abelian process emerges naturally when one learns how

to associate an operator algebra to a stochastic process adapted to

the filtration of a driving one. If the operator algebra is commutative

the process is Abelian.

Stochastic integrals are Abelian processes as well as the sup of a

process. The structured leg of a clicket, a TARN or a range accrual

are Abelian processes.

The payoff of snowballs, soft call convertibles and flexicaps are example

of non-Abelian processes.
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The Cameron-Martin-Feynman-Girsanov-Ito theorem in one for-

mula

Consider the diffusion process of Markovian

L = µ(x, t)∇+
σ(x, t)2

2
∆. (1)

Consider also the process given by the integral

It =
∫ t

0
a(xs, s)dxs + b(xs, s)ds (2)

where a(x, t) and b(x, t) are smooth functions in both arguments.
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The Cameron-Martin-Feynman-Girsanov-Ito theorem in one for-

mula

We have that

It = φ(xt, t)− φ(x0,0) + Jt. (3)

where φ(x, t) =
∫ x
0 a(y, t)dy.

Jt =
∫ t

0

(
b(xs, s)−

1

2
σ(xs, s)

2a′(xs, s)− φ̇(xs, s)

)
ds. (4)

and

E0

[
eipJtδ(xt = y)|x0 = x

]
= P exp

( ∫ t

0

(
L(s) + ipb(s)−

ip

2
σ2(s)a′(s)− ipφ̇(s)

))
(x, y). (5)
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Theory of Abelian Processes

The fundamental theorems of stochastic calculus can be seen as an

application of the theory of Abelian processes to the particular case

of diffusions processes and stochastic integrals.

The theory of Abelian processes however

� applies to more general Markov processes (with jumps, regime

switching, etc.)

� covers more general path-dependencies (like integrals, the sup, dis-

crete sums)

� supports more general harmonic analysis (replacing the Fourier char-

acteristic functions with transforms adapted to the problem).
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Block-diagonalization methods

Block-diagonalization methods can be used for Abelian processes, both

numerically and theoretically.

A theory of stochastic integrals can be built on this basis, thus handling

the hypo-elliptic nature of the joint evolution operator.

Numerically, block-diagonalization can be achieved either by means of

Fourier transforms or by more elaborate but sometimes more efficient

harmonic analysis constructs in different bases.
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Other Useful Operator Methods for Path Dependencies

� Moment methods (based on the Dyson-Kac formula)

� Block-factorization methods for non-Abelian payoffs (useful when

block-diagonalizations are not available)

35



Summary

X Introduction

X A Toy Model

X Semi-parametric Modeling

X Smoothness and Convergence Estimates

X Path Dependencies (Abelian, non-Abelian, Moment Methods)

♦ Dynamic Conditioning

� Constructive Probability Theory

� Dynamic Conditioning Model for CDOs

� Stochastic Monetary Policy Model for Interest Rate Derivatives

36



Dynamic conditioning

I have been working for over 4 years now at refining a method of

dynamic conditioning. The method is intended to beat the so called

”curse-of-dimensionality” and enables one to build lattice models in

situations where one has many risk factors (such as for instance for

CDOs).

I just completed coding a third version of dynamic conditioning method

applied to CDOs.

The key observation is that by using direct kernel manipulations one

can correlate by conditioning.
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Conditioning tree expressing a binomial process with jumps to

the bottom vertex.
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Scheme for multifactor conditioning involving industry sector

factors and a global economics factor.
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Mathematics, Numbers and Logic

Mathematics is about numbers and logic. In this paper we follow

Brower’s Intuitionistic Logic, a subset of classical Mathematical Logic

according to which before considering any object we need to explain

how to construct it. Integers up to ten can be counted on the fingers

of our hands and many hands represent large integers. Fractions and

rational numbers can also be conceptualized. Real numbers are a bit

more of an awkward concept as a real number is described by a Cauchy

sequence of rational numbers (fn) such that for all ε > 0 there is a

N > 0 for which |fn − fm|< ε for all n, m > N .
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Probability Theory and Colored Marbles

Probability theory takes its premises from the concept of random draws

of equiprobable integers out of a finite set. Rational probabilities can

be defined by taking a basket of equiprobable marbles, coloring them in

various ways and associating the result of a draw to a color as opposed

to an individual marble. So far, probability and combinatorics have

the same conceptual root. The two fields depart when the probabilist

wants to consider draws with a general positive real valued probability.

