

Computer Simulations of Biomolecular Systems

Jonathan W Essex University of Southampton

Introduction

- Structure-Based Virtual Screening (SVS) is a widelyused technique for lead discovery and optimisation
 - Protein-Ligand Docking:
 - Sampling Geometry
 - Scoring Energy
- Still significant room for improvement
 - Lots of efforts focused on the creation of novel scoring functions
 - Empirical
 - Knowledge based
 - Force field based
- In this presentation
 - Focus on the role of free energy calculations to score molecules

Biological Force Fields

- Effective pair potentials
- Simple functional form

$$U = \sum_{\text{pairs}(i,j)} \frac{q_i q_j}{4\pi\epsilon_0 r_{ij}} + 4\epsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^6 \right]$$

More complex functional forms generally avoided

• Molecular dynamics, with modifications to drive flexible loop

Challenges?

- Computational cost
 - For industrial use, need 10+ compounds per night
- Force field
 - Effective pair potentials
 - Accurate, but only with extensive parameterisation
 - Violates cost criterion!
 - QM/MM?
- Sampling
 - Satisfactory for a particular binding geometry
 - What if this changes though?
 - Novel, efficient sampling algorithms needed
- Applicability
 - Very similar compounds

Methodology

- Speed essential
- Statistical thermodynamics
 - Replica exchange
- Monte Carlo sampling
 - Flexible ligands and protein side chains
- Implicit solvent framework
 - GBSA parameterisation
 - Dual potential MC
- Large ligand differences
 - Dual topology

Predicting binding free energies

- Free energy methods that are applied between exchanges are the same as normal
- Exchanges require little extra computational cost

Fluoride bound structure

Chloride bound structure

Implicit solvent model

- Generalised Born
 - Pairwise Descreening Approximation
- Parameterisation
 - Dataset of small molecules AMBER/AM1-BCC
 - Optimisation
 Genetic Algorithm
 - Validation

Cross-validation Potential of Mean Force calculations

Approximations

J. Comput. Chem. 25, 1760-1770, 2004

Simplified sampling potential: Application

- Reference Potential
 - GBSA_{approx}
 - GBSA with SA and approximated GB
- Two simplified sampling potentials
 - DDD
 - Distance Dependent Dielectric Model (no SA)
 - FastGB
 - GB model with low cutoffs (no SA)

DDD

 Faster convergence of fastGB/GBSA_{approx} over DDD/GBSA_{approx}

J. Chem. Theory Comput. 2, 732-739, 2006

Case study: COX2

Compound	R	IC ₅₀ (μΜ)	
1	CH ₃	0.04	
2	CH ₂ CH ₃	0.86	
3	CH ₂ OH	93.3	
4	SCH₃	0.009	
5	OCH ₃	0.008	
6	CF ₃	8.23	
7	ОН	>100	
8	CI	0.01	
9	F	0.041	
10	Н	0.032	

Case study: Neuraminidase

Compound	R _{trans}	R _{cis}	R _{pol}	IC ₅₀ (μΜ)
11	Me	Н	NH ₃ +	190
12	Et	Н	NH ₃ +	13
13	Me	Me	NH ₃ +	2.4
14	Et	Et	NH ₃ +	0.003
15	Me	Н	NH ₃ +	7
16	Me	Me	NHC(NH ₂) ₂ +	0.025
17	Et	Et	NHC(NH ₂) ₂ +	0.001
18	(CH2) ₂ Ph	Pr	NHC(NH ₂) ₂ +	0.005
19	(CH2) ₂ Ph	Н	NHC(NH ₂) ₂ +	12
20	(CH2) ₂ Ph	Pr	NHC(NH ₂) ₂ +	0.005

Neuraminidase: Explicit solvent results

Neuraminidase: Implicit solvent results

Ranking: Empirical scoring functions

COX2

Neuraminidase

Case study: CDK2

Compound	R ₃	R ₄	R_5	R ₆	IC ₅₀ (μΜ)
21	Н	Н	Н	Me	0.08
22	CI	Н	Н	Me	>20
23	Н	CI	Н	Me	0.67
24	Н	Н	CI	Me	2.5
25	F	н	Н	Me	1.2
26	н	F	Н	Me	0.1
27	Н	Н	F	Me	0.04
28	н	н	CF3	Me	0.29
29	Н	ОН	Н	Me	0.06
30	Н	Н	ОН	Me	0.14
31	н	н	ОН	NHMe	0.07
32	Н	Н	ОН	NH2	0.03
33	Н	NO2	Н	Me	0.11
34	H	NO2	Н	NHMe	0.8
35	Н	NO2	Н	NH2	0.002
36	Н	Н	NO2	Me	4.1
37	Н	NH2	Н	Me	0.4
38	Н	Н	Н	NMe2	0.7

CDK2: Results

Free energy calculations in drug

Restricted to similar (congeneric) ligands
Fast, but fast enough?

