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Protein transport

synaptic plasticity

cortical
development

synaptogenesis

protein
trafficking

neurodegeneration

learning and
memory

I Proteins must be transported long distances along dendrites
and axons

I Protein transport crucial in synapse formation and plasticity

I Certain neurodegenerative diseases involve a breakdown in
protein transport
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Outline

I Protein receptor trafficking and synaptic plasticity

I Cable theory of receptor trafficking

I Motor transport of mRNA
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Dendritic spines

I Most excitatory synapses are located in small mushroom–like
appendages called dendritic spines which are rich in actin.

I Associated neurotransmitter is glutamate (Glu).
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Glutamate (Glu) receptors

I Two major types of Glu receptor: AMPA and NMDA

I Binding of Glu receptors opens AMPA ion channels leading to
depolarization

I Binding of Glu + sufficient depolarization opens NMDA ion
channels leading to influx of calcium
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Long-term potentiation/depression

I High frequency (100 Hz) stimulus induces LTP

I Low frequency (1Hz) stimulus induces LTD
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Separation of time-scales

I Induction: Calcium signal via NMDA induces action of
kinases and phosphotases

I Expression: (De)Phosphorylation of AMPAR receptors
regulates their trafficking and their conductance state

I Maintenance: Persistent changes require protein synthesis
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Regulation of AMPAR trafficking

I A major expression mechanism for LTP/LTD is a
Ca2+-induced change in the number of synaptic AMPARs
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Various mechanisms of receptor trafficking

1
2 3

4

5

1. Newly synthesized proteins inserted in cell surface

2. Lateral surface diffusion along dendrite

3. Surface entry into spine

4. Recycling with intracellular pools/binding to scaffolding
proteins

5. Motor transport of mRNA and local synthesis of AMPAR
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Single-particle tracking

(Choquet and Triller, Nat Rev. Neurosci. 2003)

I Sub-µm latex bead is bound to a receptor using ligands
(antibodies or scaffolding proteins) and imaged using lasers

I GFP tags reveal regions of high receptor concentration -
coincide with confinement domains (red)
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Inactivation and recovery of surface receptors

Passafaro et al (Nature 2001)

I Transfect AMPAR with an immunoflourescent tag (HA/T)

I Reduce temperature to temporarily stop trafficking

I Treat neuron with thrombin to eliminate surface staining of
HA/T

I Washout thrombin and return to normal temperatures:
surface expression of HA/T recovers in 30 min.
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Outline

I Protein receptor trafficking and synaptic plasticity

I Cable theory of receptor trafficking

I Motor transport of mRNA
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Single–spine model

R, Q: free and bound receptor concentrations in synapse

C: number of intracellular receptors

k, σrec, σdeg, σ: rates of endo/exocytosis, deg/syn

ω±: hopping rates in and out of synapse

α, β: rates of binding/unbinding to scaffolding proteins

ω+

Q

α β

AMPA receptor

scaffolding protein

A B

EXOEND

DEG k

σrec
CR

σdeg

σ

synaptic membrane intracellular pool

ω−
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I Kinetic equations

a
dR

dt
= ω+U − ω−R − kR + σrecC − α[Z − Q]R + βQ

a
dQ

dt
= α[Z − Q]R − βQ

dC

dt
= −σrecC − σdegC + kR + σ

I U is dendritic receptor concentration at spine boundary

I Z is concentration of scaffolding proteins

I a is area of synapse
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I Adiabatic approximation

Q(t) =
αZR(t)

αR(t) + β

I Reduced single-spine model

a
dR

dt
= ω+U − ω−R − kR + σrecC

dC

dt
= −σrecC − σdegC + kR + σ

I Strength of a synapse

W = a[gRR + gQQ]

where gR , gQ are conductances of free and bound AMPARs
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Multi-spine diffusion–trapping model3

x = 0

spine

Js 

DEG

END
EXO

receptor

scaffolding
protein

x = L

I Consider a dendritic cable of circumference l and length L.

