# **Flexing the Default Barrier**

Gregor Dorfleitner, Paul Schneider, and Tanja Veža

Vienna University of Economics and Business Administration

Exotic Options, Warwick University, UK, July 11, 2008

**Paul Schneider** 

Implied Default Barrier -1/19

## **Structural Models**



General Idea

Related Literature

Contribution

Model

Market Calibration

Conclusion



✓ Model value of assets as stochastic process  $y_t$ 

When asset value hits barrier the corporation defaults

✔ Quantity of interest is the *survival probability* 

## Structural Models cont.

Motivation

#### General Idea

- Related Literature
- Contribution

Model

Market Calibration

Conclusion

# ✓ Related Models

- ★ Black and Cox (1976)
- ✗ Brigo and Tarenghi (2005)
- ✓ Asset value follows Geometric Brownian Motion
- ✓ Default Barrier has specific functional form for tractability
- Closed-form expressions for survival probabilities even with time-dependent drift and diffusion coefficients

# **Our Contribution to Literature**

| N /  |      |     |    |
|------|------|-----|----|
| IVIC | otiv | atı | on |

General Idea

- **Related Literature**
- Contribution

Model

Market Calibration

Conclusion

Our model grants:

- ✓ Complete freedom in the shape of the default barrier
- Consistency with observable quantities (equity vol)
- ✓ Numerical stability in efficient numerical procedure
- Sequential calibration to leverage equity interest rate credit
- Extendibility to inaccessible model

Our model is relevant for:

- Determination of market-implied expected default barrier
- Pricing under counterparty risk

# Model Setup

Motivation

Boundary I

Recursion

Recursion II

Conclusion

Green Function I Green Function II

Approx. Quality Boundary II

Market Calibration

Model Setup

# ✓ From SDE:

$$\frac{dy_t}{y_t} = (r(t) - q(t)) dt + \sigma(t) dB_t, \qquad y_0 = 1,$$

✓ We look at the first passage time of y(t) to some time-dependent barrier b(t):

$$\tau = \inf \left\{ t \ge 0 : y_t \le b(t) \right\}.$$

✓ Survival probability is not known for general b(t)

Implied Default Barrier - 5/19

# Natural Barrier

Motivation

Model

Setup

Green Function I

Green Function II

Boundary I

Approx. Quality

Boundary II

Recursion

Recursion II

Market Calibration

Conclusion

✓ Survival probability is known for *natural* barrier

$$b^{\diamond}(s) = \exp\left\{\frac{\tilde{\alpha}(t,T)\,\tilde{\beta}(t,s) - \tilde{\alpha}(t,s)\tilde{\beta}(t,T)}{\tilde{\alpha}(t,T)}\right\} \left(\frac{d}{c}\right)^{\frac{\tilde{\alpha}(t,s)}{\tilde{\alpha}(t,T)}}c$$

for  $t \leq s \leq T$ , however, where we define

$$\tilde{\alpha}(t,T) := \int_{t}^{T} \alpha(s) \, ds, \ \tilde{\beta}(t,T) := \int_{t}^{T} \beta(s) \, ds$$
  
and 
$$\tilde{r}(t,T) := \int_{t}^{T} r(s) \, ds$$

for  $\beta(s):=r(s)-q(s)$ ,  $\alpha(s)=\sigma^2(s)/2$ ,  $c=b^\diamond(t), d=b^\diamond(T)$ 

Paul Schneider

Implied Default Barrier - 6/19

## **Green Function for Survival Probabilities**

Motivation Model Setup Green Function I Green Function II Boundary I Approx. Quality Boundary II Recursion Recursion II Market Calibration Conclusion

/

Green function  $g^+$  solves the survival probability

$$Q(T|y_0, 0) := \mathbb{Q}(\tau > T) = \int_d^\infty g^+(x, T|y_0, 0) \, dx \, .$$



# **Approximation to General Boundary**

Motivation

- Model
- Setup
- Green Function I
- Green Function II

#### Boundary I

- Approx. Quality
- Boundary II
- Recursion
- Recursion II

Market Calibration

Conclusion

- $g^+$  available in closed-form
- ✓ Idea: develop approximation of general b(t) using

$$b(t) \approx \sum_{i=1}^{n} b_i^{\diamond}(t) 1_{[t_{i-1},t_i]}(t) \text{ for } 0 \le t \le T$$

Solve a sequence of feasible  $b_i^\diamond$  problems instead of the infeasible b problem

### **Proposition 1**

 $\mathbb{Q}[y_t > b(t), \forall t \in [0, T]] = \mathbb{Q}[\bar{B}_t > \bar{b}(t), \forall t \in [0, T]], \text{ where}$  $\bar{b}(t) = \frac{1}{\sqrt{\frac{2}{t}\tilde{\alpha}(0, t)}} \left( \ln \frac{b(t)}{y_0} - \tilde{\beta}(0, t) + \tilde{\alpha}(0, t) \right), 0 \le t \le T$ 

# **Approximation Quality**

Motivation

Model

Setup

Green Function I

Green Function II

Boundary I

Approx. Quality

Boundary II

Recursion

Recursion II

Market Calibration

Conclusion

**Proposition 2** The approximation quality can be bounded1. for the boundary itself:

$$|\bar{b} - \bar{b}^{\diamond}|_2^2 \leq \sum_{i=1}^n (t_i - t_{i-1})^2 |\bar{b}' - (\bar{b}_i^{\diamond})'|_2^2,$$

for the survival probability over [0, T]:  $|\mathbb{Q}[y_t > b(t), \forall t \in [0, T]] - \mathbb{Q}[y_t > b^{\diamond}(t), \forall t \in [0, T]]|$  $\leq \sqrt{\frac{2}{\pi}} |\bar{b}' - (\bar{b}^{\diamond})'|_2.$ 

2.

