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Parameter search: fitness measure

How to compare data and model traces ?

Andrew Davison

Phase shifts in spike trains cause a problem
Solution 1: feature based (statistical average)
Solution 2: phase-plane trajectory density



Solution 1: feature based

Advantages:
- fitness measure relative to standard deviation
- relative tolerant to poor channel kinetics

Parameter search: fitness measure

1. spike rate
2. accommodation index
3. latency to 1st spike
4. action potential overshoot
5. afterhyperpolarization depth
6. action potential width

Druckmann et al. Frontiers Neuroscience (2007)
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Solution 1: feature based

Disadvantages:
- doesn’t fit unmeasured: subthreshold voltage, bursting…
- lot’s of data needed to get good statistics
- canonical model: does not capture population variability

Advantages:
- fitness measure relative to standard deviation
- relative tolerant to poor channel kinetics

Parameter search: fitness measure

1. spike rate
2. accommodation index
3. latency to 1st spike
4. action potential overshoot
5. afterhyperpolarization depth
6. action potential width

Druckmann et al. Frontiers Neuroscience (2007)



Parameter search: fitness measure

Was originally proposed by G. LeMasson in the book “Computational Neuroscience - 
Realistic modeling for Experimentalists” (EDS ed., 2001). 

It allows to compare two electrophysiological traces independently of their relative 
phase: compared in dV/dt/V space, relative to number of data points.
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Solution 2: phase-plane trajectory density method
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Parameter search: fitness measure

Was originally proposed by G. LeMasson in the book “Computational Neuroscience - 
Realistic modeling for Experimentalists” (EDS ed., 2001). 

It allows to compare two electrophysiological traces independently of their relative 
phase: compared in dV/dt/V space, relative to number of data points.

error = F(!k wk"(!j!i |dataij-modelij|)) 
different injected currents, recording sites 

(soma / dendrites), periods (transitory / stable)

(V, dV/dt) matrix

number of points in this bin 

weights

Binned phase plot Phase density plot

Solution 2: phase-plane trajectory density method



Grid (or brute-force) method

Random search

Evolution strategy

Particle Swarm Optimization

NOMAD (Mesh Adaptive Search)

Hybrid (any mixture of the above)

Parameter search: Neurofitter
Fitness: phase-plane trajectory density method 

Global optimization method:

http://neurofitter.sourceforge.net

http://neurofitter.sourceforge.net
http://neurofitter.sourceforge.net


currents soma main thick spiny

Fast Na (NaF) x

Persistent Na (NaP) x

P-type Ca (CaP) x x x

T-type Ca (CaT) x x x x

Delayed rectifier K (Kdr) x x

Persistent K (KM) x x x x

A-type K (KA) x x

BK Ca-activated K (KC) x x x

K2 Ca-activated K (K2) x x x

Anomalous rectifier  (Kh) x

24 conductance densities to adjust

Surrogate data: the 94 PC model



17 runs of Evolutionary Strategy with 57 or 60 individuals each 
~8000 fitness evaluations / run

From the pool of 993 individuals, 429 are passed through NOMAD
100 fitness evaluations / individual

The fitness decreases 
from 12.1±2.9 

to 4.6±0.7 
to 3.3±0.8  

Parameter search: 2007

Error

Final selection : 
148 individuals
cut-off at 3.0
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Parameter search: Neurofitter
Fitness: phase-plane trajectory density method 

Advantages:
- fitness measure directly based on single trace data
- no need for large data sets or complex measurements
- produces a family of models: population variability

Disadvantages:
- very sensitive to poor channel kinetics
- fitness measure uses arbitrary units
- danger of overfitting?



Models are separated
Bounds

2007

We did not recover the original 1994 model! 
! our collection is not complete

Separation

Separation between 148 models
Separation with 1994 model



Wide range of values
No correlation between fitness and the value of a single parameter

Large parameter variability

Error

Upper bound

Bounds

Mean
Original model

Lower bound

2007

+ 1 SD

maximum



Wide range of values
No correlation between fitness and the value of a single parameter

Large parameter variability
2007



! Too many dimensions: some parameters have very low 
influence on the neuron electrical behavior.

! All solutions belong to a continuous region of the phase 
space where models reproduce the data well.

! Strong compensatory mechanisms between some ionic 
currents: hyperspaces of good solutions exist in the 
parameter space.

! Oppositely, the solutions belong to small regions which 
are isolated from each other: discontinuities in the 
parameter space (due for example to threshold 
mechanisms).

Hypotheses for non-uniqueness



Most of the parameters have a strong influence on the fitness
Good models do not belong to a continuum around the data

All other parameters being equal to the data values: blue ± 1 SD of parameter variability 

Effect of varying 1 parameter 
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" only 5 pairs of 276 are correlated
" not fully transitive
" 2 pairs = anti-correlation between regions of dendrite

Correlations between parameters
2006



Very sensitive (bad models are very close)
Room for improvement (better models are also close)

1%-5% variation of one parameter at a time around 
our best individuals

Small regions of good parameters
2006
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Each triplet of solutions defines a hyperplane in the 
parameter space

Projection onto the (gNaF, gNaP) plane

Small regions of good parameters

Achard and De Schutter PLOS Comput. Biol. 2: e94 (2006)

2006



Continuous islands

Small regions of good parameters
2006



Small regions of good parameters

Disconnected islands

2006



A complex parameter space

• The PC parameter landscape is complex: it requires 
clever algorithms to tune (Neurofitter).

