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Schrodinger equation in semi-classical scaling
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for the wavefunction ¥ = 9(x,t), x= (x1,...,xy) €RN, t>0

initial value problem: ) specified at time t = 0

SE for the nuclei in a molecule O<exl



Computational challenges

» high dimension: N = 3 npartices

» solutions are highly oscillatory with wavelengths ~ &
> localized with width ~ /e, with velocity ~ 1

no grids! (neither full nor sparse)



Rescue?

wavefunction is well approximated by

complex Gaussian x polynomial

— Hagedorn wavepackets
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Complex Gaussians in Hagedorn's parametrization

volq, p, Q, P](X) = (ws)_NM(det Q)_l/2 X

exp(zig(x — q)TPQfl(X -q)+ éPT(X - Q)> )

qgec RN position, p € RN momentum

Q, P complex N x N matrices such that

Y<ReQ Im Q@

ReP ImP

) is symplectic:  YTJY = J for J = (? _OI)

Consequence: PQ~! is complex symmetric with positive definite
imaginary part

Hagedorn 1980



Hagedorn wavepackets

L2-orthonormal set of functions @k(x) = ¢k[g, p, Q, P](x)
for multi-indices k = (ki, ..., kn), constructed recursively:
define the raising operator

R = (R)) = —=(P"(x = 0) + Q'(~iV— p))

With (j) = (0...1...0) the jth unit vector, set

1
N = ——=TRijpk.
Pk+(j) kj+1 Pk

@k are polynomials of degree ki + --- + ky multiplied with the
Gaussian g (N = 1: Hermite functions).

Hagedorn 1998



Recursive evaluation

Q<\/kj+1<ﬂk+<j> \/7(X q)ek(x)— (\/_GDk G) X)>

K =3,k,=2 kj =4k, =2




Approximate wavefunction by Hagedorn wavepacket

Y(x, 1) = PO (1) pila(t), p(t), Q(2), P(£)](x)

kel

over multi-index set /C
> in low dimensions, full cube: ki < K (j=1,...,N)
» in moderate dimensions, hyperbolic cross:
(1+k1)-...-(1—|—k/\/)§ K
» in high dimensions, axes: k; > 0 only for a single component j
in each k (Hartree-type approximation in a moving frame)

problem-adapted moving basis functions
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Recap: Schrodinger equation

. oY
Y _H
ie o P
with the Hamiltonian

H=T+V
composed of the kinetic energy operator

&2

T=——A
2m

and a smooth potential

V = V(x).



Bits and pieces

H=T+ Uyty + Wy(e)

» We can solve exactly the free Schrodinger equation, with the
wavefunction remaining in the Hagedorn wavepacket form
with unaltered coefficients cy.

» For a quadratic potential, we can solve exactly the potential
equation with the wavefunction remaining in the Hagedorn
wavepacket form with the same coefficients c.

» For the non-quadratic remainder, we compute the variational
approximation of the potential equation on the linear space
spanned by the functions ¢, with fixed parameters g, p, Q, P,
letting the coefficients ci vary.



Free Schrodinger equation
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A time-dependent Hagedorn wavepacket solves the free
Schrodinger equation with modified positions

a(t) = 4(0)+- p(0)
Qt) = Q)+ P()

and unchanged momenta p, P and unchanged coefficients c.

change only position g and @ and phase S



Quadratic potential

ie?fz&b

For a quadratic potential U(x), a time-dependent Hagedorn
wavepacket solves the equation with modified momenta

p(t) = p(0) —tVU(q(0))
P(t) = P(0)—tV?U(q(0))Q(0)

and unchanged positions g and @ and unchanged coefficients c.

change only momentum p and P and phase §



Galerkin approximation for the remainder

is%f: Wiy, W=W()

fix Gauss parameters q, p, Q, P in ok(x) = vklag, p, Q, P](x)

Galerkin condition: determine u(x,t) = >, cxc ck(t)pk(x) from

(pk, icdru—Wu)y =0 Vkek



Galerkin approximation for the remainder (ctd.)

Galerkin condition determines the coefficient vector ¢ = (¢k) as

c(t) = exp(—igt F)C(O)

with the Hermitian matrix

F = (fxe), feo = /]R’V W (x) B (x) pe(x) dx

» The integrals are non-oscillatory, approximated by sparse
Gauss—Hermite quadrature.

» F = O(¢3/?) if the quadratic Taylor polynomial of W at g

vanishes. Therefore, exp(—2 F)c(0) is computed efficiently
using just a few Lanczos iterations with F.

change only coefficients cx



Time-stepping algorithm

start from position g%, momentum p°, phase S°,
width matrices Q°, PP satisfying the symplecticity condition, and
coefficients c?

w(X, to) ~ UO(X) = eiSO/5 Z C[? Spk[qoa pO’ QO? PO](X)
ke

determine approximation u!(x) of the same form after time step
At using a splitting algorithm



Splitting algorithm

1. Half-step of kinetic part: updates g*/2, Q1/2, S¥/2—,
2. Full step of potential part: split the potential
V(x) = UY?(x) + WY2(x)

into its quadratic Taylor polynomial U'/?(x) at q'/? and the
remainder

» solve with quadratic potential U'/2: updates p!, P!, S1/2+

» Galerkin approximation for the non-quadratic remainder W1/2:
update coefficients ¢

3. Half-step of kinetic part: updates g, Q*, S'.



Properties

vV v v.Y

time-reversible method
preserves the symplecticity relation of the matrices @ and P
preserves the L2 norm of the wavepacket

for position g and momentum p: Stérmer-Verlet method for
the corresponding classical Hamiltonian system

limit of taking the full basis set ¢, with all k € NV: Strang
splitting of the Schrodinger equation

robust in the semi-classical limit € — 0: approximation in the
potential part becomes exact for ¢ — 0, while the kinetic part
is solved exactly for all .



Error behaviour in a numerical example
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Maximum error vs. number of basis functions at t =1 and t = 5.



Flying carpet

Squared absolute values of the approximate wave function
evaluated on the flying carpet of quadrature points.
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