Implied Default Barrier - 9/19

### **Sequence of Feasible Problems**

Motivation

Model

Setup

Green Function I

Green Function II

Boundary I

Approx. Quality

Boundary II

Recursion

Recursion II

Market Calibration

Conclusion





## Recursion

Motivation

Model

Setup

Green Function I

Green Function II

Boundary I

Approx. Quality

Boundary II

Recursion

Recursion II

Market Calibration

Conclusion

✓ We can approximate the b problem to arbitrary precision backward-propagating the sequence of b<sup>◊</sup><sub>i</sub> problems
 ✓ At an intermediate point in time the survival probability up to time t<sub>n</sub> is given by

$$Q(t_n|y,t_i) = \int_{b(t_{i+1})}^{\infty} Q(t_n|x,t_{i+1}) g^+(x,t_{i+1}|y,t_i) dx$$
  

$$\approx \int_{b(t_{i+1})}^{y_{i+1}^*} Q(t_n|x,t_{i+1}) g^+(x,t_{i+1}|y,t_i) dx$$
  

$$+ \mathcal{G}^+(y_{i+1}^*,t_{i+1}|y,t_i), \text{ where}$$
  

$$T(y_{i+1}^*,t_{i+1}|y,t_i) := \int_{y_{i+1}^*}^{\infty} g^+(x,t_{i+1}|y,t_i) dx$$

 $\mathcal{G}^+$ 

# **Closed-Form Recursive Backward Solution**



✓ Everything available in closed-from ⇒ very fast, algorithm converges

Paul Schneider

# Credit Default Swap (CDS)

٦

Motivation

Model

Market Calibration

### CDS

Input from the Market Default Barrier DCX Barrier DCX Probs TIT Barrier

Conclusion

Through CDS protection against default can be bought/sold

$$V^{\text{fix}}(T) = \sum_{i=1}^{N} (T_i - T_{i-1}) P(T_i|0) \mathbb{Q} [\tau > T_i] + \int_0^T (s - T_{I(s)}) P(s|0) d\mathbb{Q} [\tau \le s]$$

$$\begin{split} V^{\mathrm{def}}(T) &= (1 - R^{\mathbb{Q}}) \int_0^T P(s|0) d\mathbb{Q}[\tau \leq s].\\ s(T) &= \frac{V^{\mathrm{def}}(T)}{V^{\mathrm{fix}}(T)} \,. \end{split}$$

Implied Default Barrier – 13/19

# Implied Volatility, Zero Yields and Capital Structure

| N /   | 1 A 4 | 1.1   |  |
|-------|-------|-------|--|
| IVI   | otiv  | ation |  |
| 1 1 1 | OLIV  | ation |  |

Model

Market Calibration

CDS

Input from the Market

Default Barrier DCX Barrier DCX Probs TIT Barrier

Conclusion

- We observe equity implied volatilities and estimates of the unconditional equity volatility
  - We observe term-structure of zero yields
- ✓ We observe estimates of debt-to-asset ratios
- Putting everything together we get estimates for instantaneous asset volatilities and instantaneous short rates as functions of time
- We fit Nelson-Siegel polynomials to market data

/

# **Implied Default Barrier**

Motivation

Model

Market Calibration CDS Input from the

Market

#### Default Barrier

DCX Barrier

DCX Probs

TIT Barrier

Conclusion

- There are 5 canonical maturities for CDS contracts, 1y, 3y, 5y, 7y, 10y
- ✓ Barrier can be specified as function of 5 parameters
- Barrier is smooth function of time, and specific functional form admits sequential calibration, starting from 1y CDS
- ✓ All 5 liquid CDS contracts are fitted exactly

# **Daimler Chrysler Implied Default Barrier**



Implied Default Barrier – 16/19

# Daimler Chrysler Survival Probabilities



Paul Schneider

Implied Default Barrier - 17/19

# **Telecom Italia Implied Default Barrier**



### **Conclusion and Prospects**

| N / | 1.1   | 1.1   |   |
|-----|-------|-------|---|
| IVI | otiva | atior | 1 |

Model

Market Calibration

Conclusion

- What we have done so far:
  - ✗ General structural model that nests Black and Cox (1976) as well as Brigo and Tarenghi (2005)
  - ✗ Green function approach to solve the model; fast and efficient numerical procedure
  - Prices are fitted via changing the shape of the default barrier
- ✓ What is possible (future research):
  - **×** Extension to jump-to-default model
  - Explanation of CDS premia written on investment-grade obligors

Implied Default Barrier - 19/19