• The cell variability observed in experiments is also 
found in models. Working with ‘families’ of models will 
become necessary.

• Parameter landscape is like a ‘foam’. Many solutions are 
linked by hyperplanes but good regions are small.

• Does this provide insights for activity homeostasis of 
voltage-gated channels? How does the neuron navigate 
through this complex parameter space?



• Automated parameter methods (Neurofitter)

• Automated parameter search for new Purkinje model

• Properties of a complex parameter space

• Cerebellar learning: LTD of parallel fiber synapse

• Study 1: pattern recognition by Purkinje cells

• Study II: intrinsic excitability, calcium and plasticity

The Purkinje neuron model parameter 
landscape: implications for homeostasis 

and synaptic plasticity



Cerebellar learning: LTD
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R E V I EW S

CLIMBING FIBRES

Cerebellar afferents that arise
from the inferior olivary
nucleus, each of which forms
multiple synapses with a single
Purkinje cell.

!2 RECEPTOR

A subtype of glutamate receptor
that is expressed selectively in
Purkinje cells.!2 receptors do
not form functional glutamate-
gated ion channels.

METABOTROPIC

A term that describes a receptor
that is associated with G proteins
and exerts its effects through
enzyme activation.

IONOTROPIC

A term that describes a receptor
that is associated with ion
channels and generates electrical
membrane currents.

unless a poststimulus time histogram is constructed for
many repeated trials18. Second, as a single CF impulse
depolarizes a Purkinje cell dendrite for more than 1 s
(REF. 19), it is difficult to see how this signal could form
the basis of a precise time-locked event.

In contrast to the well-timed triphasic tuning that is
found between the two sets of inputs that induce long-
term potentiation (LTP) and LTD in hippocampal
neurons20, the time window for coincidence detection in
the induction of cerebellar LTD seems to be broad — 
in the order of hundreds of milliseconds. This broad
tuning must be based on interactions between certain
prolonged chemical processes that occur after PF and
CF stimulation. Various chemical processes have been
found to occur postsynaptically. Although some pre-
synaptic events have been implicated in the plasticity of
PF synapses under certain experimental conditions21,22,
I focus here on the postsynaptic signal-transduction
events that account for LTD that is induced by the
conjunctive stimulation of CFs and PFs.

PF-evoked signal transduction
FIGURE 2 illustrates the complex signal-transduction
processes that are known to be induced by CF and PF
impulses2,3. When they are stimulated, PFs release 
glutamate as well as nitric oxide (NO)23. The released
glutamate activates AMPA ("-amino-3-hydroxy-
5-methyl-4-isoxazole propionic acid)-type glutamate
receptors (AMPARs), !2 RECEPTORS and type 1 METABOTROPIC

glutamate receptors (mGluR1s) in the subsynaptic
membrane of Purkinje cells. Activation of AMPARs
opens the associated cation channels, allowing the
entry of Na+ ions into the Purkinje cell. This Na+ cur-
rent produces fast excitatory postsynaptic potentials
(EPSPs), which can open voltage-gated Ca2+ channels
(VGCCs) if they are sufficiently large6,24. Even though
AMPARs are typical IONOTROPIC receptors, they are also
associated with a protein tyrosine kinase (PTK) called
Lyn25. Lyn might be related to the PTK that is required
for the induction of LTD in association with protein
kinase C (PKC)26.

The signal-transduction processes that follow the
activation of !2 receptors are still unclear, except that 
!2 receptors are associated with a tyrosine phosphatase27.
More is known about the signalling that follows the acti-
vation of mGluR1s. The activation of this receptor is
linked to the generation of slow EPSPs, which are associ-
ated with the entry of Na+ ions into the cell28.mGluR1 is
also linked to the activation of phospholipase C (PLC
isoforms #2 and #4) through Gq proteins29–31, resulting
in the production of diacylglycerol (DAG) and inositol-
1,4,5-trisphosphate (Ins(1,4,5)P3).DAG in turn activates
PKC, whereas Ins(1,4,5)P3 causes the release of Ca2+ ions
from intracellular stores32. In addition,mGluR1 activa-
tion is linked to the activation of phospholipase A2
(PLA2) through another type of G protein, which results
in the production of arachidonic and oleic acids from
membrane phospholipids.

NO released from PFs diffuses into Purkinje cells and
activates cytosolic guanylyl cyclase, which results in the
production of cyclic GMP. In turn, cGMP activates

originally proposed by Bhalla and Iyengar10, was applied
to LTD by Kuroda and co-workers11.

In this article, available data on LTD — from electrical
impulses to molecular signals — are analysed using the
above-mentioned strategies to establish a functionally
meaningful molecular model of the induction of LTD.

Time window for CF–PF coincidence
A common protocol for inducing LTD is the simultane-
ous stimulation of PFs and CFs 100–600 times at a fre-
quency of 1–4 Hz (REFS 12–14). When stimulation of the
PF follows the paired CF stimulus with a delay of up to
750 ms, LTD induction is maintained, although it 
is attenuated14. When the PF stimulation precedes 
the paired CF stimulation, LTD induction decreases
gradually as the delay increases from 0 ms to –100 ms.
However, when repetitive stimulation is used, the rela-
tionship between CF and PF stimulation becomes com-
plex,because each PF stimulus is related not only to its
paired CF stimulus,but also to those that occur within
the preceding or succeeding 0.25–1 s. This makes the
interpretation of results difficult, but there is no evi-
dence to suggest that a very short time window exists for
the induction of LTD by PF–CF pairing.

