Parameter estimation in diffusion processes from observations of first hitting-times

Susanne Ditlevsen

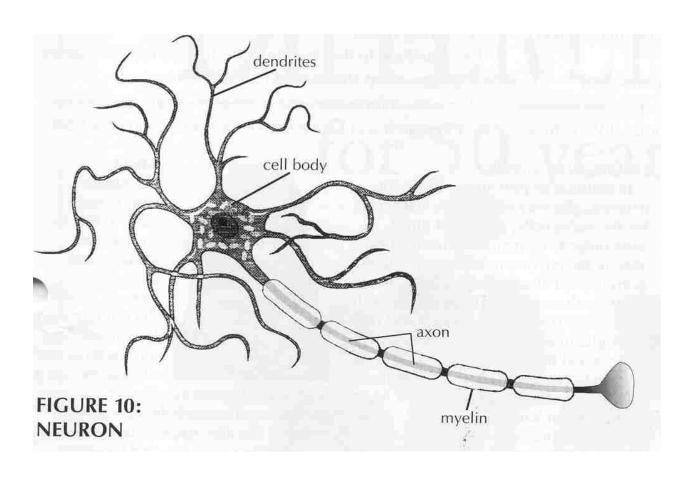
Department of Mathematical Sciences University of Copenhagen, Denmark

Email: susanne@math.ku.dk

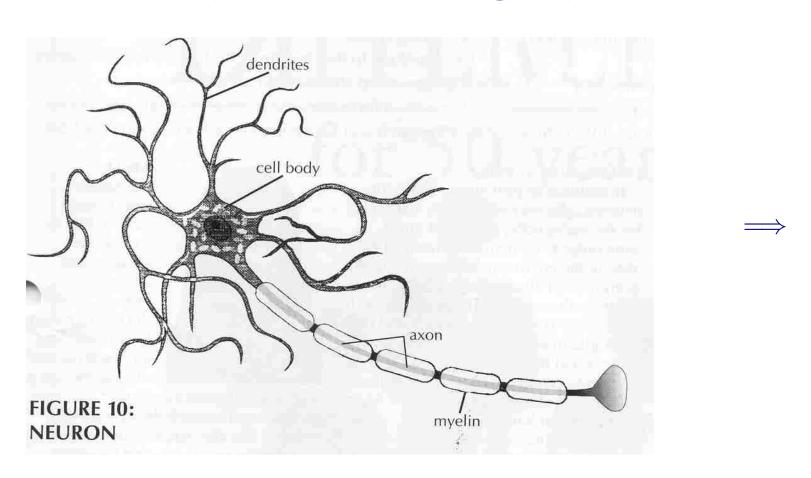
Joint work with Petr Lansky, Academy of Sciences of the Czech Republic, Prague

EPSRC Symposium Workshop on Computational Neuroscience, Warwick, December 8–12, 2008

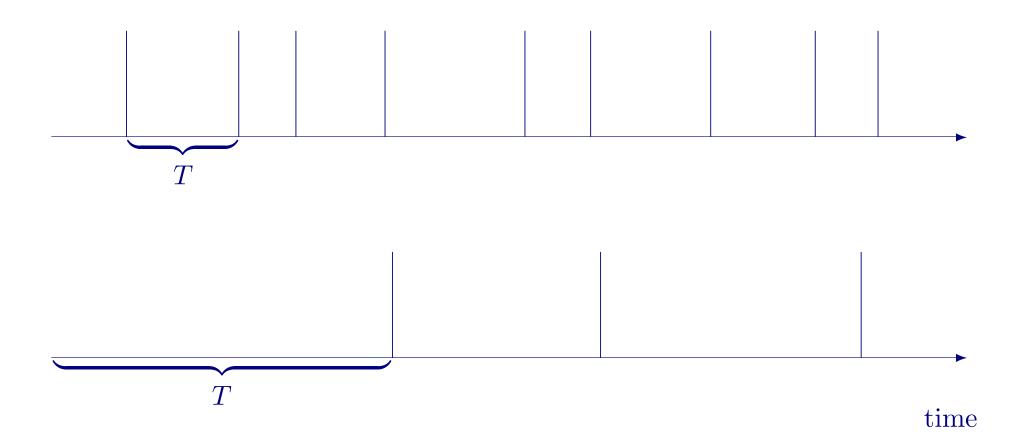
All characteristics of the neuron are collapsed into a single point in space



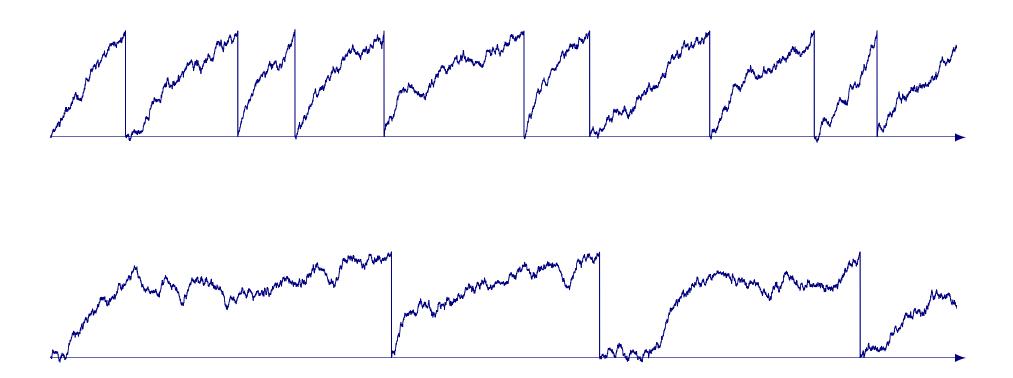
All characteristics of the neuron are collapsed into a single point in space



