How membrane currents interact to shape the integrative properties of motoneurones

Claude Meunier

Laboratory of Neurophysics and Physiology

Laboratoire de Neurophysique et Physiologie

The final common pathway

Excitation

Inhibition

Jami et al., 1982

Role of subthreshold currents in synaptic integration and firing

Muscle stretch

Deeply anaesthetised cats

Intracellular recordings

Currents added by dynamic clamp

Experiments combined with simple models

A physiological role for Ih

Little I_h in Slow-type motoneurones

F-type motoneurones display a subthreshold resonance

$$f_R = 11 \pm 3 \text{ Hz}$$

Resonance is caused by Ih

Suppressed by depolarisation and enhanced by hyperpolarisation

Blocked by ZD-7288

which is located in dendrites

$$Y^{S}(\omega) + Y^{D}(\omega) = G_{soma}\left(1 + i\omega\tau_{m} - \frac{K_{h}S}{1 + \omega\tau_{h}}\right) + G_{\infty}q(\omega)tanh(\sqrt{1 + i\omega\tau_{m} - K_{h}^{D}/(1 + i\omega\tau_{h})}L)$$

$$K_h = \frac{G_h}{G_r} (V_h - V_r) \frac{dz_h^{ss}}{dV} (V_r) < 0$$

More than 90% of I_h in dendrites (to be confirmed)

PICs enhance or suppress the resonance

Recruitment of motoneurones by proprioceptive input

Resonant (F-type)
Recovering balance

Non-resonant (S-type)
Maintaining posture

The AHP enters the picture

The AHP current regulates the discharge

Manuel et al., 2006

A solvable model

Integrate-and-fire model with AHP conductance

$$C_m \frac{dV}{dt} = -G_{in}V - G_{AHP}^{max}z[t]\left(V - V_K\right) + I$$
 Effective voltage dependence
$$\tau_z[V]\frac{dz}{dt} = z_\infty[V] - z$$

$$au_z[V]rac{dz}{dt} = z_\infty[V] - z$$

Two time-scales analysis

$$V_0\left[t/\tau_{AHP}\right] + \epsilon V_1\left[t/\tau_{AHP}, t/\tau_m\right] + \dots \qquad \epsilon = \tau_m/\tau_{AHP}$$

$$V_{\text{th}} = \frac{100}{0.8}$$

$$V_{\text{th}} = \frac{100}{0.8}$$
 Meunier & Borejsza, 2005
$$\mathcal{G} = \frac{h(\alpha)}{G_{AHP}^{max}\tau_{AHP}(V_{th} - V_K)} \left(1 - \frac{\tau_m}{\tau_{AHP}} \left(\frac{G_{in}}{G_{in} + G_{AHP}(T)}\right)^2 + h.o.t.\right)$$

First interval: $h(\alpha) = e^2/4$

The gain is in inverse proportion to the charge transferred by the AHP current Doubling the input conductance decreases the gain by less than 10%.

Experimental validation

Shunting inhibition (Dynamic clamp)

$$V_{shunt} = \int_{0}^{T} V(t)Z(t)dt / \int_{0}^{T} Z(t)dt$$

Z(t) is the phase response

10

5 to 10% accuracy

Manuel et al., 2005

AHP controls firing variability

Neuromodulation may induce bistability

Persistent calcium current

Ballou et al., 2006

The BRK model

Weak coupling : $g_c = 0.1 \text{ mS/cm}^2$

Bistability of dendritic I-V curve

Studies with this model have supported the hypothesis that the bistable firing patterns require a nonuniform distribution of ionic conductances and, specifically, a segregation of plateau-generating currents.

Booth, Rinzel & Kiehn, 1997

Is it relevant for motoneurones?

Parameters	Motoneurone	BRK model
ρ	10	2.7
$ au_{m}$	6 ms	2 ms
$ au_{AHP}$	15 ms	50 ms
G _{AHP} /G _{in}	0.3 (no neurodulation)	0.02

Weak coupling -> Dendritic voltage is attenuated and low-pass filtered

Stationary voltage: 70%

Spikes: 96%

Distal location of PIC: 1.2 λ (L = 1-1.5)

An alternative model

More realistic parameters: $\rho,\,G_{\text{in}},\,G_{\text{AHP}}\,,\,\tau_{\text{m}},\,\tau_{\text{AHP}}\,\text{PIC location}$

Bistability stems from the competition between the dendritic PIC and the somatic AHP current

Somatic bistability: Model

Calcium PIC at the soma only

Calcium decoupling between PIC and AHP current is required

and experiments

Counterclockwise hysteresis

Firing bistability

Conclusions

Subthreshold currents shape the integrative properties of motoneurones

A major role is played by the *competition between stabilizing and destabilizing* currents:

I_h and PICs below threshold

-> selective amplification of synaptic input and recruitment of motoneurones

AHP current and Calcium PIC above threshold

-> control of the firing states

Neuromodulation controls the balance between these currents according to the physiological requirements

Thanks to

Daniel Zytnicki

Karol Borejsza Laurent Brizzi Marin Manuel

Maud Donnet Audrey Goulian

and to all of you for your attention