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Spike adaptation - tonic and burst firing
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Mathematical structure
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Figure 1: Top: Periodic orbit in the Wang-Buzsáki model with constant current
injection I = 1. Bottom: Periodic orbit in the aif model with vr = −25,
vs = −50, vth = 25, α = 0.03 and I = 1.
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Figure 2: Tonic firing in the aif model with spike adaptation. Here τa = 3,
vr = 0.2, vth = 1, I = 0.1 and ga = 0.75.

by incorporating a form of spike adaptation [49] the aif model can exhibit
both tonic and bursting behavior. For simplicity we shall henceforth work
with the explicit choice f(v) = |v|. In more detail we write

v̇ = |v| + I − a, ȧ = −a/τa, τa > 0, (4)

subject to the usual IF reset mechanism as well as the adaptive step
a(T m) → a(T m) + ga/τa, for some ga > 0. For sufficiently small ga the
model fires tonically as shown in Fig. 2. Since the model is now a 2D (dis-
continuous) dynamical system it is also useful to view orbits in the (v, a)
plane, where one can also plot the system nullclines, as shown in Fig. 3.
For larger values of ga the model can also fire in a burst mode as shown
in Fig. 4. The mechanism for this behavior is most easily understood in
reference to the geometry of the phase-plane, as shown in Fig. 5. First
consider that the dynamics after reset is such that the adaptive current
is sufficiently strong so as to pull the trajectory toward the left hand side
of the voltage nullcline. Then if the separation of time-scales between the
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Periodic orbits - closed form solution

period

v and a variables is large (namely that τa is large), then the trajectory
will slowly track this nullcline (a = I − v) until it reaches v = 0, where
there is a switch in the dynamics (from f(v) = −v to f(v) = +v). Af-
ter the switch the neuron is able to fire for as long as threshold can be
reached – namely until a becomes so large as to preclude further firing.
Thus, it is the negative feedback from the adaptive current that ultimately
terminates a burst, and initiates a slow phase of subthreshold dynamics.

To solve the full nonlinear dynamical model it is convenient to break
the phase space into two regions separated by the line v = 0, so that
in each region the dynamics (up to threshold and reset) is governed by
a linear system. If we denote by v+ and v− the solution for v > 0 and
v < 0 respectively, then variation of parameters gives us the closed form
solution

v±(t) = v±(t0)e
±(t−t0) +

Z t

t0

e∓(s−t)[I − a(s)]ds, (5)

with initial data v±(t0) and t > t0. For example, considering the ∆-
periodic tonic solution shown in Fig. 3 , where v > 0 always, then we
have that a(t) = ae−t/τa , with a determined self-consistently from a(∆)+
ga/τa = a, giving

a =
ga

τa

1

1− e−∆/τa
. (6)

Hence, from (5), the voltage varies according to

v(t) = vre
t + I(et − 1)− aτa

1 + τa
(et − e−t/τa). (7)

The period is determined self-consistently by demanding that v(∆) = vth.
A plot of the firing frequency f = ∆−1 as a function of ga is shown in
Fig. 6. From this we see that the frequency of tonic firing drops off with
increasing adaptation, as expected. Note that one may also construct
more complicated orbits (such as tonic solutions which visit v < 0, period
doubled tonic solutions, bursting states etc.) using the ideas above. The
main effort being in piecing together trajectories across v = 0.

2.2 Phase response curve

It is common practice to characterize a neuronal oscillator in terms of
its phase response to a perturbation. This gives rise to the notion of a
so-called phase response curve (PRC). For a detailed discussion of PRCs
we refer the reader to [19, 20, 27]. Suffice to say that for a weak external
perturbation, such that (v̇, ȧ)→ (v̇, ȧ)+ ε(A1(t), A2(t)), and ε small, then
we can introduce a phase θ ∈ [0, 1) along a ∆-periodic orbit that evolves
according to

θ̇ =
1
∆

+ εQT (A1(t), A2(t)). (8)