Data: spiketrains



Underlying process



The model

$$dX_t = \mu(X_t) dt + \sigma(X_t) dW(t) ; X_0 = x_0$$

 X_t : membrane potential at time t after a spike

 x_0 : initial voltage (the reset value following a spike)

An action potential (a spike) is produced when the membrane voltage X_t exceeds a firing threshold

$$S(t) = S \quad > \quad X(0) = x_0$$

After firing the process is reset to x_0 . The interspike interval T is identified with the first-passage time of the threshold,

$$T = \inf\{t > 0 : X_t \ge S\}.$$

Data

We observe the spikes: the first-passage-time of X_t through S:

Data: $\{t_1, t_2, \ldots, t_n\}$ i.i.d. realizations of the random variable T.

Note: There is only information on the time scale, nothing on the scale of X_t . Thus, obviously something is not identifiable in the model from these data, and something has to be assumed known.

Estimation

$$dX_t = \mu(X_t, \theta) dt + \sigma(X_t, \theta) dW(t)$$
 ; $\theta \in \Theta \subseteq \mathbb{R}^p$

Transition density: $y \mapsto f_{\theta}(t-s, x, y)$

Corresponding

distribution function: $F_{\theta}(t-s,x,y) = \int^{y} f_{\theta}(t-s,x,u) du$

$$T = \inf\{t > 0 : X_t \ge S\}.$$

Data: $\{t_1, t_2, \ldots, t_n\}$ i.i.d. realizations of the random variable T.

How do we estimate θ ?

Maximum likelihood estimation

 \dots is possible if we know the distribution of T.

Let $p_{\theta}(t)$ be the probability density function of T.

Recall:

Likelihood function: $L_n(\theta) = \prod_{i=1}^n p_{\theta}(t_i)$

Log-likelihood function: $\log L_n(\theta) = \sum_{i=1}^n \log p_{\theta}(t_i)$

Score function(s): $\partial_{\theta} \log L_n(\theta) = \sum_{i=1}^n \partial_{\theta} \log p_{\theta}(t_i)$

Estimator $\hat{\theta}$ is such that $\partial_{\theta} \log L_n(\hat{\theta}) = 0$

Example: Brownian motion with drift

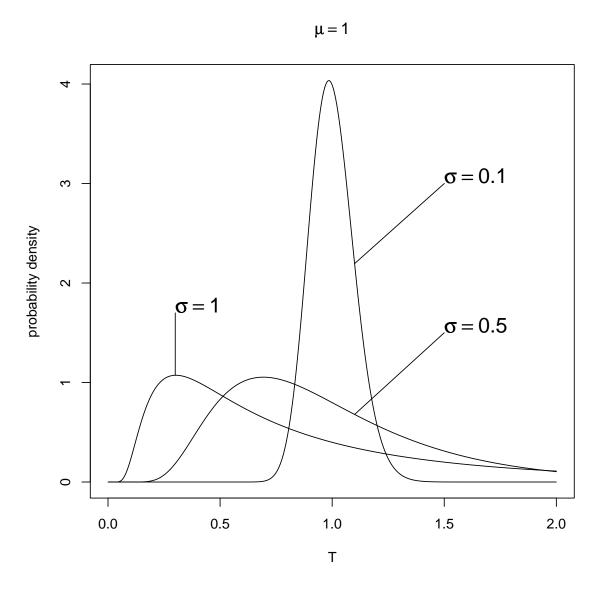
$$dX_t = \mu dt + \sigma dW(t)$$
 ; $\mu > 0, \sigma > 0$; $X_0 = 0 < S$

Then

$$p_{\theta}(t) = \frac{S}{\sqrt{2\pi\sigma^2t^3}} \exp\left(-\frac{(S-\mu t)^2}{2\sigma^2t}\right)$$

Thus

$$L_n(\theta) = \prod_{i=1}^n p_{\theta}(t_i) = \prod_{i=1}^n \left(\frac{S}{\sqrt{2\pi\sigma^2 t_i^3}}\right) \exp\left(-\sum_{i=1}^n \frac{(S - \mu t_i)^2}{2\sigma^2 t_i}\right)$$
$$\log L_n(\theta) = \sum_{i=1}^n \log p_{\theta}(t_i) = \sum_{i=1}^n \log\left(\frac{S}{\sqrt{2\pi\sigma^2 t_i^3}}\right) - \sum_{i=1}^n \frac{(S - \mu t_i)^2}{2\sigma^2 t_i}$$



Score functions:

$$\partial_{\mu} \log L_n(\theta) = \sum_{i=1}^n \frac{(S - \mu t_i)}{\sigma^2}$$

$$\partial_{\sigma^2} \log L_n(\theta) = -\frac{n}{2\sigma^2} + \sum_{i=1}^n \frac{(S - \mu t_i)^2}{2(\sigma^2)^2 t_i}$$

Maximum likelihood estimators:

$$\hat{\mu} = \frac{S}{\overline{t}}$$

$$\hat{\sigma}^2 = S^2 \left(\frac{1}{n} \sum_{i=1}^n \frac{1}{t_i} - \frac{1}{\overline{t}} \right)$$

where

$$\bar{t} = \frac{1}{n} \sum_{i=1}^{n} t_i$$

Example: The Ornstein-Uhlenbeck model

Consider the Ornstein-Uhlenbeck process as a model for the membrane potential of a neuron:

$$dX_t = \left(-\frac{X_t}{\tau} + \mu\right) dt + \sigma dW_t ; X_0 = x_0 = 0.$$

where

 X_t : membrane potential at time t after a spike

 τ : membrane time constant, reflects spontaneous voltage decay (>0)