Another protocol that can be used to induce cerebel-
lar LTD is to apply a train of pulses to PFs in conjunc-
tion with one to three pulses to the CFs. LTD is induced
effectively even when the PF pulses precede the CF
pulses by up to 200 ms (REFS 15–17). Two further observa-
tions support the view that sharp tuning of the timing
of PFs and CFs is not required for LTD to be induced.
First, CFs discharge at a low, irregular rate of about 1 Hz,
and the timing of CF responses to natural stimuli varies
from trial to trial. The precise timing of CF–PF
responses to natural stimuli cannot be determined

Cerebellar and
vestibular nuclei

Red nucleus

OutputInput

Error signals

LTD

Inferior olivary
nucleus

Purkinje 
cell

Climbing
fibre

Mossy
fibre

Granule
cell

Parallel fibres

Figure 1 | Basic neuronal circuit in the cerebellum.

Inhibitory interneurons in the cerebellar cortex are omitted for

simplicity. LTD, long-term depression.

Long-term depression of the 
parallel fiber synapses on the 
spiny dendrite is important in 
cerebellar learning of motor 
control.

The error signal is carried by 
the climbing fiber which 
contacts the smooth dendrite 
and evokes a complex spike in 
the Purkinje cell.

Ito Nat. Neurosci. Rev. 2002



Cerebellar learning by long-term depression PF synapse
! Marr (1969): plasticity at the parallel synapse implements motor learning.

! Ito (1982): Long-Term Depression induced by coincident PF and CF input.

! Simple models: LTD leads to increased output from cerebellum. 
!

?

What is the effect of LTD on a spontaneously firing neuron?
Steuber et al. Neuron 54: 121–136 (2007)

Pattern recognition by LTD



 

! Only reliable recognition measure: simple spike pause following the response.

novel/learned pattern

Reduced pause following induction of LTD ! increased output
Steuber et al. Neuron 54: 121–136 (2007)

was the duration of the silent period after the pattern pre-
sentation, with learned patterns resulting in shorter
pauses. These modeling predictions were confirmed
with Purkinje-cell recordings in acute slices. As predicted,
the length of the pause increased with PF stimulation
strength and was shortened by an LTD induction protocol
based on coactivation of PF and CF inputs. In agreement
with this, a larger fraction of longer pauses in Purkinje-cell
activity were observed in awake behaving mice deficient
in LTD.

RESULTS

Pattern Recognition in the Purkinje-Cell Model
Figures 1 and 2 show the results of simulations where the
Purkinje-cell model received a continuous background
level of activation that caused it to fire simple spikes
with an average frequency of 48 Hz, similar to mean firing
rates observed in vivo. Learning of patterns was im-
plemented as a reduction of the AMPA receptor con-
ductances of activated PF synapses, as is the case after
induction of LTD (see Experimental Procedures). All pat-
terns comprised a set of PF inputs that were distributed
randomly across the Purkinje-cell dendritic tree. In the first
instance, we studied patterns in which 1000 randomly dis-
tributed PF synapses were activated synchronously. The
model was presented with 75 of such PF patterns that
had been learned by LTD, and its response was compared
to the response to 75 novel patterns. As shown for the in-
dividual spike responses (Figure 1A) and the raster plot
(Figure 1B), the Purkinje cell responded to both learned
as well as novel patterns with a short burst of two or three
simple spikes, and this was followed by a silent period of
several tens of milliseconds.

On the basis of this characteristic response pattern, dif-
ferent features of the spike train were identified that could
be used to discriminate between the responses to learned
and novel PF input patterns. Figure 2 shows typical re-
sponse distributions for three possible features: (1) the la-
tency of the first spike fired in response to a pattern, (2) the
number of simple spikes fired in a 25ms timewindow after
presentation of a pattern, and (3) the length of the simple-
spike pause that followed the pattern presentation. For
both the latency of the first spike (Figure 2A) and the num-
ber of spikes fired immediately after pattern presentation
(Figure 2B), the distributions of responses to learned and
novel PF patterns overlapped to a large degree. These
overlapping response distributions resulted in low s/n ra-
tios of 0.33 ± 0.17 for the spike latency and 0.21 ± 0.19
for the spike number (for n = 10 sets of 75 learned pat-
terns). The best criterion for distinguishing learned and
novel patterns was the length of the simple-spike pause.
The two distributions of pause durations in response to
learned and novel patterns were clearly separated (Fig-
ure 2C), resulting in an s/n ratio of 15.6 ± 2.6 (n = 10). Sur-
prisingly, learned PF patterns resulted in shorter pauses
(37.8 ± 6.0 ms) than novel patterns (56.6 ± 3.1 ms).