The (vector) PRC, is given as Q∆, where Q obeys the so-called adjoint
equation

dQ
dt

= −DF T (t)Q, (9)

and DF (t) is the Jacobian of the dynamical systems evaluated along the
time-dependent orbit. To enforce the condition that θ̇ = 1/∆ for ε = 0

5
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perturbation, such that (v̇, ȧ)→ (v̇, ȧ)+ ε(A1(t), A2(t)), and ε small, then
we can introduce a phase θ ∈ [0, 1) along a ∆-periodic orbit that evolves
according to

θ̇ =
1
∆

+ εQT (A1(t), A2(t)). (8)

The (vector) PRC, is given as Q∆, where Q obeys the so-called adjoint
equation

dQ
dt

= −DF T (t)Q, (9)

and DF (t) is the Jacobian of the dynamical systems evaluated along the
time-dependent orbit. To enforce the condition that θ̇ = 1/∆ for ε = 0
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PRC - exact solution

Adjoint

6 S COOMBES

of an oscillator may be related to a phase function defined by the isochrons of an attracting limit cycle.
Following [12] we consider a dynamical system ż = F (z) with a T -periodic solution Z(t) = Z(t + T ) and
introduce an infinitesimal perturbation ∆z to the trajectory Z(t) at time t = 0. The resulting trajectory
z(t) = Z(t)+∆z(t) induces a phase shift defined as ∆θ = θ(z)−θ(Z) (using isochronal coordinates) such
that to first order in ∆z

∆θ = 〈Q,∆z〉, (3.10)

where 〈·, ·〉 defines the standard inner product, and Q = ∇Zθ is the gradient of θ evaluated at Z(t). This
gradient can be shown to satisfy the linear equation

dQ

dt
= D(t)Q, D(t) = −DFT (Z(t)) (3.11)

subject to the conditions ∇Z(0)θ · F (Z(0)) = 1/T and Q(t) = Q(t + T ). Here DF (Z) denotes the
Jacobian of F evaluated along Z. The (vector) PRC, R, is related to Q according to the simple scaling
R = QT . In general (3.10) and (3.11) must be solved numerically to obtain the PRC, say using the adjoint
routine in XPP [23]. However, for the McKean model DF (Z) is piece-wise linear and we can obtain a
solution in closed form. Introducing a labelling as for the periodic orbit we re-write (3.10) in the form
Q̇µ = DµQµ, where Dµ = −AT

µ . The solution of each subsystem is given by Qµ(t) = GT
µ (Tµ − t)Qµ(Tµ)

with Qµ(Tµ) = Qµ+1(0), for µ = 1, 2, 3. Denoting Q4(T4) = (q1, q2) we have the relation

q1

µ

[
f(v1

th)− w∗ + I
]
+ q2g(v1

th, w∗) =
1
T

. (3.12)

Periodicity is ensured by choosing Q1(0) = Q4(T4). After introducing the 2×2 matrix Γ = GT
1 (T1)GT

2 (T2)GT
3 (T3)GT

4 (T4),
this periodicity condition takes the form

(Γ11 − 1)q1 + Γ12q2 = 0. (3.13)

Hence (3.12) and (3.13) define a pair of linear equations for (q1, q2) that we may write in the form

Ψ
[
q1

q2

]
=

[
1/T
0

]
, Ψ =

[
(f(v1

th)− w∗ + I)/µ g(v1
th, w∗)

Γ11 − 1 Γ12

]
. (3.14)

This is easily solved, with say Cramer’s rule, giving qi = det(Ψi)/ det(Ψ), where

Ψ1 =
[
1/T g(v1

th, w∗)
0 Γ12

]
, Ψ2 =

[
(f(v1

th)− w∗ + I)/µ 1/T
Γ11 − 1 0

]
. (3.15)

Similarly we may also construct the PRCs for the sub- and supra-threshold orbits (though we omit the
details here). Note that the discussion above above assumes that the underlying dynamical system is
described by a continuous vector field, so that we are free to choose any point on the orbit to fix the
condition θ̇ = 1/T . For discontinuous systems such as would arise in the singular limit µ = 0 or with a
discontinuous choice of g(v, w) then condition (3.13) is not sufficient. Techniques for tackling relaxation
style oscillations that arise in the former case have been developed in [43, 18], whilst the latter case can
easily be treated by writing down the matching conditions to fix θ̇ = 1/T at any jump discontinuities in
g(v, w). A plot of two example PRCs constructed using the above approach are shown in Figure 3.4.