 μ : characterizes constant neuronal input

 σ : characterizes erratic neuronal input

 x_0 : initial voltage (the reset value following a spike)

The conditional expectation is

$$E[X_t|X_0=0] = \mu \tau (1 - e^{-t/\tau})$$

The conditional variance is

$$Var[X_t|X_0 = x_0] = \frac{\tau \sigma^2}{2} \left(1 - e^{-2t/\tau}\right)$$

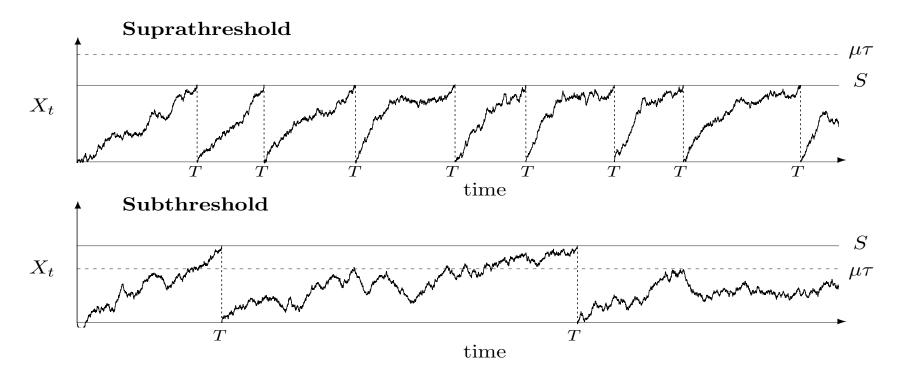
Thus
$$(X_t|X_0=0) \sim N(\mu \tau (1-e^{-t/\tau}), \frac{\tau \sigma^2}{2} (1-e^{-2t/\tau})).$$

Asymptotically (in absence of a threshold) $X_t \sim N(\mu\tau, \tau\sigma^2/2)$.

Two firing regimes:

Suprathreshold: $\mu \tau \gg S$ (deterministic firing - the neuron is active also in the absence of noise)

Subthreshold: $\mu \tau \ll S$ (firing is caused only by random fluctuations (stochastic or Poissonian firing)



Model parameters: $\mu, \sigma, \tau, x_0, S$

Assumed known:

Intrinsic or characteristic parameters of the neuron: τ, x_0, S

$$\tau \approx 5 - 50 \text{ msec}, S - x_0 \approx 10 \text{ mV}$$
; (We set $x_0 = 0$)

To be estimated:

Input parameters: μ (in [mV/msec]) and σ (in [mV/ \sqrt{msec}])

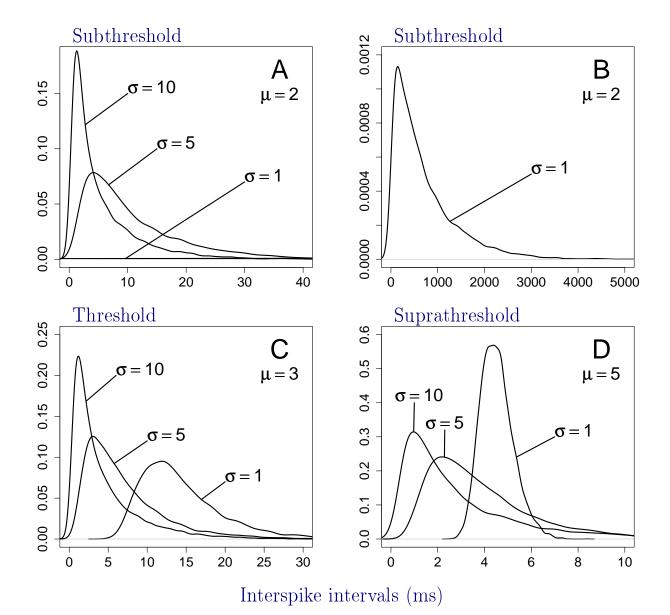
$$dX_t = \left(-\frac{X_t}{\tau} + \mu\right) dt + \sigma dW(t); \tau > 0, \mu \in \mathbb{R}, \sigma > 0; X_0 = 0 < S$$

The distribution of $T = \inf\{t > 0 : X_t \ge S\}$ is only known if $S = \mu \tau$ (the asymptotic mean of X_t in absence of a threshold):

$$p_{\theta}(t) = \frac{2S \exp(2t/\tau)}{\sqrt{\pi \tau^3 \sigma^2} (\exp(2t/\tau) - 1)^{3/2}} \exp\left(-\frac{S^2}{\sigma^2 \tau (\exp(2t/\tau) - 1)}\right)$$

Maximum likelihood estimator ($\mu = S/\tau$ by assumption):

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n \frac{2S^2}{\tau(\exp(2t_i/\tau) - 1)}$$



We reformulate to the equivalent dimensionless form

$$d\left(\frac{X_t}{S}\right) = \left(-\frac{X_t}{S} + \frac{\mu\tau}{S}\right)d\left(\frac{t}{\tau}\right) + \frac{\sigma\sqrt{\tau}}{S}d\left(\frac{W_t}{\sqrt{\tau}}\right)$$

or

$$dY_s = (-Y_s + \alpha) ds + \beta dW_s, \qquad Y_0 = 0$$

where

$$s = \frac{t}{\tau}, Y_s = \frac{X_t}{S}, W_s = \frac{W_t}{\sqrt{\tau}}, \alpha = \frac{\mu\tau}{S}, \beta = \frac{\sigma\sqrt{\tau}}{S}$$

and
$$T/\tau = \inf\{s > 0 : Y_s \ge 1\}.$$

$$dY_s = (-Y_s + \alpha) ds + \beta dW_s, Y_0 = 0$$

$$E[Y_s | Y_0 = 0] = \alpha(1 - e^{-s})$$

$$Var[Y_t | Y_0 = 0] = \frac{1}{2}\beta^2(1 - e^{-2s})$$

Let $f_{T/\tau}(s)$ be the density of T/τ .