A general methodology that can handle structurally diverse ligands would be very useful

	• <u> </u>		
	I	I NH ₂	
Compound	R	IC ₅₀ (μΜ)	
1	CH ₃	0.04	
2	CH ₂ CH ₃	0.86	
3	CH ₂ OH	93.3	
4	SCH ₃	0.009	
5	OCH ₃	0.008	
6	CF ₃	8.23	
7	ОН	>100	
8	CI	0.01	
9	F	0.041	
10	Н	0.032	

0.0

1.0

Dual topology: implementation

Complete dual topology

- Perturb molecules with no common structure
- Flexible softcore energy function

$$U_{nonbonded,\lambda} = (1-\lambda)4\varepsilon_{ij} \left[\left(\frac{\sigma_{ij}^{12}}{\left(\lambda\delta\sigma_{ij} + r_{ij}^{2}\right)^{6}} \right) - \left(\frac{\sigma_{ij}^{6}}{\left(\lambda\delta\sigma_{ij} + r_{ij}^{2}\right)^{3}} \right) \right] + \frac{(1-\lambda)^{n} q_{i} q_{j}}{4\pi\varepsilon_{0}\sqrt{\left(\lambda + r_{ij}^{2}\right)^{6}}}$$

- Coupling of solutes' translation and rotation
 Vanishing solute does not drift away
- Intramolecular terms not coupled
 - Decoupled solute is transferred to the gas phase

Congeneric inhibitors of COX2

COX2 inhibitors: results

∆∆G_{bind} in kcal.mol⁻¹

Protocol	<ΔΔG>	S _E
dual topology	-2.7	0.6
single topology	-3.0	0.1

$\Delta\Delta G_{solv}$ in kcal.mol⁻¹

Protocol	<∆∆G>	SE
dual topology	4.6	0.4
single topology	4.5	0.1

Single topology simulations more precise

When both methods are applicable, single topology preferred over dual topology

Two CDK2 scaffolds

activated CDK2 / CK hit

activated CDK2 / 5-bromoindirubine

- No common structural features
- Very difficult to handle by a single topology approach

∆∆G of two CDK2 scaffolds: results

$\Delta\Delta G_{bind}$ / kcal.mol⁻¹

Protocol	<۵۵G>	σ
in TIP4P	-0.48	1.12
in GBSA	-5.62	0.21

$\Delta\Delta G_{solv}$ / kcal.mol⁻¹

Protocol	<∆∆G>	σ
in TIP4P	3.07	0.68
in GBSA	7.14	0.01

• Experiment?

J. Chem. Theory Comput., *3,* 1645-1655, **2007**

- Implicit solvent simulations more precise
- Sampling and force field

Case study: the estrogen receptor α

Aims

Test the methodology

Demonstrate if, how and when free energy simulation techniques can complement existing modelling tools for drug design purposes

Estrogen receptor α: Ligands

Firth-Clark et al., J. Chem. Inf. Model. 46, 642-647, 2006

Binding mode A

Binding mode B

Hydrogen donors/acceptors can be satisfied both ways
Flips observed in some crystal structures

Binding mode predictions

Compound	GOLD	Explicit	Implicit
D94	top	top	top
H95	both	top	top
D96	top	bottom	bottom
D97	top	bottom	both
D98	top	bottom	bottom
D99	top	top	top
H00	top	top	top
D01	top	top	both
H02	top	bottom	bottom
D05	top	top	top
D06	top	bottom	bottom
D07	top	top	top
D08	top	top	top
H09	top	bottom	bottom
D11	top	top	top

GOLD predicts (almost) always that the hydroxyl group will interact with Glu³⁵³/Arg³⁹⁴

Alternative orientations are predicted favourable by free energy simulations 6 times

Implicit solvent simulations suggest both orientations are possible for 2 compounds

EST<H13<D96~=**H02**~=D97<D05~=**H95**

- A binding free energy calculation method
 - Replica exchange

- A binding free energy calculation method
 - Replica exchange
 - Implicit solvent

- A binding free energy calculation method
 - Replica exchange
 - Implicit solvent
 - Simplified sampling potential
- Case studies : COX2, Neuraminidase, CDK2, homologous ligands

 Implicit solvent simulations of comparable or better accuracy than explicit solvent simulations

- A binding free energy calculation method
 - Replica exchange
 - Implicit solvent
 - Simplified sampling potential
- Case studies : COX2, Neuraminidase, CDK2, homologous ligands
 - Implicit solvent simulations of comparable or better accuracy than explicit solvent simulations
 - Better than common scoring functions

- A binding free energy calculation method
 - Replica exchange
 - Implicit solvent
 - Simplified sampling potential
 - Case studies : COX2, Neuraminidase, CDK2, homologous ligands
 - Implicit solvent simulations of comparable or better accuracy than explicit solvent simulations
 - Better than common scoring functions
 - Problem systems

- A binding free energy calculation method
 - Replica exchange
 - Implicit solvent
 - Simplified sampling potential
 - Case studies : COX2, Neuraminidase, CDK2, homologous ligands
 - Implicit solvent simulations of comparable or better accuracy than explicit solvent simulations
 - Better than common scoring functions
 - Problem systems
 - Dual topology very different molecules
 - Force field and sampling more critical cost!

- A binding free energy calculation method
 - Replica exchange
 - Implicit solvent
 - Simplified sampling potential

Case studies : COX2, Neuraminidase, CDK2, homologous ligands

- Implicit solvent simulations of comparable or better accuracy than explicit solvent simulations
- Better than common scoring functions
- Problem systems

Dual topology – very different molecules

Force field and sampling more critical – cost!

Broader scope of the methodology

- Binding mode prediction
- Scaffold selection

Acknowledgements

• RETI

- Chris Woods
- Mike King, Celltech-UCB

• Julien Michel

- Richard Taylor, Marcel Verdonk, Chris Murray, Astex Therapeutics
- Astex Therapeutics
- EPSRC
- BBSRC