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Fast spiking interneuron model !

X.J.Wang and G. Buzsaki. Gamma oscillation by synaptic inhibition in a

hippocampal interneuronal network. Journal of Neuroscience, | 6:6402—
6413, 1996.
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Absolute integrate-and-fire model
J. Karbowski and N. Kopell. Neural Computation, 12:1573—1606, 2000.
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Spike adaptation - tonic and burst firing
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Mathematical structure
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Periodic orbits - closed form solution
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Phase Response Curve (PRC)
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Nice discussion at Scholarpedia :
http://www.scholarpedia.org
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PRC - exact solution
Call the orbit z = Z(t) where = F(z)

Introduce a phase (isochronal coordinates) ¢

Adjoint Q) =Vz0 (Ermentrout and Kopell 1991)
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Gap junction coupling

lgap = Ggap (Vpost — Vpre)
Introduce neuron labels and interaction term
_ N
N~! Zj:l 9ij (v — v;)
Analyse phase locked states period T
zi(t) = 2(t — ¢;T), z(t) = 2z(t + T)

N egns distinguished by their drive:

N1 Z;.V:l gij(v(t + (¢i — ¢;)T) —v(2))



Existence of the asynchronous state
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Existence of the asynchronous state

globally coupled network gi;; =g and large N

network averages ~ time averages

1 N 1 A
]\;gnwﬁjz:;v(t%—]A/N) _ Z/o o(t)dt
v =|v|—gv+ I —a+ gvo, 4= —a/Ta,

| A
= K/o v(t)dt.

advanced-retarded ode - self-consistent periodic solution

v(A) = ven vo = A7 [Bu(t)dt



splay state as a function of coupling
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Stability of the asynchronous state

Stability - generalise approach for synapses.

e-values as zeros of

1
EN) = —— + gA\T / R(6)e*!do
0

/ N

LT of orbit PRC of splay

C. van Vreeswijk, Analysis of the asynchronous state in networks of strongly coupled oscillators,
Physical Review Letters, 84 (2000), pp.5110-5113.
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Bifurcation
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Synchronised bursting
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Mean field rhythms

S. K. Han, C. Kurrer, and Y. Kuramoto, Dephasing and bursting in coupled neural oscillators,
Physical Review Letters, 75 (1995), pp. 3190-3193.

W 0.2
04 r -
Morris-Lecar f Type |
0.2 \ . 0.1 B
0 —
! 1 1 O !
-0.4 -0.2 0 v 0.2 0.07 0.075 I 0.08

global coupling - mean field signal as average membrane potential



Mean field rhythms

S. K. Han, C. Kurrer, and Y. Kuramoto, Dephasing and bursting in coupled neural oscillators,
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A tractable model
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Continuous and periodic

e Choose initial data
21(0) = (vg,, w*)

* “Times of flight” determined by threshold crossings
v1(Th) = vg,, v2(T2) = viy, v3(T3) = v, and vy (Th) = vy,

* Ensure periodicity
’LU4(T4) = wl(O)
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Continuous and periodic

e Choose initial data
21(0) = (vg,, w*)

* “Times of flight” determined by threshold crossings
v1(Th) = v5,, v2(To) = vgy, v3(T3) = vy, and vy (Ty) = vy,

* Ensure periodicity
’LU4(T4) = wl(O)

Yielding w*

and the period

4
1" = Z,uzl T,u
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Orbit and period
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PRC - exact solution
Call the orbit z = Z(t) where = F(z)
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PRC - exact solution
Call the orbit z = Z(t) where = F(z)

Introduce a phase (isochronal coordinates) ¢

Adjoint Q) =Vz0 (Ermentrout and Kopell 1991)

% — D(1)Q, D(t) = —DF"(Z(t))

VZ(O)Q - F(Z(0)) = 1/T and Q(t) = Q(t + T)

Another pwl system with 4 labels!

Qu =D, Q,, where D, = —Ag

Solve using Qu(t) =G (T, —)Qu(T))
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Weak coupling

Consider a family of weakly connected systems
Xi =Fi(Xi) +eG(X), i=1,...,n

such that each equation in the uncoupled system (e = 0) has an exponentially orbitally stable
limit cycle yi C R™ having natural frequency Q; # 0. Then the oscillatory weakly connected
system can be reduced to a phase model of the form

éi:Qi—l—egi(Gh...,@n), 91681, i=1,...,n

defined on the n-torus T = ST x ... x S'. ie there is an open neighbourhood W of M =
Y1 X ... X ¥Yn C R™ and a continuous function h : W — T™ that maps solutions of the full
model to those of the phase model. W
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Drive

éi — Qi T €R1 91)61 (9))

PRC



Averaging
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Averaging

d6;
T Nzg” 2

Phase interaction function

/ QY (t)(v(t + 6T) — v(t),0)dt
For convenience introduce Fourier series representation

_ E :Hne%mnﬁ
n

For the pwl model we can obtain the Fourier
coefficients in closed form (spare the details!)



Phase interaction function H
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Global coupling and large N

Synchrony (relative): ¢;(t) =0, Q=1/T
eigenvalue A = —gH’(0) (multiplicity N-1)

1
Splay: ¢; =i/N Q= i gH

A, = —2mingH_,

Synchronous and splay state unstable
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Beyond weak coupling
Synchrony - existence as for uncoupled model
Stability - Floquet theory shows restabilisation with increasing g

Splay - analysis as for absolute integrate-and-fire model
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Understanding rhythms
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Future Challenges

Wilson-Cowan style model with gaps!?

“Equation Free Modelling” - role of architectecture,

and allowing spatio-temporal pattern analysis
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Voltage gated channel models

Influenced by neuromodulators

eg cannabinoids

Gaps on distal dendrites

already known to “tune” network dynamics
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