An exact expression is only known for $\alpha = 1$:

$$f_{T/\tau}(s)_{\alpha=1} = \frac{2e^{2s}}{\sqrt{\pi}\beta(e^{2s}-1)^{3/2}} \exp\left(-\frac{1}{\beta^2(e^{2s}-1)}\right)$$

The maximum likelihood estimator:

$$\alpha = 1: \quad \check{\beta}^2 = \frac{1}{N} \sum_{i=1}^{N} \frac{2}{e^{2s_i} - 1}$$

The Laplace transform of T:

$$E\left[e^{kT/\tau}\right] = \frac{\exp\left\{\frac{\alpha^2}{2\beta^2}\right\}D_k\left(\frac{\sqrt{2}\alpha}{\beta}\right)}{\exp\left\{\frac{(\alpha-1)^2}{2\beta^2}\right\}D_k\left(\frac{\sqrt{2}(\alpha-1)}{\beta}\right)} = \frac{H_k\left(\frac{\alpha}{\beta}\right)}{H_k\left(\frac{(\alpha-1)}{\beta}\right)}$$

for k < 0, where $D_k(\cdot)$ and $H_k(\cdot)$ are parabolic cylinder and Hermite functions, respectively.

Ricciardi & Sato, 1988 derived series expressions for the moments of T. In particular

$$E[T/\tau] = \frac{1}{2} \sum_{n=1}^{\infty} \frac{2^n}{n!} \frac{(1-\alpha)^n - (-\alpha)^n}{\beta^n} \Gamma\left(\frac{n}{2}\right)$$

The expression is difficult to work with, especially if $|\alpha| \gg 1$ (strongly sub- or suprathreshold) because of the canceling effects in the alternating series. The expression for the variance includes the digamma function also.

Inoue, Sato & Ricciardi, 1995, proposed computer intensive methods of estimation by using the empirical moments of T.

Another approach: Martingales (Laplace transform)

$$dX_t = \left(-\frac{X_t}{\tau} + \mu\right)dt + \sigma dW_t ; X_0 = x_0 = 0;$$

with solution

$$X_t = \mu \tau (1 - e^{-\frac{t}{\tau}}) + \sigma \int_0^t e^{-\frac{(t-s)}{\tau}} dW_s$$

Define the martingale:

$$Y_t = (\mu \tau - X_t)e^{\frac{t}{\tau}} = \mu \tau - \sigma \int_0^t e^{\frac{s}{\tau}} dW_s$$

If M(t) is a martingale, then $E[M(T \wedge t)] = E[M(0)]$

We need more than that:

Doob's Optional-Stopping Theorem

Let T be a stopping time and let M(t) be a uniformly integrable martingale. Then E[M(T)] = E[M(0)].

 Y_t is obviously not uniform integrable (UI) (it is equivalent to a Brownian Motion). CLAIM:

$$Y^T(t) := Y(T \wedge t),$$

the process stopped at T, is UI in certain part of the parameter region. We show that

$$E[|Y_t^T|^p] < K$$

for all t and some p > 1 and some positive $K < \infty$.

First observe that

$$Y_{T \wedge t} = (\mu \tau - X_{T \wedge t}) e^{\frac{(T \wedge t)}{\tau}} \ge (\mu \tau - S) e^{\frac{(T \wedge t)}{\tau}} > 0$$

for all t if $\mu\tau > S$ (suprathreshold regime).

Set p = 2. We have

$$E[|Y_t^T|^2] = E[(Y_t^T)^2]$$

$$= E[(\mu \tau - \sigma \int_0^{T \wedge t} e^{\frac{s}{\tau}} dW_s)^2]$$

$$= (\mu \tau)^2 - 0 + \sigma^2 E[(\int_0^{T \wedge t} e^{\frac{s}{\tau}} dW_s)^2]$$

$$M(t) = \left(\int_0^t e^{\frac{s}{\tau}} dW_s \right)^2 - \int_0^t e^{\frac{2s}{\tau}} ds$$

is a martingale due to Itôs isometry:

$$E(\int_0^t f(s,\omega)dW_s)^2 = \int_0^t E[f(s,\omega)^2]ds$$

such that $E[M(T \wedge t)] = E[M(0)] = 0$. This yields

$$E[(\int_0^{T \wedge t} e^{\frac{s}{\tau}} dW_s)^2] = E[\int_0^{T \wedge t} e^{\frac{2s}{\tau}} ds]$$

$$= E[\frac{\tau}{2} (e^{\frac{2(T \wedge t)}{\tau}} - 1)]$$

$$\leq \frac{\tau}{2} E[e^{\frac{2T}{\tau}}]$$

Thus, we have:

$$E[|Y_t^T|^2] \le (\mu \tau)^2 + \sigma^2 \frac{\tau}{2} E[e^{\frac{2T}{\tau}}]$$

We need to show that this is finite.