Experimental Verification
We carried out experiments on Purkinje cells in cerebellar
slices to test these modeling predictions. If, as the model
predicts, the weakening of PF inputs by LTD results in
shorter pauses after PF activation, stimuli that activate de-
creasing numbers of PFs should also lead to a decrease in
the length of the pause. We made noninvasive extracellu-
lar recordings from spontaneously spiking Purkinje cells
(Häusser and Clark, 1997; Walter et al., 2006; Womack
and Khodakhah, 2003) and activated different numbers
of PFs by using a range of stimulation strengths. To avoid
pauses in spiking associated with feed-forward inhibition
(Mittmann et al., 2005; Walter and Khodakhah, 2006), we
blocked inhibition with SR95531 (10 mM).

Figure 1. A Purkinje-Cell Model Responds to PF Input
Patterns with a Burst of Simple Spikes Followed by a Pause
(A) Background PF activity resulted in a Purkinje-cell firing frequency of

48 Hz. Presentation of a novel and a learned PF input pattern evoked

a burst of spikes followed by a pause. Note that the pause durationwas

reduced for the learned pattern.

(B) Raster plots showing the presentation of 75 learned and 75 novel

PF activity patterns consisting of 1000 synchronously activated PF

synapses. Same time scale as shown in (A).

122 Neuron 54, 121–136, April 5, 2007 ª2007 Elsevier Inc.
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without strong AHP

Pattern recognition by LTD
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LTD induction:
300 x PF-CF (1 ms interval) at 1 Hz

Figure 4. An LTD Protocol Leads to a Reduction in the Pause
(A) Spike raster showing the spiking pattern of a Purkinje cell in a cerebellar slice in response to PF stimulation before and after an LTD induction

protocol (at t = 0 min) consisting of conjunctive PF and CF stimuli. Two sample traces at times indicated by the arrows show responses before

(blue) and after (red) pairing. The scale bar represents 40 pA.

(B) The duration of the pause in spiking after PF stimulation plotted as a function of time relative to the LTD induction protocol.

(C) Averaged normalized pause length (shown by circles) and baseline interspike interval for six cells. Error bars indicate SE.

(D) Change of pause for single cells (red connection indicates statistical significance) and the corresponding s/n ratio of pause, number of spikes, and

latency. Note that the cell with a low s/n ratio for the pause is the same cell that did not show a decrease in the pause in the left plot.

(E) Extracellularly recorded responses to PF and CF stimulation and the corresponding PF EPSP and complex spike recorded intracellularly in whole-

cell mode (cell hyperpolarized to !69 mV) after collection of cell-attached data.

Neuron 54, 121–136, April 5, 2007 ª2007 Elsevier Inc. 125
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Cerebellar LTD and Pattern Recognition by Purkinje Cells

Long-Term Depression changes SS pause
Experimental verification in vitro: LTD

LTD induction

Steuber et al. Neuron 54: 121–136 (2007) Figure 4. An LTD Protocol Leads to a Reduction in the Pause
(A) Spike raster showing the spiking pattern of a Purkinje cell in a cerebellar slice in response to PF stimulation before and after an LTD induction

protocol (at t = 0 min) consisting of conjunctive PF and CF stimuli. Two sample traces at times indicated by the arrows show responses before

(blue) and after (red) pairing. The scale bar represents 40 pA.

(B) The duration of the pause in spiking after PF stimulation plotted as a function of time relative to the LTD induction protocol.

(C) Averaged normalized pause length (shown by circles) and baseline interspike interval for six cells. Error bars indicate SE.

(D) Change of pause for single cells (red connection indicates statistical significance) and the corresponding s/n ratio of pause, number of spikes, and

latency. Note that the cell with a low s/n ratio for the pause is the same cell that did not show a decrease in the pause in the left plot.

(E) Extracellularly recorded responses to PF and CF stimulation and the corresponding PF EPSP and complex spike recorded intracellularly in whole-

cell mode (cell hyperpolarized to !69 mV) after collection of cell-attached data.

Neuron 54, 121–136, April 5, 2007 ª2007 Elsevier Inc. 125
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Long-Term Depression changes SS pause
Experimental verification in vivo: ISIs

Steuber et al. Neuron 54: 121–136 (2007)

distinguished by the characteristic features of the CF re-
sponse (including smaller spike amplitude, brief ISIs within
the burst, low variability, and their all-or-none nature). Af-
ter the induction protocol, we monitored pause duration
for 30–40 min then repatched the same cell and recorded
PF EPSPs (Figure 4E, bottom left) and CF responses (Fig-
ure 4E, bottom right) in whole-cell mode. This approach
verified the nature of the extracellularly recorded spike re-
sponses (Figure 4E, top left). These experiments therefore
confirm that an LTD induction protocol changes the pause
in spiking as predicted by the model.

Floccular Purkinje-Cell Activity In Vivo
Our model and in vitro experiments suggest that the ab-
sence of LTD should lead to a higher incidence of longer
ISIs in simple-spike firing. To find out whether such a cor-
relation occurs in vivo, we analyzed the simple-spike
activity of floccular Purkinje cells in awake behaving LTD-
deficient L7-PKCi mutant mice responding to optokinetic
stimuli (De Zeeuw et al., 1998; Goossens et al., 2004).
Figure 5 shows that the simple-spike activities of LTD-

deficient mutant mice indeed show increased probabili-
ties for longer ISIs as compared to those of wild-type litter-
mates. These differences were significant at optokinetic
stimulation frequencies of both 0.05 Hz and 0.2 Hz (Fig-
ures 5A and 5B), and they held true both when tested for
all ISI data represented in the probability distributions
and when tested for an ISI range of 20–60 ms correspond-
ing to the pause durations (in all cases, p < 0.001; Kol-
mogorov Smirnov test; Figures 5A and 5B). Moreover,
although smaller, the same difference also occurred at
rest (p < 0.01; Kolmogorov Smirnov test; Figures 5C and
5D). Thus, a Purkinje-cell-specific impairment of induction
of LTD is associated with the expected altered simple-
spike firing patterns at rest and is even more pronounced
during natural sensory stimulation.

