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Schrödinger equation in semi-classical scaling

iε
∂ψ

∂t
(x , t) = − ε2

2m
∆xψ(x , t) + V (x , t)ψ(x , t)

for the wavefunction ψ = ψ(x , t), x = (x1, . . . , xN) ∈ RN , t ≥ 0

initial value problem: ψ specified at time t = 0

SE for the nuclei in a molecule 0 < ε� 1



Computational challenges

I high dimension: N = 3 · nparticles

I solutions are highly oscillatory with wavelengths ∼ ε

I localized with width ∼
√
ε, with velocity ∼ 1

no grids! (neither full nor sparse)



Rescue?

wavefunction is well approximated by

complex Gaussian × polynomial

→ Hagedorn wavepackets
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Complex Gaussians in Hagedorn’s parametrization

ϕ0[q, p,Q,P](x) = (πε)−N/4(det Q)−1/2 ×

exp
( i

2ε
(x − q)TPQ−1(x − q) +

i

ε
pT (x − q)

)
,

q ∈ RN position, p ∈ RN momentum

Q,P complex N × N matrices such that

Y =

(
Re Q Im Q
Re P Im P

)
is symplectic: Y T JY = J for J =

(
0 −I
I 0

)

Consequence: PQ−1 is complex symmetric with positive definite
imaginary part

Hagedorn 1980



Hagedorn wavepackets

L2-orthonormal set of functions ϕk(x) = ϕk [q, p,Q,P](x)
for multi-indices k = (k1, . . . , kN), constructed recursively:
define the raising operator

R = (Rj) =
1√
2ε

(
P∗(x − q) + Q∗(−iε∇x − p)

)
With 〈j〉 = (0 . . . 1 . . . 0) the jth unit vector, set

ϕk+〈j〉 =
1√

kj + 1
Rjϕk .

ϕk are polynomials of degree k1 + · · ·+ kN multiplied with the
Gaussian ϕ0 (N = 1: Hermite functions).

Hagedorn 1998



Recursive evaluation

Q
(√

kj + 1ϕk+〈j〉(x)
)N

j=1
=

√
2

ε
(x−q)ϕk(x)−Q

(√
kj ϕk−〈j〉(x)

)N

j=1



Approximate wavefunction by Hagedorn wavepacket

ψ(x , t) ≈ e iS(t)/ε
∑
k∈K

ck(t)ϕk [q(t), p(t),Q(t),P(t)](x)

over multi-index set K
I in low dimensions, full cube: kj ≤ K (j = 1, . . . ,N)

I in moderate dimensions, hyperbolic cross:
(1 + k1) · . . . · (1 + kN) ≤ K

I in high dimensions, axes: kj > 0 only for a single component j
in each k (Hartree-type approximation in a moving frame)

problem-adapted moving basis functions
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Recap: Schrödinger equation

iε
∂ψ

∂t
= Hψ

with the Hamiltonian
H = T + V

composed of the kinetic energy operator

T = − ε2

2m
∆x

and a smooth potential

V = V (x).



Bits and pieces

H = T + Uq(t) + Wq(t)

I We can solve exactly the free Schrödinger equation, with the
wavefunction remaining in the Hagedorn wavepacket form
with unaltered coefficients ck .

I For a quadratic potential, we can solve exactly the potential
equation with the wavefunction remaining in the Hagedorn
wavepacket form with the same coefficients ck .

I For the non-quadratic remainder, we compute the variational
approximation of the potential equation on the linear space
spanned by the functions ϕk with fixed parameters q, p,Q,P,
letting the coefficients ck vary.



Free Schrödinger equation

iε
∂ψ

∂t
= − ε2

2m
∆ψ

A time-dependent Hagedorn wavepacket solves the free
Schrödinger equation with modified positions

q(t) = q(0) +
t

m
p(0)

Q(t) = Q(0) +
t

m
P(0)

and unchanged momenta p, P and unchanged coefficients ck .

change only position q and Q and phase S



Quadratic potential

iε
∂ψ

∂t
= Uψ

For a quadratic potential U(x), a time-dependent Hagedorn
wavepacket solves the equation with modified momenta

p(t) = p(0)− t∇U(q(0))

P(t) = P(0)− t∇2U(q(0))Q(0)

and unchanged positions q and Q and unchanged coefficients ck .

change only momentum p and P and phase S



Galerkin approximation for the remainder

iε
∂ψ

∂t
= Wψ , W = W (x)

fix Gauss parameters q, p,Q,P in ϕk(x) = ϕk [q, p,Q,P](x)

Galerkin condition: determine u(x , t) =
∑

k∈K ck(t)ϕk(x) from

〈ϕk , iε∂tu −Wu〉 = 0 ∀ k ∈ K



Galerkin approximation for the remainder (ctd.)

Galerkin condition determines the coefficient vector c = (ck) as

c(t) = exp
(
− it

ε
F

)
c(0)

with the Hermitian matrix

F = (fk`), fk` =

∫
RN

W (x)ϕk(x)ϕ`(x) dx

I The integrals are non-oscillatory, approximated by sparse
Gauss–Hermite quadrature.

I F = O(ε3/2) if the quadratic Taylor polynomial of W at q
vanishes. Therefore, exp

(
− it

ε F
)
c(0) is computed efficiently

using just a few Lanczos iterations with F .

change only coefficients ck



Time-stepping algorithm

start from position q0, momentum p0, phase S0,
width matrices Q0, P0 satisfying the symplecticity condition, and
coefficients c0

k

ψ(x , t0) ≈ u0(x) = e iS0/ε
∑
k∈K

c0
k ϕk [q0, p0,Q0,P0](x)

determine approximation u1(x) of the same form after time step
∆t using a splitting algorithm



Splitting algorithm

1. Half-step of kinetic part: updates q1/2, Q1/2, S1/2,−.

2. Full step of potential part: split the potential

V (x) = U1/2(x) + W 1/2(x)

into its quadratic Taylor polynomial U1/2(x) at q1/2 and the
remainder

I solve with quadratic potential U1/2: updates p1, P1, S1/2,+

I Galerkin approximation for the non-quadratic remainder W 1/2:
update coefficients c1

k

3. Half-step of kinetic part: updates q1, Q1, S1.



Properties

I time-reversible method

I preserves the symplecticity relation of the matrices Q and P

I preserves the L2 norm of the wavepacket

I for position q and momentum p: Störmer-Verlet method for
the corresponding classical Hamiltonian system

I limit of taking the full basis set ϕk with all k ∈ NN : Strang
splitting of the Schrödinger equation

I robust in the semi-classical limit ε→ 0: approximation in the
potential part becomes exact for ε→ 0, while the kinetic part
is solved exactly for all ε.



Error behaviour in a numerical example

Maximum error vs. number of basis functions at t = 1 and t = 5.



Flying carpet

Squared absolute values of the approximate wave function
evaluated on the flying carpet of quadrature points.
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