Define the martingale (to be trusted):

$$Y_2(t) = (\mu \tau - X(t))^2 e^{\frac{2t}{\tau}} + \frac{\tau \sigma^2}{2} (1 - e^{\frac{2t}{\tau}})$$

such that

$$E[Y_2(T \wedge t)] = E[Y_2(0)] = (\mu \tau)^2$$

which yields

$$(\mu\tau)^{2} = E[(\mu\tau - X(T \wedge t))^{2}e^{\frac{2(T \wedge t)}{\tau}} + \frac{\tau\sigma^{2}}{2}(1 - e^{\frac{2(T \wedge t)}{\tau}})]$$

$$\geq \left((\mu\tau - S)^{2} - \frac{\tau\sigma^{2}}{2}\right)E[e^{\frac{2(T \wedge t)}{\tau}}] + \frac{\tau\sigma^{2}}{2}$$

If
$$(\mu \tau - S)^2 > \frac{\tau \sigma^2}{2}$$
 then

$$\frac{(\mu\tau)^2 - \frac{\tau\sigma^2}{2}}{(\mu\tau - S)^2 - \frac{\tau\sigma^2}{2}} \ge E[e^{\frac{2(T\wedge t)}{\tau}}].$$

Taking limits on both sides we obtain

$$\frac{(\mu\tau)^2 - \frac{\tau\sigma^2}{2}}{(\mu\tau - S)^2 - \frac{\tau\sigma^2}{2}} \geq \lim_{t \to \infty} E[e^{\frac{2(T \wedge t)}{\tau}}] = E[e^{\frac{2T}{\tau}}]$$

since T is almost surely finite.

BINGO! Doob is good.

If $S < \mu \tau$ (suprathreshold regime) and $(\mu \tau - S)^2 > \frac{\tau \sigma^2}{2}$ then

$$E[Y^T(0)] = E[Y^T(T)]$$

such that

$$\mu \tau = E[Y^T(0)] = E[Y^T(T)]$$

$$= E[(\mu \tau - X(T))e^{\frac{T}{\tau}}]$$

$$= (\mu \tau - S)E[e^{\frac{T}{\tau}}].$$

Beautiful result:

$$E[e^{\frac{T}{\tau}}] = \frac{\mu\tau}{\mu\tau - S}$$

With a little more work:

$$E[e^{\frac{2T}{\tau}}] = \frac{(\mu\tau)^2 - \frac{\tau\sigma^2}{2}}{(\mu\tau - S)^2 - \frac{\tau\sigma^2}{2}}$$

Explicit expressions for the parameters:

$$\mu = \frac{SE[e^{\frac{T_S}{\tau}}]}{\tau(E[e^{\frac{T_S}{\tau}}] - 1)}$$

$$\sigma^2 = \frac{2S^2 Var[e^{\frac{T_S}{\tau}}]}{\tau(E[e^{\frac{2T_S}{\tau}}] - 1)(E[e^{\frac{T_S}{\tau}}] - 1)^2}$$

Straightforward estimators:

$$\hat{E}[Z] = \frac{1}{n} \sum_{i=1}^{n} e^{t_i/\tau} = Z_1$$

$$\hat{E}[Z^2] = \frac{1}{n} \sum_{i=1}^{n} e^{2t_i/\tau} = Z_2$$

where t_i , i = 1, ..., n, are the i.i.d. observations of the FPT's. Moment estimators of the parameters are then

$$\hat{\mu} = \frac{SZ_1}{\tau(Z_1 - 1)}$$

$$\hat{\sigma}^2 = \frac{2S^2(Z_2 - Z_1^2)}{\tau(Z_2 - 1)(Z_1 - 1)^2}.$$

Another approach: The Fortet integral equation

Set S = 1. The probability

$$P[X_t > 1 | X_0 = x_0] = \int_{y>1} f_{\theta}(t, x_0, y) dy = 1 - F_{\theta}(t, x_0, 1) = LHS(t)$$

can alternatively be calculated by the transition integral

$$P[X_t > 1 | X_0 = x_0] = \int_0^t p_{\theta}(u) (1 - F_{\theta}(t - u, 1, 1)) du = \text{RHS}(t)$$

Parameter estimation

Sample t_1, \ldots, t_n of independent observations of T. Fix θ .

RHS can be estimated at t from the sample by the average

RHS
$$(t; \theta) = \int_0^t p_{\theta}(u) \left(1 - F_{\theta}(t - u, 1, 1)\right) du$$

RHS_{emp}
$$(t; \theta) = \frac{1}{n} \sum_{i=1}^{n} (1 - F_{\theta}(t - t_i, 1, 1)) 1_{\{t_i \le t\}}$$

since for fixed t it is the expected value of

$$1_{T \in [0,t]} (1 - F_{\theta}(t-T,1,1;\theta))$$

with respect to the distribution of T.