An operative definition of such draws involves considering not a single

basket of marbles, but a sequence of baskets of increasing size. It also

involves computing an asymptotic.
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Classical Probability Theory

The classic works on Probability Theory by Bernoulli, Laplace, de

Moivre and Poisson are all based on computing limits and asymp-

totics. These derivations are understandable constructively within the

confines of Intuitionistic Logic. A general description of a classic

probabilistic result involves considering not one but a sequence of fi-

nite sets describing possible events, such as finite sequences of coin

tosses. Next, one looks at an observable such as the mean, the vari-

ance or the distribution law for the number of outcomes of a given

type. Finally, one takes a limit as the number of coin tosses goes to

infinity and establishes results such as the law of large numbers, the

central limit theorem or arrives at the Poisson law. Although con-

tinuum distributions as a rule emerge in the limit, these results are

naturally formulated and established on finite event spaces as conver-

gence estimates in the limit in which the number of possible events

diverges to infinite.
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Continuous Functions and Riemann Integrals

Continuous functions can be understood constructively because all

one needs is to define them on the set of rational numbers. Integrals

over continuous functions can be defined in the Riemann sense. Lim-

its of continuous functions can also be conceptualized constructively

similarly to what one does when obtaining real numbers out of ra-

tional numbers, by introducing the notion of Cauchy sequence with

respect to a certain distance function. A natural distance function

is the integral of the absolute value of the difference ||fn − fm||1=∫
|fn(x)− fm(x)|dx.
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Lebesgue Integrals as a Convention on Limit Ordering

At the end of the nineteenth century, work on the theory of integration

motivated efforts aimed at understanding the effect of exchanging the

operation of limit over a sequence of functions with the operation

of integration. Lebesgue proposed that limits would commute if one

(i) agrees to regard all measurable functions as limits of continuous

functions and (ii) whenever one encounters a double limit one of which

is a space limit for a Riemann integral, one agrees to reshuffle the order

of the limits by convention in such a way that the continuous space

limit is carried out first. Regarded this way, Lebesgue theory is more

a convention than an invention.

45



Borelians

Lebesgue’s work can also be seen as an elaboration of the concept

of countable additivity introduced by Borel. The family of Borelians

and more general sigma-algebras of measurable sets give a geometric

interpretation of sorts to this convention on the order of limit taking.

The conceptual problem with this construction is that the family of

Borelians can only be defined out of open and closed intervals of the

real line by taking unions and intersections only if one accepts the

concept of transfinite induction. This concept cannot be explained to

a computer and exceeds the limits of Intuitionistic Logic.
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Borel on Borelians

Being a real world science based upon Statistics and Physics, conven-

tion on limit ordering and non-constructive set-theoretical concepts

seemed not justified as a matter of principle. Both Borel and Kol-

mogorov proposed two types of proofs for the Laws of Large Numbers,

shorter ones based on measure theory and longer, fully constructive

and more detailed ones with explicit limit taking. Borel considered

constructive arguments as the most appropriate ones to Probability

Theory and in line with the classic work of Bernoulli and others.
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Kolmogorov

Kolmogorov’s expository paper setting out an axiomatic framework

for Probability Theory [?] represented a turning point. There, for the

first time, the step was taken to introduce countable additivity as a

useful expedient in Probability Theory on grounds that it allowed one

to simplify derivations. Although not justifiable as a first principle

according to Kolmogorov, countable additivity still seemed harmless

and was thus introduce on a ”why not” basis. In the same years,

Hilbert posted quite derogatory comments on Brower’s Intuitionistic

Logic, sealing the debate on constructive analysis until recent times.
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Countable Additivity

The history of Probability followed a path all to common in human

history. Traces of these early debates vanished from the Mathematical

literature and was relegated to Philosophical circles. Measure theo-

retic Probability was funded upon the postulate of countable additivity

so that limits and integrals could be freely interchanged. Once cast in

stone in the textbook literature, countable additivity graduated from

being a harmless expedient to becoming a defining property of the

Theory of Probability. Being an eminently non constructive concept,

countable additivity became an article of faith as most objects refer-

enced cannot be constructed and communicated in full detail. Even

worse, countable additivity was and still is often confused as a neces-

sary parameter for mathematical rigor. What started as a convention

and expedient became a human law and a limitation on mathematical

speech, a meta-mathematical social convention applicable to academic

human earthlings only and not communicable in full detail.
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Constructive Analysis According to Brydges

Bridges work on constructive analysis was an important milestone.

By adhering to Brower’s Intuitionistic Logic and writing in the infor-

mal style of Classical Analysis, Brydges demonstrated that important

chapters of Analysis could be understood constructively. Regarding

the theory of Lebesgue integration, this work is instructive as it shows

the merit of calling spade a spade and interpreting Lebesgue theory

for what it truly is from a constructive standpoint, a convention on

the order of limit taking.
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The Courant Condition

In this paper, we propose to go a step further with respect to Brydges

and keep an open mind about ordering of multiple limits. This is more

than an academic exercise and is actually motivated by engineering

considerations. Our main objective is to discuss the impact of the

Courant condition when defining constructively stochastic processes.

The Courant condition is an inequality implying stability of explicit

differentiation schemes. In the case of stochastic process, one has

to evaluate a space limit along with a continuous time limit. To

respect the Courant condition, the two limits should be taken together

following a diagonal direction, whereby the time step is proportional

to the space step.
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Smoothness

The result of the limit would not change if one were to take the space

limit first and then the time limit as when applying the Trotter product

formula. However, the rate of convergence is affected by the Courant

condition, as this ensures convergence in the uniform graph norm, a

norm involving not only the sup of the difference but also the sup of

the difference of a combination of first and second space derivatives.