Mechanism of Pause Generation
and Parameter Sensitivity
A possible mechanism for the generation of simple-spike
pauses after PF activation was revealed by studying the
Purkinje-cell model. In the compartmental model, the

Figure 5. Increased Probabilities for Longer ISIs in LTD-Deficient L7-PKCi Mutants In Vivo
(A) and (B) show cumulative probability distributions for simple-spike firing of floccular Purkinje cells during sinusoidal optokinetic stimulation at

0.05 Hz (the wild-types are shown in red n = 7, L7-PKCi mutants are shown in blue n = 5) and 0.2 Hz (the wild-types, n = 13; L7-PKCi mutants,

n = 9), respectively. (C) shows the same distributions of floccular Purkinje cells in the absence of optokinetic stimulation (the wild-types, n = 10;

L7-PKCi mutants, n = 9). Insets indicate normalized probabilities for ISIs of 20–60ms (The scale bar represents 0.05.). (D) shows differences in surface

areas between normalized cumulative probability distributions of the wild-types and L7-PKCi mutants during both the presence (0.05 Hz and 0.2 Hz)

and absence (rest) of optokinetic stimulation. The LTD-deficient mutants show larger probabilities for longer ISIs under all circumstances, and these

probabilities increase further during stimulation.

126 Neuron 54, 121–136, April 5, 2007 ª2007 Elsevier Inc.
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Pattern recognition by LTD

• Only criterion to distinguish learned and novel 
patterns after LTD induction is length of simple spike 
pause.

• Shorter pauses for learned patterns: LTD increases 
Purkinje cell output ! cerebellar output decreases.

• Confirmation in in vitro and in vivo experiments.

• Learning can change duration of pauses.



Calcium as a homeostatic sensor



Widely different calcium currents for similar spiking patterns

Cellular/Molecular

Robustness of Burst Firing in Dissociated Purkinje
Neurons with Acute or Long-Term Reductions in
Sodium Conductance

Andrew M. Swensen and Bruce P. Bean
Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115

Cerebellar Purkinje neurons often generate all-or-none burst firing in response to depolarizing stimuli. Voltage-clamp experiments using
action potential waveforms show that burst firing depends on small net inward currents that flow after spikes and reflect the net balance
between multiple large currents. Given this, burst firing is surprisingly robust in the face of changes in the magnitude of the underlying
currents from cell to cell. We explored the basis of this robustness by examining the effects of reducing the sodium current, the major
contributor to the postspike inward current. Burst firing persisted in concentrations of tetrodotoxin that produced half-block of sodium
current. This robustness of bursting reflects an acute feedback mechanism whereby waveform changes from the reduced sodium current
(reduced spike height and a hyperpolarizing shift in postspike voltage) cause compensatory decreases in postspike potassium currents.
In particular, reduced spike height reduces calcium entry and subsequent calcium-activated potassium current, and the hyperpolarizing
shift in postspike voltage speeds deactivation of Kv3-like potassium channels. Other experiments examined bursting in Nav1.6 !/! mice,
in which sodium current density is reduced in the long term. Under these circumstances, there was upregulation of both T-type and P-type
calcium current and a change in the balance of calcium current and calcium-activated potassium current such that their net influence
shifted from being inhibitory during bursts in wild-type neurons to excitatory during bursts from Nav1.6 !/! mutant neurons. Thus,
Purkinje neurons have both acute and long-term feedback mechanisms that serve to maintain burst firing when voltage-dependent
sodium conductance is reduced.
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Introduction
Neurons express many types of ion channels carrying currents
that combine to determine the firing pattern of each particular
neuron. An important question is how tightly regulated the ex-
pression of each channel type must be to maintain the character-
istic input– output properties of a neuron. In the crab stomato-
gastric ganglion, individual neurons with very similar firing
properties can have densities of individual currents that vary over
severalfold (Liu et al., 1998; Golowasch et al., 1999, 2002), even
for currents that are clearly important for the output character-
istics. On the other hand, the firing patterns of individual neu-
rons can be affected dramatically by relatively small changes in a
particular conductance (Burdakov and Ashcroft, 2002). These
properties are not contradictory because, in principle, a large
change in one conductance may produce little change in firing
properties if accompanied by suitable changes in other conduc-
tances (Goldman et al., 2001; MacLean et al., 2003).

We investigated how firing patterns of cerebellar Purkinje
neurons depend on the density of particular ionic currents. Pur-
kinje neurons offer a well defined and easily quantified behavior,
all-or-none burst firing, which occurs not only in response to
climbing fiber stimulation (Eccles et al., 1966) but also in re-
sponse to depolarizing current injections or anode break (Calla-
way and Ross, 1997; Cavelier et al., 2002) and even spontaneously
(Cingolani et al., 2002; Womack and Khodakhah, 2002). Burst
firing apparently reflects intrinsic membrane properties of Pur-
kinje neurons, because it is present even in acutely dissociated
Purkinje neurons (Raman and Bean, 1997; Raman et al., 1997).
Using this preparation, which allows the underlying ionic cur-
rents to be studied under voltage clamp, we found that after the
first spike of a burst, multiple large inward and outward compo-
nents sum to give a small net inward current (Swensen and Bean,
2003) that drives the depolarization leading to a subsequent
spike. These results suggest a fine balance of postspike currents in
which a small change in the size of any individual current,
through slow inactivation, modulation, or other perturbation,
could have dramatic effects on bursting.