I Somatic flux Js at x = 0. Reflecting BC at x = L

3Bressloff et. al. PRE 2007, SIAM J. Appl. Math. 2008
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1D Continuum model4

I Assume uniform concentration around circumference of cable

I Represent fluxes between spines and cable using Dirac delta
functions:

∂U

∂t
= D

∂2U

∂x2
− ρ(x)[ω+U(x , t)− ω−R(x , t)] ,

with

ρ(x) =
1

2πl

N∑
j=1

δ(x − xj )

I Continuum approximation: take ρ(x) to be a smooth function
so that we obtain a 1D cable equation.

4Earnshaw and Bressloff J. Comp Neurosci 2008, Bressloff 2009
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x = 0 x = L

A.

U(x,t)JS 

k

σrec
C(x,t)R(x,t)

σdeg

σ

J(x,t)

B.

J(x,t)

synaptic membrane intracellular pool

I Transverse current

J(x , t) = ω+U(x , t)− ω−R(x , t)

I Basal parameter values

k = 10−3µm2s−1, σrec = 10−3s−1, σrec = 10−5s−1,D = 0.1µm2s−1
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Steady–state cable equation

I Uniform spine density ρ0 = N/Ll :

d2U

dx2
− ρ0ω

D
[U − R] = 0

with

ω =
ω+k(1− Λ)

ω− + k(1− Λ)
, R =

ω−
ω+

Λσ

k(1− Λ)
, Λ =

σrec

σrec + σdeg
.

I Solution is

U(x) = ZJS
cosh(γ[x − L])

sinh(γL)
+ R

where Z is characteristic impedance of cable and ξ ≡ γ−1 is a
diffusive space constant:

γ =

√
ρ0ω

D
, Z =

1

lDγ
.
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I Diffusion from soma is insufficient to supply distal synapses
with receptors

I Source at soma favors proximal synapses. Synaptic democracy
requires non-uniform spines
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I Given solution U(x) to cable equation, the free synaptic
receptor concentration is

R(x) =
ω+U(x) + Λσ

ω− + k(1− Λ)

I The steady–state synaptic weight is then

W (x) = a(x)

[
gRR(x) + gQ

α(x)Z (x)R(x)

α(x)R(x) + β(x)

]
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Heterosynaptic interactions

I Spine parameters can be classified according to whether or
not they have a nonlocal effect on steady-state receptor
numbers mediated by diffusion

I Synaptic parameters are purely local: rates of
binding/unbinding, number of binding sites, area of synapse

I Parameters of constitutive recycling are nonlocal: rates of
exo/endocytosis, local production and degradation

I If the expression of LTP/LTD involves changes in number of
binding sites, then receptor diffusion unlikely to mediate
heterosynaptic plasticity
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Local increase in σ Local increase in σdeg

I Increasing local production rate σ for spines between 90µm
and 110µm leads to a global increase in receptor numbers.

I Increasing degradation rate σdeg leads to a global reduction in
receptor numbers

Paul C Bressloff Mathematical models of protein trafficking in neurons



0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

distance from soma [µm] 

re
ce

p
to

r 
n

u
m

b
er

 o
r

co
n

ce
n

tr
at

io
n

 [
µm

-2
]

20

40

60

80

100

120

0 20 40 60 80 100 120 140 160 180 200

distance from soma [µm] 

Local increase in k Local decrease in σrec

intracellular
spine
dendrite

I Increasing rate of endocytosis k or decreasing rate of recycling
σrec for spines between 90µm and 110µm leads to a global
decrease in receptor numbers.
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Green’s functions

I Response to a time–dependent surface current source I(x , t)
switched on at t = 0:

A(x , t) =

∫ t

0

∫ L

0
GA(x , y ; t − t ′)I(y , t ′)dydt ′

for A = U,R,C and A(x , 0) = 0.

I Green’s function GA(x , x0; t) is probability density that at time
t a single labeled receptor is at position x and in state A given
that at t = 0 it was injected into dendritic surface at x0

I Can be generalized to a time–dependent modification of
constitutive recycling induced by synaptic activity.
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I Plots of Green’s functions for x0 = L/2:
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I Dependence of GU on diffusive coupling ω.
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I Let PA(t) denote probability to be in state A at time t:

PA(t) =

∫ L

0
GA(x , L/2; t)dx
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“Sum–over–trips” on dendritic trees

dendrites

soma
T

B

I Each branch is uniform

I All terminal nodes are closed

I Continuity of receptor concentration at branch nodes

I Conservation of current at branch nodes
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I Use Laplace transforms on jth branch

d2Ũj

dx2
− Ξj (s)Ũj (x , s) = −

Ĩj (x , s)