Parameter estimation

Error measure:

$$L(\theta) = \sup_{t>0} |(RHS_{emp}(t) - LHS(t))/\omega|$$

Estimator:

$$\tilde{\theta} = \arg\min_{\theta} L(\theta)$$

Fortet integral equation

Let f(s) be the density function for the time t/τ from zero to the first crossing of the level 1 by Y. The probability

$$P[Y(s) > 1] = \Phi\left(\frac{\alpha(1 - e^{-s}) - 1}{\sqrt{1 - e^{-2s}}\beta/\sqrt{2}}\right)$$

can alternatively be calculated by the transition integral

$$P[Y(s) > 1] = \int_0^s f(u) \, \Phi\left(\frac{\alpha - 1}{\beta / \sqrt{2}} \frac{1 - e^{-(s - u)}}{\sqrt{1 - e^{-2(s - u)}}}\right) du$$

Parameter estimation

LHS(s) =
$$\Phi\left(\frac{\alpha(1-e^{-s})-1}{\sqrt{1-e^{-2s}}\beta/\sqrt{2}}\right) = \int_0^s f(u) \Phi\left(\frac{\alpha-1}{\beta/\sqrt{2}}\sqrt{\frac{1-e^{-(s-u)}}{1+e^{-(s-u)}}}\right) du = RHS(s)$$

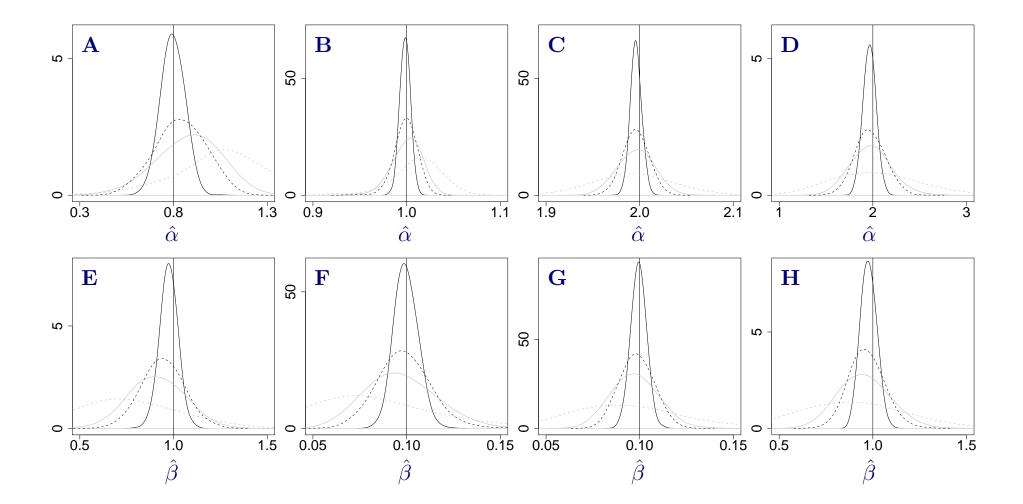
Sample: $s_1 \leq s_2 \leq \ldots \leq s_n$, iid observations of T/τ .

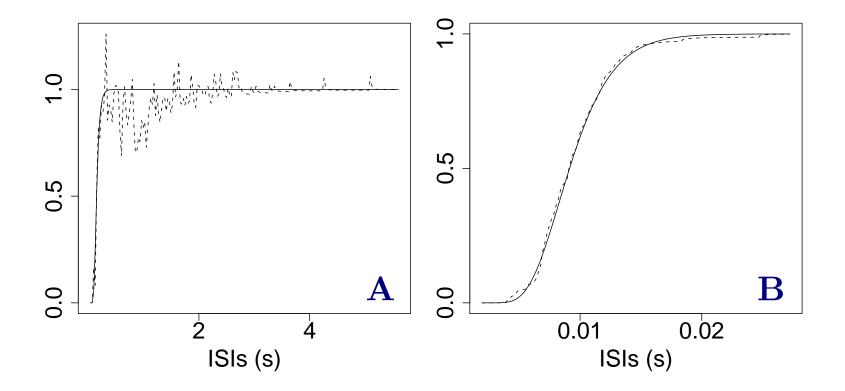
RHS(s)
$$\approx \frac{1}{n} \sum_{i=1}^{n} \Phi\left(\frac{\alpha - 1}{\beta/\sqrt{2}} \sqrt{\frac{1 - e^{-(s - s_i)}}{1 + e^{-(s - s_i)}}}\right) 1_{\{s_i \le s\}}$$

since it is the expected value of

$$1_{U \in [0,s]} \Phi\left(\frac{\alpha - 1}{\beta / \sqrt{2}} \sqrt{\frac{1 - e^{-(s - U)}}{1 + e^{-(s - U)}}}\right)$$

with respect to the distribution of $U = T/\tau$ for given α and β .





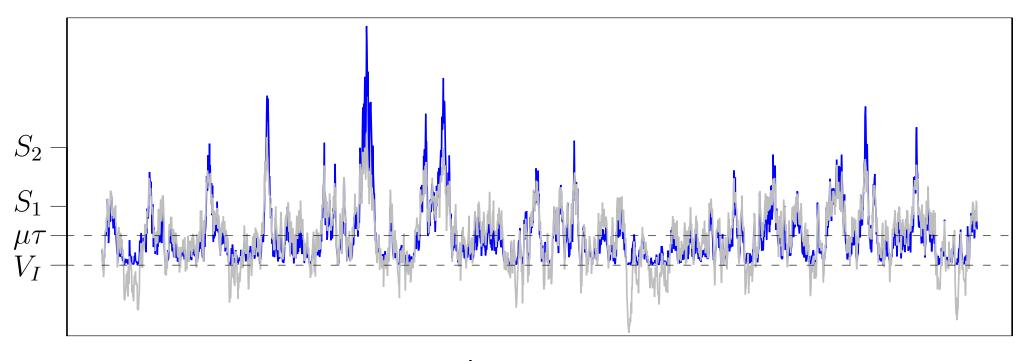
Figur 1: Auditory neurons. A: Spontaneous record; $\hat{\alpha}=0.85; \hat{\beta}=0.09.$ B: Stimulated record; $\hat{\alpha}=4.8; \hat{\beta}=0.63.$ Note different time axes.

