


The Purkinje neuron model parameter
landscape: implications for homeostasis
and synaptic plasticity

Automated parameter methods (Neurofitter)
Automated parameter search for new Purkinje model
Properties of a complex parameter space

Cerebellar learning: LTD of parallel fiber synapse

® Study |: pattern recognition by Purkinje cells

o Study ll: intrinsic excitability, calcium and plasticity
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Parameter search: fitness measure
Solution 1: feature based

—

. spike rafe

2. accommodation index
3. latency to 1st spike ]
4. action potential overshoot
5. afterhyperpolarization depth /WL’/L’
6. action potential width o e ]
Sumrein]
Advan'l'ag es: Druckmann et al. Frontiers Neuroscience (2007)

- fitness measure relative fo standard deviation
- relative tolerant to poor channel Kinetics
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Parameter search: fitness measure
Solution 1: feature based

—

. spike rafe
. accommodation index h
latency to 1st spike ]
. action potential overshoot s i
. afterhyperpolarization depth

. action potential width ™ b B

o Ul W

C
Ad van 'l'a g es: Druckmann et al. Frontiers Neuroscience (2007)

- fitness measure relative fo standard deviation

- relative tolerant to poor channel Kinetics
Disadvantages:

- doesnt fit unmeasured: subthreshold voltage, bursting...
- lots of data needed to get good statistics

- canonical model: does not capture population variability



Parameter search: fitness measure
Solution 2: phase-plane trajecfory density method

Was originally proposed by G. LeMasson in the book “Computational Neuroscience -
Realistic modeling for Experimentalists” (EDS ed., 2001).

It allows to compare two electrophysiological traces independently of their relative
phase: compared in 9/, /V space, relative to number of data points.
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Parameter search: fitness measure
Solution 2: phase-plane trajecfory density method

Was originally proposed by G. LeMasson in the book “Computational Neuroscience -
Realistic modeling for Experimentalists” (EDS ed., 2001).

It allows to compare two electrophysiological traces independently of their relative
phase: compared in 9/, /V space, relative to number of data points.
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Parameter search: fiithess measure
Solution 2: phase-plane trajecfory density method

Was originally proposed by G. LeMasson in the book “Computational Neuroscience -
Realistic modeling for Experimentalists” (EDS ed., 2001).

It allows to compare two electrophysiological traces independently of their relative
phase: compared in 9V/4/V space, relative to number of data points.
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Parameter search: Neurofitter
Fitness: phase-plane frajectory density method

Global optimization method:

Grid (or brute-force) method
Random search
Evolution strategy
Particle Swarm Optimization
NOMAD (Mesh Adaptive Search)
Hybrid (any mixture of the above)

http://neurofitter.sourceforge.net
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Surrogate data: the 94 PC model
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Parameter search: 2007

| 7 runs of with 57 or 60 individuals each
~8000 fitness evaluations / run

From the pool of 993 individuals, 429 are passed through NOMAD
|00 fitness evaluations / individual
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2006

Properties of good individuals
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0.5 nA current
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Properties of good individuals

il
40 S

< 20—

E o-

£ -20-

~ .40 e J
40
2

I

|

i

I

MNIIIJ

LD

L

I

Data




2006

Properties of good individuals
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2006

Properties of good individuals

40
>
E o
E 4o Data
40
£
. Model |
= -40 —
40—
>
E o
= Model 20
= -40 —
O{O

Tir.ne (s)

2.0 nA current
injection



2006

Properties of good individuals
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Parameter search: Neurofitter
Fitness: phase-plane frajectory density method

Advantages:

- fitness measure directly based on single trace data

- no need for large dafa sets or complex measurements
- produces a family of models: population variability

Disadvantages:

- very sensitive to poor channel Kinefics
- fitness measure uses arbitrary units

- danger of overfitting?



Separation between 148 models
Separation with 1994 model

number of models
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Large paramefter variability
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Hypotheses for non-uniqueness

» Too many dimensions: some parameters have very low
influence on the neuron electrical behavior.

» All solutions belong to a continuous region of the phase
space where models reproduce the data well.

p Strong compensatory mechanisms between some ionic
currents: hyperspaces of good solutions exist in the
parameter space.

» Oppositely, the solutions belong to small regions which
are isolated from each other: discontinuities in the
parameter space (due for example to threshold
mechanisms).
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Effect of varying 1 parameter

All other parameters being equal to the data values: blue * | SD of parameter variability
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Error

Most of the parameters have a strong influence on the fitness
Good models do not belong to a continuum around the data



Hypotheses for non-uniqueness

» Too many dimensions: some parameters have very low
influence on the neuron.eiestrical behavior.