D

I Perform the rescalings

x → X = γj (s)x , Lj → Lj (s) = γj (s)Lj

with γj (s) =
√

Ξj (s) so that

d2Ũj

dX 2
− Ũj (X , s) = −

Ĩj (X , s)

D
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I At each branch node

Ũi (0, s) = Ũj (0, s)

for all pairs (i , j) radiating from the node and

∑
j

zj (s)
∂Ũj

∂X

∣∣∣∣∣
X=0

= 0, zj (s) = ljDγj (s),

where the sum is over all branches j connected to the node.

I At all terminal modes

∂Ũj

∂X

∣∣∣∣∣
X=Lj

= 0.

Paul C Bressloff Mathematical models of protein trafficking in neurons



I General solution is of the form

Ũi (X , s) =
∑
j∈T

∫ Lj (s)

0
Gij (X ,Y ; s)Ĩj (Y , s)dY

I The Green’s function Gij (X ,Y ; s) satisfies the homogeneous
equation

d2Gij (X ,Y ; s)

dX 2
− Gij (X ,Y ; s) = − 1

D
δi ,jδ(X − Y ),

with the same boundary conditions as Ũi (X , s) for fixed j ,Y .
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I Using the “sum–over–trips” method5 it can be shown that

Gij (X ,Y ; s) =
∑
trips

Atrip(s)G∞(Ltrip(i , j ,X ,Y , s)),

where G∞(X ) is Green’s function for an infinite cable:

G∞(X ) =
e−|X |

2D
,

and Ltrip(i , j ,X ,Y , s) is the length (in rescaled coordinates)
of a path along the tree starting at the point X on branch i
and ending at the point Y on branch j .

I Sum restricted to a special class of paths or trips

5Abbott et. al. 1991; Bressloff et. al. 1996; Coombes et. al. 2007,
Bressloff 2009
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Definition:

A trip from (X , i) to (Y , j) may start out in either direction along
branch i but it can subsequently change direction only at a branch
or terminal node. A trip is always reflected back at a terminal
node, whereas at a branch node it may be transmitted to another
branch or reflected back. A trip may pass through the points (X , i)
and (Y , j) an arbitrary number of times as long as it starts at
(X , i) and ends at (Y , j).

m

n

2pn

2pm−1

A.

B.
± 1
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For each trip, the associated amplitude Atrip is calculated
according to the following rules:

1. Initially take Atrip(s) = 1.

2. For every branch node at which the trip passes from an initial
segment m to a different segment n, n 6= m, multiply Atrip(s)
by a factor 2pn(s)

3. For every branch node at which the trip is reflected back along
the same segment m, multiply Atrip(s) by a factor 2pm(s)− 1

4. For every closed (open) terminal node, multiply Atrip(s) by a
factor +1 (−1)

The factor pm is given by

pm(s) =
zm(s)∑
n zn(s)

,

where sum is over all branches n radiating from branch node.
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Future directions

1. How is receptor trafficking regulated following the induction
of synaptic plasticity?

2. How are stable synaptic memories maintained given rapid
protein turnover? Roles of protein synthesis and actin
cytoskeleton?

3. What is the effect of intrinsic noise (small receptor numbers)
on receptor trafficking and plasticity?
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Outline

I Protein receptor trafficking and synaptic plasticity

I Cable theory of receptor trafficking

I Motor transport of mRNA
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Protein synthesis required for persistent LTP6

I (A) Single train of tetanic stimulation produces decremental
potentiation

I Early-phase LTP insensitive to translational inhibition
(anisomycin) and transcriptional inhibition (actinomyosin-D)

I (B) Repeated stimulation induces persistent potentiation that
is sensitive to both translational and transcriptional inhibition

6Kelleher et. al. Neuron 2004
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Motor transport of mRNA7

I Newly transcribed mRNA granules are transported into the
dendrite by kinesin motors on microtubules.