Feller process

$$dY_s = (-Y_s + \alpha) ds + \frac{\beta}{\sqrt{\alpha}} \sqrt{Y_s} dW_s$$

$$E[Y_s|Y_0 = y_0] = \alpha + (y_0 - \alpha)e^{-s}$$

$$Var[Y_s|Y_0 = y_0] = \frac{\beta^2}{2}(1 - e^{-s})\left[1 + \left(\frac{2y_0}{\alpha} - 1\right)e^{-s}\right]$$



time

Ditlevsen & Lansky, 2006 give the moments

$$E[e^{T/\tau}] = \frac{\alpha - y_0}{\alpha - 1} \quad \text{if} \quad \alpha > 1$$

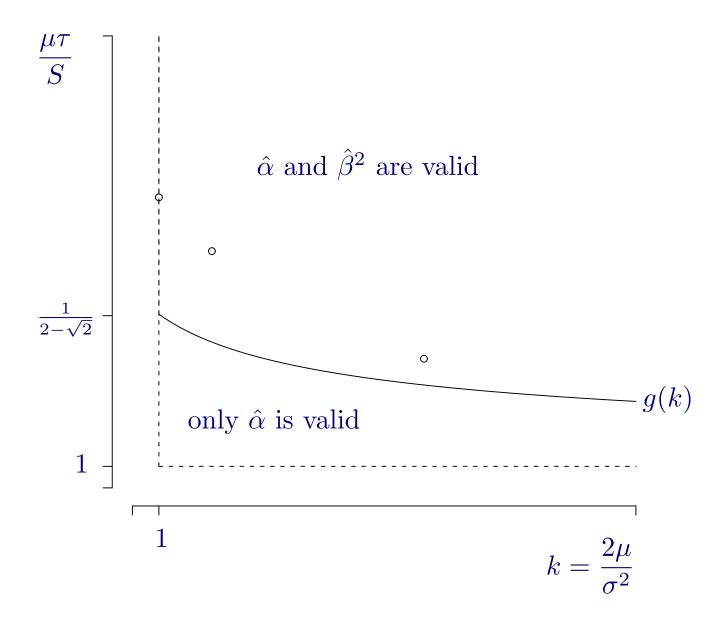
$$E[e^{2T/\tau}] = \frac{2\alpha(\alpha - y_0)^2 + \beta^2(\alpha - 2y_0)}{2\alpha(\alpha - 1)^2 + \beta^2(\alpha - 2)} \quad \text{if } \sqrt{1 + 2(\alpha/\beta)^2} \quad < 1 + \frac{2\alpha(\alpha - 1)}{\beta^2}$$

Moment estimators:

$$\hat{\alpha} = \frac{Z_1 - y_0}{Z_1 - 1}$$

and

$$\hat{\beta}^2 = \frac{2(1-y_0)^2(Z_2 - Z_1^2)}{2(Z_1 - 1)(Z_2 - y_0) - (Z_1 - y_0)(Z_2 - 1)} \hat{\alpha}$$



Feller process

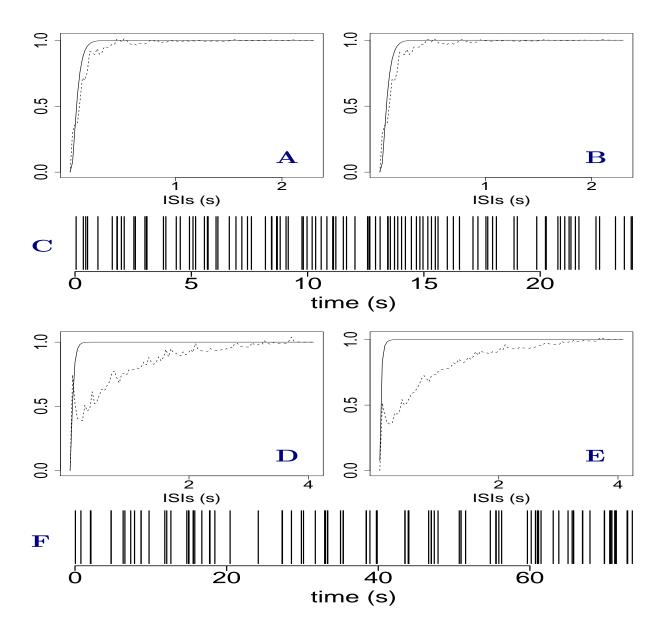
$$dY_s = (-Y_s + \alpha) ds + \frac{\beta}{\sqrt{\alpha}} \sqrt{Y_s} dW_s$$

$$E[Y_s | Y_0 = y_0] = \alpha + (y_0 - \alpha)e^{-s}$$

$$Var[Y_s | Y_0 = y_0] = \frac{\beta^2}{2} (1 - e^{-s}) \left[1 + \left(\frac{2y_0}{\alpha} - 1 \right) e^{-s} \right]$$

Chapman-Kolmogorov integral equation:

$$1 - F_{\chi^2}[a(s), \nu, \delta(s, y_0)] = \int_0^s f(u) \{1 - F_{\chi^2}[a(s - u), \nu, \delta(s - u, 1)]\} du$$
$$a(s) = (4\alpha)/\beta^2 (1 - e^{-s}), \ \delta(s, y_0) = (4\alpha y_0/\beta^2)[e^{-s}/(1 - e^{-s})] \text{ and }$$
$$\nu = 4(\alpha/\beta)^2.$$