Relating channel density to firing properties is inherently dif-
ficult because of the complicated interactions between multiple
voltage-dependent currents. Mathematical modeling is one ap-
proach, but it requires knowledge of the kinetics and voltage
dependence of all channels in the cell. If cells can be voltage
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Robustness of Burst Firing in Dissociated Purkinje
Neurons with Acute or Long-Term Reductions in
Sodium Conductance

Andrew M. Swensen and Bruce P. Bean
Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115

Cerebellar Purkinje neurons often generate all-or-none burst firing in response to depolarizing stimuli. Voltage-clamp experiments using
action potential waveforms show that burst firing depends on small net inward currents that flow after spikes and reflect the net balance
between multiple large currents. Given this, burst firing is surprisingly robust in the face of changes in the magnitude of the underlying
currents from cell to cell. We explored the basis of this robustness by examining the effects of reducing the sodium current, the major
contributor to the postspike inward current. Burst firing persisted in concentrations of tetrodotoxin that produced half-block of sodium
current. This robustness of bursting reflects an acute feedback mechanism whereby waveform changes from the reduced sodium current
(reduced spike height and a hyperpolarizing shift in postspike voltage) cause compensatory decreases in postspike potassium currents.
In particular, reduced spike height reduces calcium entry and subsequent calcium-activated potassium current, and the hyperpolarizing
shift in postspike voltage speeds deactivation of Kv3-like potassium channels. Other experiments examined bursting in Nav1.6 !/! mice,
in which sodium current density is reduced in the long term. Under these circumstances, there was upregulation of both T-type and P-type
calcium current and a change in the balance of calcium current and calcium-activated potassium current such that their net influence
shifted from being inhibitory during bursts in wild-type neurons to excitatory during bursts from Nav1.6 !/! mutant neurons. Thus,
Purkinje neurons have both acute and long-term feedback mechanisms that serve to maintain burst firing when voltage-dependent
sodium conductance is reduced.
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R E V I EW S

CLIMBING FIBRES

Cerebellar afferents that arise
from the inferior olivary
nucleus, each of which forms
multiple synapses with a single
Purkinje cell.

!2 RECEPTOR

A subtype of glutamate receptor
that is expressed selectively in
Purkinje cells.!2 receptors do
not form functional glutamate-
gated ion channels.

METABOTROPIC

A term that describes a receptor
that is associated with G proteins
and exerts its effects through
enzyme activation.

IONOTROPIC

A term that describes a receptor
that is associated with ion
channels and generates electrical
membrane currents.

unless a poststimulus time histogram is constructed for
many repeated trials18. Second, as a single CF impulse
depolarizes a Purkinje cell dendrite for more than 1 s
(REF. 19), it is difficult to see how this signal could form
the basis of a precise time-locked event.

In contrast to the well-timed triphasic tuning that is
found between the two sets of inputs that induce long-
term potentiation (LTP) and LTD in hippocampal
neurons20, the time window for coincidence detection in
the induction of cerebellar LTD seems to be broad — 
in the order of hundreds of milliseconds. This broad
tuning must be based on interactions between certain
prolonged chemical processes that occur after PF and
CF stimulation. Various chemical processes have been
found to occur postsynaptically. Although some pre-
synaptic events have been implicated in the plasticity of
PF synapses under certain experimental conditions21,22,
I focus here on the postsynaptic signal-transduction
events that account for LTD that is induced by the
conjunctive stimulation of CFs and PFs.

PF-evoked signal transduction
FIGURE 2 illustrates the complex signal-transduction
processes that are known to be induced by CF and PF
impulses2,3. When they are stimulated, PFs release 
glutamate as well as nitric oxide (NO)23. The released
glutamate activates AMPA ("-amino-3-hydroxy-
5-methyl-4-isoxazole propionic acid)-type glutamate
receptors (AMPARs), !2 RECEPTORS and type 1 METABOTROPIC

glutamate receptors (mGluR1s) in the subsynaptic
membrane of Purkinje cells. Activation of AMPARs
opens the associated cation channels, allowing the
entry of Na+ ions into the Purkinje cell. This Na+ cur-
rent produces fast excitatory postsynaptic potentials
(EPSPs), which can open voltage-gated Ca2+ channels
(VGCCs) if they are sufficiently large6,24. Even though
AMPARs are typical IONOTROPIC receptors, they are also
associated with a protein tyrosine kinase (PTK) called
Lyn25. Lyn might be related to the PTK that is required
for the induction of LTD in association with protein
kinase C (PKC)26.