I Following synaptic activation, mRNA is localized to spines by
the actin-based myosin

7Bramham and Wells Nat. Rev. Neurosci. 2007
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I Motile mRNA particles in cultured hippocampal cells exist in 3
states: oscillatory, anterograde and retrograde

I KCL-induced depolarization increases anterograde motion
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Intermittent search8

I Many problems in nature require search for a randomly hidden
target: foraging animals, a protein searching for a specific
target site on DNA, microtubular transport of mRNA

I An efficient stochastic search strategy is to alternate between
(A) a slow motion (diffusive), intensive search phase and (B)
a fast (motor-assisted) ballistic non-search phase

8Loverdo et. al. Nat. Phys. 2008
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Stochastic model of directed intermittent search9

  
v+v-

Target

x0 X L

β+

β-

α
α

I Particle injected into dendrite at x = 0 and t = 0. Fixed
hidden target (dendritic spine) at x = X .

I Particle exists in 3 states: anterograde with velocity v+,
retrograde with velocity −v−, and stationary.

I In stationary state particle can be absorbed at a rate k if
within a distance a of target

I Absorbing boundary at x = L

9Bressloff and Newby 2009
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I Let pm(x , t) denote probability density for anterograde
(m = +), retrograde (m = −) and stationary (m = 0) states

I Master equation of the form

∂p+

∂t
= −v+

∂p+

∂x
+ αp0 − β+p+

∂p−
∂t

= v−
∂p−
∂x

+ αp0 − β−p−

∂p0

∂t
= −2αp0 + (β+p+ + β−p−)− kχ(x − X )p0

where χ(x) = 1 if |x | < a and is zero otherwise.

I Initial and boundary conditions:

v−p−(0, t) = v+p+(0, t), p−(L, t) = 0, pm(x , 0) = δ(x)δm,+

I Bias in anterograde direction

β+/v+ < β−/v−
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Optimization problem

I Probability of finding target after time t is

γ(t) = k

∫ ∞
t

∫ X+a

X−a
p0(x , τ)dxdτ

I Define hitting probability Π and conditional MFPT T
according to

Π = γ(0), T =

∫ ∞
0

γ(t)

γ(0)
dt

I Determine hitting probability Π and MFPT T by solving
backwards equation or using Laplace transforms

I Optimization problem: find parameter values that minimize
search time and maximize hitting probability?
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I Plots of Π and T for β− = 1s−1 (solid black), β− = 2.5s−1

(dashed) and unidirectional (gray)
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I Determine minimal MFPT for a given hitting probability

I For finite β− (partially biased) there exists a minimum of T as
a function of α

I Unidirectional transport gives smaller MFPT than
bidirectional transport
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Multiple targets

x

v

First Target Second Target

0 X
1

β α

X
2

I Unidirectional search and n + 1 identical targets
I Hitting probability of finding most downstream target is

Π̂ = (1− Π)nΠ

I Π̂ is maximized when

βmax (α) =
ln
(
1 + 1

n

)
v

2ka
(α + k).

I The maximum hitting probability is

Π̂max =
nn

(n + 1)n+1
.
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Quasi–steady–state approximation

I Fix units of space and time: x = 1mm and t = 104s

I Then v± = O(1) and transition rates α, β± � 1

I Introduce small parameter

ε =
1

β−
+

1

β+
+

1

α

and set a = εα, b± = εβ±

I Have linear reaction-hyperbolic system

(∂t + v+∂x )p+ =
1

ε
(−b+p+ + ap0)

(∂t − v−∂x )p− =
1

ε
(−b−p− + ap0)

(∂t + k(x))p0 =
1

ε
(b+p+ + b−p− − 2ap0)
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I Using projection methods one can show that

p0(x , t) ∼ q(x , t)

a
, p±(x , t) ∼ q(x , t)

b±

where q satisfies advection–diffusion equation

∂q

∂t
= −k(x)

a
q − veff

∂q

∂x
+ Deff

∂2q

∂x2

where

veff = γ− ≡
1

b+
− 1

b−

Deff = ε

(
1− γ−

b2
+

+
1 + γ−

b2
−

)
.
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I If k ≡ 0 then one can write the solution in the form

pm(x , t) = ηmQε

(
x − vt√

ε
, t

)
I Can prove that10

Qε (s, t)→ q(s, t) as ε→∞

where q(s, t) is solution of heat equation.

10cf. Reed et. al. 1990, Friedman and Hu 2007
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