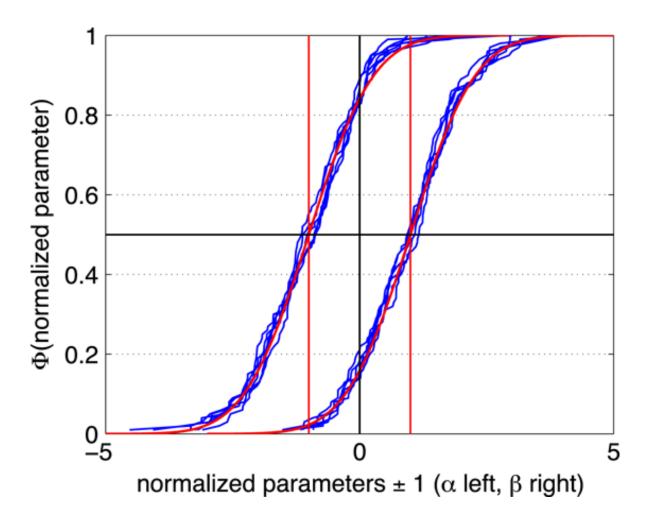


Fig. 2. Normalized empirical distribution functions of the sample of 100 joint estimates of α and β compared to the standardized normal distribution function.

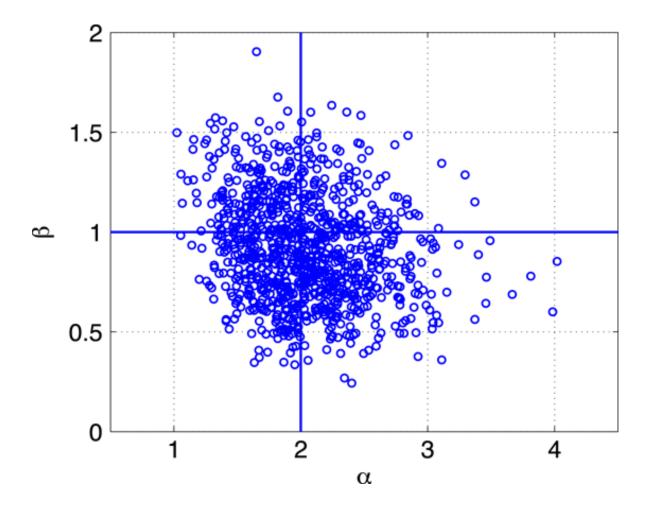


Fig. 3. Scatterplots of the 996 pairs of estimates of (α, β) , each estimated from a sample of 10 simulated first-passage times corresponding to the true values $\alpha = 2$ and $\beta = 1$.

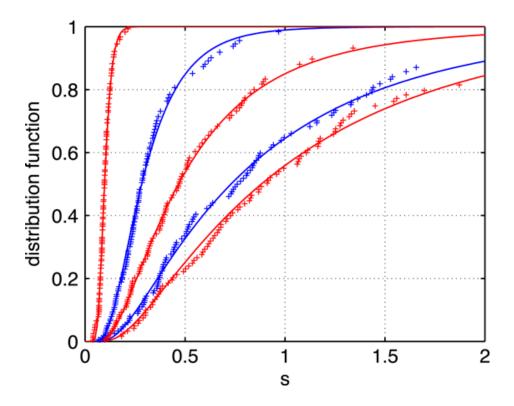
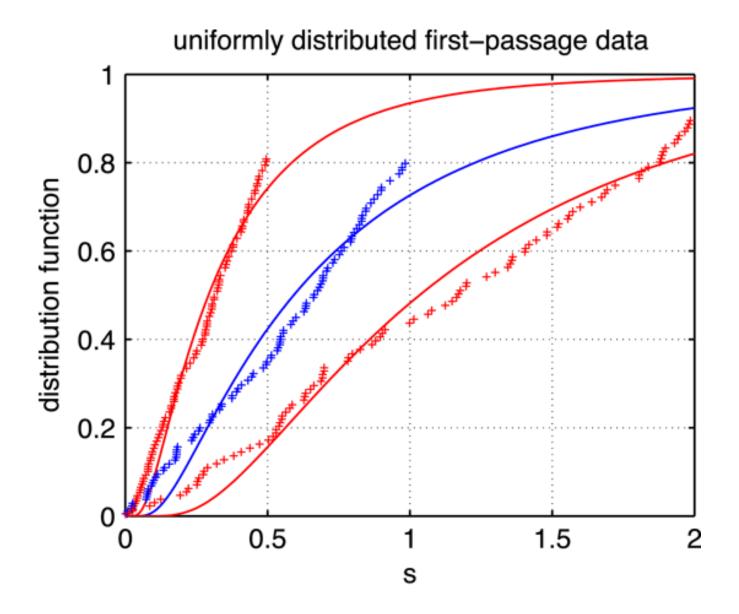


Fig. 5. Comparison of the (normalized) left-hand side of the integral equation (25) (smooth curves) with the empirical (normalized) right-hand side given by (26) for five simulated samples of 100 first-passage times of the OU process of the level 1 corresponding to the true α -values 1, 2, 3, 4, 11, respectively, and the true $\beta = 1$ (right to left). For these samples the estimates of (α, β) according to (29) are (1.212, 0.926), (1.677, 0.996), (2.657, 1.039), (4.055, 1.029), (10.801, 0.956), respectively.



truncated normal first-passage times