Smoothness is of absolutely central practical importance for a mul-

titude of numerical applications. By leveraging on smoothness, one

can avoid and bypass the curse of dimensionality in many instances

by means of direct kernel manipulations. Perhaps not surprisingly, we

conclude that the benefit of avoiding the axiom of countable additivity

and restricting to Intuitionistic Logic, deepens our understanding and

reveals new and useful mathematical landscapes.
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Stochastic calculus Operator methods

Arbitrage free pricing Arbitrage free pricing
Measure theory based Measure theory based on topological

on sigma algebras spaces and operator algebras
Dynamics described Dynamics described by

by SDEs Markov generators
Implicit differentiation schemes Fast exponentiation

Double precision Single precision
Diffusions and sparse matrices Jump processes and full matrices

Analytic solvability Reducibility to manipulations of
matrices small enough to fit in memory

CPUs and CPU clusters CPU/GPU pairs and GPU clusters
Market models “Economic” models without

drift restrictions
Measure changes Operator manipulations possibly

without probabilistic interpretation
Stochastic integrals Abelian processes
Montecarlo methods Dynamic conditioning
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Term structure of bond and jump correlations, Apr-06, Mar-07,
Oct-07
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Term structure of loss distributions, Apr-06, Mar-07, Oct-07
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0-3 equity tranche upfront fee, Apr-06, Mar-07, Oct-07
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Mezzanine tranche spreads, Apr-06, Mar-07, Oct-07
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Senior tranche spreads, Apr-06, Mar-07, Oct-07
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Yield curves in the deflation regime
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Yield curves with rates falling 75bp/y on average
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Yield curves with rates falling 50bp/y on average
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Yield curves with rates falling 25bp/y on average
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Yield curves with rates stable on average
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Yield curves with rates rising 25bp/y on average
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Yield curves with rates rising 50bp/y on average
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Yield curves with rates rising 100bp/y on average
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Time dependent short rate factor adjustment to match term

structure of interest rates
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Global fit of the swaption volatility cube

Our model calibrates fairly well to the entire swaption volatility cube.

Prior to our work, only the stochastic volatility BGM models (Pieter-

barg) succeeded to achieve a global fit of similar quality. However, the

economic interpretation of the resulting models is very different and

results in substantial discrepancies when the model is applied to some

long dated callable swaps.
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Calibration Errors for ATM swaptions
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Swaption skews for tenor 2y
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Swaption skews for tenor 5y
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Swaption skews for tenor 20y
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Interpretation of the persistent skew in Black volatilities

From the case of 20 into 30 swaptions implied vols we learn that

the inclusion of deflation scenarios in the stochastic drift dynamics is

crucial to be able to reproduce implied volatilities for these swaptions

in the region of 14% for this particular dataset. Without deflation and

without spoiling the other regions of the swaption volatility cube only

volatilities of 7-8% can be obtained.

This example shows that implied Black volatilites are best interpreted

as stochastic drift effects as opposed to stochastic volatility effects.

The example also shows that the interpretation of the drift dynamics

tends to be economically meaningful.
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Correlation matrix

What we notice is that once all implied swaption volatilities are matched,

short term correlation also fall in line with historical estimates.

On the other hand, short term volatility and correlations may be right

while the vol-cube is far from being correctly reproduced.
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Correlation between the 1y and the 20y rate
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Correlation between the 2y and the 10y rate

78



Expected Monetary Policy

The graph below gives the unconditional expectation of monetary pol-

icy regime as a function of time going up to 80 years:
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CMS convexity corrections

The CMS convexity correction is the difference between the equilibrium

spread for a non-callable CMS swap and the plain vanilla LIBOR swap

spread for the same maturity. This convexity corrections depends on

monetary policy and the interest rate level.
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CMS convexity corrections
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CMS convexity corrections
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CMS convexity corrections
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Swaption backbone for 2 into 2Y swaptions
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Swaption backbone for 4 into 5Y swaptions
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Swaption backbone for 10 into 20Y swaptions
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Bermuda backbone for 4 into 2Y swaptions
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Bermuda backbone for 5 into 10Y swaptions
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Bermuda backbone for 10 into 20Y swaptions
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A CMS callable spread range accrual, example 1
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A CMS callable spread range accrual, example 2
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A CMS callable spread range accrual, example 3
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A CMS callable spread range accrual, example 4
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A CMS callable spread range accrual, example 5
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Conclusions

Operator methods are an emerging mathematical framework for Con-

structive Probability and Mathematical Finance which is suitable for

semi-parametric and non parametric modeling.

The practical engineering applications of operator methods rely on fast

implementations of matrix-matrix multiplication algorithms, which can

nowadays be achieved on massively parallel GPUs.

Theoretical work is still at the beginning and promises to lead to the

discovery of new mathematical landscapes.
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