» All solutions belong to a iMuous region of the phase
space where models reproduce the data well.

X

p Strong compensatory mechanisms between some ionic
currents: hyperspaces of good solutions exist in the
parameter space.

» Oppositely, the solutions belong to small regions which
are isolated from each other: discontinuities in the
parameter space (due for example to threshold
mechanisms).
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Error

2006

Small regions of good parameters

1%-5% variation of one parameter at a time around
our best individuals
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1 2 3 4 5 6 7 8 O 10 11 12 13 14 15 16 17 18 19 20
individual

Very sensitive (bad models are very close)
Room for improvement (better models are also close)
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Small regions of good parameters

Each triplet of solutions defines a hyperplane in the

parameter space
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Achard and De Schutter PLOS Comput. Biol. 2: €94 (2006)
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Small regions of good parameters

Continuous islands
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Small regions of good parameters

Disconnected islands



A complex parameter space

The PC parameter landscape is complex: it requires
clever algorithms to tune (Neurofitter).

The cell variability observed in experiments is also
found in models. Working with ‘families’ of models will
become necessary.

Parameter landscape is like a foam’. Many solutions are
linked by hyperplanes but good regions are small.

Does this provide insights for activity homeostasis of
voltage-gated channels!? How does the neuron navigate
through this complex parameter space!



The Purkinje neuron model parameter
landscape: implications for homeostasis
and synaptic plasticity

Automated parameter methods (Neurofitter)
Automated parameter search for new Purkinje model
Properties of a complex parameter space

Cerebellar learning: LTD of parallel fiber synapse

® Study |: pattern recognition by Purkinje cells

e Study ll: intrinsic excitability, calcium and plasticity



Cerebellar learning: LTD

Parallel fibres e
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Ilto Nat. Neurosci. Rev. 2002

Long-term depression of the
parallel fiber synapses on the
spiny dendrite is important in
cerebellar learning of motor
control.

The error signal is carried by
the climbing fiber which
contacts the

and evokes a complex spike in
the Purkinje cell.




Pattern recognition by LTD

Cerebellar learning by long-term depression PF synapse

» Marr (1969): plasticity at the parallel synapse implements motor learning.
» Ito (1982): Long-Term Depression induced by coincident PF and CF input.
» Simple models: LTD leads to increased output from cerebellum.

Purkinje cell

parallel fibres LTD

ges OOO
A A

mossy fibre output
input

What is the effect of LTD on a spontaneously firing neuron?
Steuber et al. Neuron 54: 121-136 (2007)



Pattern recognition by LTD

modeling

» Only reliable recognition measure: simple spike pause following the response.

novel/learned pattern
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Long-Term Depression changes SS pause
Experimental verification in vitro: LTD
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Long-Term Depression changes SS pause
Experimental verification in vivo: ISIs
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Pattern recognition by LTD

Only criterion to distinguish learned and novel
patterns after LTD induction is length of simple spike
pause.

Shorter pauses for learned patterns: LTD increases
Purkinje cell output => cerebellar output decreases.

Confirmation in in vitro and in vivo experiments.
Learning can change duration of pauses.



activity too low targe ativity activity too high




Calcium as a homeostatic sensor

Robustness of Burst Firing in Dissociated Purkinje
Neurons with Acute or Long-Term Reductions in

Sodium Conductance The Journal of Neuroscience, April 6, 2005 + 25(14):3509-3520

Andrew M. Swensen and Bruce P. Bean
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Calcium and synapftic plasticity
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Calcium and synapftic plasticity
Calcium transients evoked by PF + CF for 148 PC models
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Calcium release model by Doi et al. J. Neurosci. 2005

Induction of LTD is preserved in all 148 PC models



Calcium and synapftic plasticity
Calcium transients evoked by PF + scaled CF for 148 PC models
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Induction of LTD fails for 37% of the models!



Calcium and synaptic plasticity

* Calcium influx is very variable and unlikely to be the
global signal activating the homeostatic sensor.

* Calcium influx is constrained in spiny dendrites so that
induction of synaptic plasticity is always possible.

* The models were only constrained by their electrical
activity, intrinsic excitability must therefore be strongly
correlated with the capacity to induce synaptic
plasticity.
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