The signal-transduction processes that follow the
activation of !2 receptors are still unclear, except that 
!2 receptors are associated with a tyrosine phosphatase27.
More is known about the signalling that follows the acti-
vation of mGluR1s. The activation of this receptor is
linked to the generation of slow EPSPs, which are associ-
ated with the entry of Na+ ions into the cell28.mGluR1 is
also linked to the activation of phospholipase C (PLC
isoforms #2 and #4) through Gq proteins29–31, resulting
in the production of diacylglycerol (DAG) and inositol-
1,4,5-trisphosphate (Ins(1,4,5)P3).DAG in turn activates
PKC, whereas Ins(1,4,5)P3 causes the release of Ca2+ ions
from intracellular stores32. In addition,mGluR1 activa-
tion is linked to the activation of phospholipase A2
(PLA2) through another type of G protein, which results
in the production of arachidonic and oleic acids from
membrane phospholipids.

NO released from PFs diffuses into Purkinje cells and
activates cytosolic guanylyl cyclase, which results in the
production of cyclic GMP. In turn, cGMP activates

originally proposed by Bhalla and Iyengar10, was applied
to LTD by Kuroda and co-workers11.

In this article, available data on LTD — from electrical
impulses to molecular signals — are analysed using the
above-mentioned strategies to establish a functionally
meaningful molecular model of the induction of LTD.

Time window for CF–PF coincidence
A common protocol for inducing LTD is the simultane-
ous stimulation of PFs and CFs 100–600 times at a fre-
quency of 1–4 Hz (REFS 12–14). When stimulation of the
PF follows the paired CF stimulus with a delay of up to
750 ms, LTD induction is maintained, although it 
is attenuated14. When the PF stimulation precedes 
the paired CF stimulation, LTD induction decreases
gradually as the delay increases from 0 ms to –100 ms.
However, when repetitive stimulation is used, the rela-
tionship between CF and PF stimulation becomes com-
plex,because each PF stimulus is related not only to its
paired CF stimulus,but also to those that occur within
the preceding or succeeding 0.25–1 s. This makes the
interpretation of results difficult, but there is no evi-
dence to suggest that a very short time window exists for
the induction of LTD by PF–CF pairing.

Another protocol that can be used to induce cerebel-
lar LTD is to apply a train of pulses to PFs in conjunc-
tion with one to three pulses to the CFs. LTD is induced
effectively even when the PF pulses precede the CF
pulses by up to 200 ms (REFS 15–17). Two further observa-
tions support the view that sharp tuning of the timing
of PFs and CFs is not required for LTD to be induced.
First, CFs discharge at a low, irregular rate of about 1 Hz,
and the timing of CF responses to natural stimuli varies
from trial to trial. The precise timing of CF–PF
responses to natural stimuli cannot be determined
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Figure 1 | Basic neuronal circuit in the cerebellum.
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number of axonal spikes being related only relatively loosely to the
number of somatic spikes across cells (Fig. 6C).

The probability of propagation of individual spikes in the
complex spike was dependent on their relative position within
the complex spike waveform (Fig. 6D). The first spike in the
complex spike exhibited the most reliable propagation (probabil-
ity of 0.96 ! 0.03 at resting firing rates; n " 10). In 30% of
Purkinje cells, only this single spike was propagated down the
axon. The second, third, and fourth spikes in the complex spike
waveform exhibited much lower probabilities of propagation
(0.02 ! 0.02, 0.19 ! 0.11, and 0.55 ! 0.23, respectively), such
that the second and third somatic spikes were usually “skipped”
in the axonal response. As a consequence, the spike frequencies
achieved in the axon during the complex spike were always sub-
stantially lower than at the soma. Within the somatic complex
spike, a minimal ISI of 1.3 ! 0.1 msec was observed (correspond-
ing to a maximal frequency of 805 ! 63 Hz; n " 10), whereas the
minimal ISI observed in the axon was 4.1 ! 0.5 msec (corre-
sponding to a maximal frequency of 267 ! 38 Hz).

Membrane potential influences complex spike propagation
To test whether the propagation of complex spikes can be mod-
ulated by somatic membrane potential, we activated CF input
and used somatic current injection to either hyperpolarize the
neuron to below the threshold for spontaneous firing or depolar-
ize it to increase spike firing. Figure 7A shows a representative
experiment during which the cell was silenced by hyperpolarizing
with steady current. Silencing the neuron (by hyperpolarizing to
#66 ! 1.7 mV; n " 9) typically improved the propagation effi-
ciency of individual spikes within the complex spike, with the
overall propagation probability of axonal spikelets being in-
creased to 54 ! 6% ( p $ 0.05). This was not associated with a
significant increase in the number of axonal spikes in the CS
response (1.7 ! 0.3; p % 0.05), however, because the number of
somatic spikes in the CS was also reduced (to 3.1 ! 0.2 spikes; p $
0.05). The increase in overall propagation efficacy was associated
with improvements in propagation of the third spike in particular
(axon/soma ratio increased to 0.59 ! 0.17; p $ 0.05), with prop-
agation efficacy of the first and second spikes being similar to that
at rest (1.00 and 0, respectively; p % 0.05). Hyperpolarization also
changed the timing of spikes in the axonal response (Fig. 7B),
shortening the interval between the first two axonal spikes to
4.0 ! 0.5 msec from 5.4 ! 0.6 msec (n " 5; p $ 0.05) at rest.

Whereas hyperpolarization improved propagation efficacy of
the complex spike, depolarization had the opposite effect. As
shown in Figure 8A, injection of strong depolarizing current
(sufficient to inactivate simple spike firing) could completely
abolish all axonal spikes associated with the complex spike. When
more modest levels of depolarizing current were delivered, in-
creasing simple spike firing rates to 89 ! 5 Hz (n " 8), the overall
propagation probability of spikes in the CS was decreased to 33 !

Figure 6. Axonal propagation of complex spikes. A, Simultaneous somatic and axonal re-
cording (233 !m from soma) showing axonal propagation of the complex spike (3 sweeps are
overlaid). From four somatic spikes, only two are successfully propagated down the axon. B,
Simultaneous somatic and axonal recording (200 !m from the soma) from another Purkinje
cell exhibiting a more elaborate somatic complex spike; from nine somatic spikes in this sweep,
only two are propagated. C, Correlation between the average number of somatic spikes within
the complex spike versus the number of propagated axonal spikes for 10 different Purkinje cells
(correlation coefficient, r " 0.49). D, Probability of axonal propagation of successive spikes in
the somatic complex spike (n " 5 cells).

Figure 7. Hyperpolarization modulates complex spike propagation. A, Simultaneous re-
cording of CF spikes from the soma and axon (217 !m) of a Purkinje cell hyperpolarized to #65
mV (left panel) or firing spontaneously (right panel). Note the decrease in the first interspike
interval (arrowheads) in the axonal CF response on hyperpolarization. B, The first interspike
interval of propagating CF spikes is dependent on the membrane potential. First interspike
intervals plotted against the membrane potential averaged over 10 msec before the CF stimulus
for the cell shown in A. The step-like transitions in the ISI on depolarization correspond to
successful propagation of the second axonal spike shifting between individual spikelets within
the somatic complex spike.
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experiment during which the cell was silenced by hyperpolarizing
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creased to 54 ! 6% ( p $ 0.05). This was not associated with a
significant increase in the number of axonal spikes in the CS
response (1.7 ! 0.3; p % 0.05), however, because the number of
somatic spikes in the CS was also reduced (to 3.1 ! 0.2 spikes; p $
0.05). The increase in overall propagation efficacy was associated
with improvements in propagation of the third spike in particular
(axon/soma ratio increased to 0.59 ! 0.17; p $ 0.05), with prop-
agation efficacy of the first and second spikes being similar to that
at rest (1.00 and 0, respectively; p % 0.05). Hyperpolarization also
changed the timing of spikes in the axonal response (Fig. 7B),
shortening the interval between the first two axonal spikes to
4.0 ! 0.5 msec from 5.4 ! 0.6 msec (n " 5; p $ 0.05) at rest.
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the complex spike, depolarization had the opposite effect. As
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(sufficient to inactivate simple spike firing) could completely
abolish all axonal spikes associated with the complex spike. When
more modest levels of depolarizing current were delivered, in-
creasing simple spike firing rates to 89 ! 5 Hz (n " 8), the overall
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cording (233 !m from soma) showing axonal propagation of the complex spike (3 sweeps are
overlaid). From four somatic spikes, only two are successfully propagated down the axon. B,
Simultaneous somatic and axonal recording (200 !m from the soma) from another Purkinje
cell exhibiting a more elaborate somatic complex spike; from nine somatic spikes in this sweep,
only two are propagated. C, Correlation between the average number of somatic spikes within
the complex spike versus the number of propagated axonal spikes for 10 different Purkinje cells
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Figure 7. Hyperpolarization modulates complex spike propagation. A, Simultaneous re-
cording of CF spikes from the soma and axon (217 !m) of a Purkinje cell hyperpolarized to #65
mV (left panel) or firing spontaneously (right panel). Note the decrease in the first interspike
interval (arrowheads) in the axonal CF response on hyperpolarization. B, The first interspike
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intervals plotted against the membrane potential averaged over 10 msec before the CF stimulus
for the cell shown in A. The step-like transitions in the ISI on depolarization correspond to
successful propagation of the second axonal spike shifting between individual spikelets within
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Voltage soma
What is the calcium influx caused by the complex spike?

Voltage is constant, but the calcium influx is very variable
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In soma and smooth dendrite calcium influx is very variable

[Ca] proximal dendrite [Ca] smooth dendrite[Ca] soma

CVpeak = 0.44 CVpeak = 0.40 CVpeak = 0.34

What is the calcium influx caused by the complex spike?
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Voltage spiny dendrite

[Ca] spiny dendrite

Conversely, in spiny dendrite calcium influx is very robust!

CVpeak = 0.11

Does this preserve the learning mechanism?
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Calcium transients evoked by PF + CF for 148 PC models

Calcium release model by Doi et al. J. Neurosci. 2005

Induction of LTD is preserved in all 148 PC models

Tanaka et al. Neuron 2007
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Calcium transients evoked by PF + scaled CF for 148 PC models

Calcium release model by Doi et al. J. Neurosci. 2005

Induction of LTD fails for 37% of the models!

Calcium influx in spines 
scaled to get same 

variability as somatic 
calcium influx

Tanaka et al. Neuron 2007

subthreshold



• Calcium influx is very variable and unlikely to be the 
global signal activating the homeostatic sensor.  

• Calcium influx is constrained in spiny dendrites so that 
induction of synaptic plasticity is always possible.

• The models were only constrained by their electrical 
activity, intrinsic excitability must therefore be strongly 
correlated with the capacity to induce synaptic 
plasticity. 
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