3.2. Stability: Floquet theory. see for example [15].

d∆z

dt
= −D(t)∆z, (3.16)

Note that with the use of a time-ordering operator T we may write the fundamental matrix solution
of this T -periodic system as

G(t) = T
{

exp
[
−

∫ t

0
D(s)ds

]}
(3.17)

Call the orbit ż = F (z)z = Z(t) where

θIntroduce a phase (isochronal coordinates)
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∇Z(0) · F (Z(0)) = 1/T

we must choose initial data for Q that guarantees QT (v̇, ȧ) = ∆−1. For a
continuous trajectory this normalization condition need only be enforced
at a single point in time. However, for the aif model with adaptation
there is a single discontinuity in the orbit (at reset) and so Q is not
continuous. We therefore need to establish the conditions that ensure
Q(∆+) = Q(0). Introducing components of Q as Q = (q1, q2) this is
equivalent to demanding continuity of dq1/dq2 at reset.

For the orbit given by (7) with v > 0 the Jacobian is simply the
constant matrix

DF =

»
1 −1
0 −1/τa

–
, (10)

and the adjoint equation (9) may be solved in closed form as

q1(t) = q1(0)e
−t, q2(t) = q2(0)e

t/τa + q1(0)
τa

1 + τa
[et/τa − e−t]. (11)

The condition for continuity of dq1/dq2 at reset yields the relationship

q2(0)
q1(0)

=
q2(∆)
q1(∆)

= − τa

1 + τa
, (12)

whilst the normalization condition gives

q1(0)[vr + I − a]− q2(0)
a
τa

=
1
∆

. (13)

The simultaneous solutions of (12) and (13) then gives the adjoint in the
closed form

Q(t) =
κ
∆

e−t

»
1

−τa/(1 + τa)

–
, t ∈ [0, ∆), (14)

and κ = [vr + I−aτa/(1+ τa)]−1. A plot of the adjoint for the tonic orbit
(7) is shown in Fig. 7. Note that the orbit and PRC for other periodic
solutions (crossing through v = 0) can be obtained in a similar fashion.

3 Gap junction coupling

To model the direct gap junction coupling between two cells, one labeled
post and the other pre, we introduce an extra current to the right hand
side of v̇ in the form

ggap(vpre − vpost), (15)

where ggap is the conductance of the gap junction. Indexing neurons
in a network with the label i = 1, . . . , N and defining a gap junction
conductance strength between neurons i and j as gij means that neuron
i experiences a drive of the form N−1 PN

j=1 gij(vj − vi). For a phase
locked state then (vi(t), ai(t)) = (v(t − φi∆), a(t − φi∆)), (v(t), a(t)) =
(v(t + ∆), a(t + ∆)), (for some constant phases φi ∈ [0, 1)) and we have
N equations distinguished by the driving terms N−1 PN

j=1 gij(v(t+(φi−
φj)T ) − v(t)). For globally coupled networks with gij = g maximally
symmetric solutions describing synchronous, asynchronous, and cluster
states are expected to be generic [2]. Here we shall focus on asynchronous
states defined by φi = i/N . Such solutions are often called splay or
merry-go-round states, since all oscillators in the network pass through
some fixed phase at regularly spaced time intervals of ∆/N .
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Hence (3.12) and (3.13) define a pair of linear equations for (q1, q2) that we may write in the form

Ψ
[
q1

q2

]
=

[
1/T
0

]
, Ψ =

[
(f(v1

th)− w∗ + I)/µ g(v1
th, w∗)

Γ11 − 1 Γ12

]
. (3.14)

This is easily solved, with say Cramer’s rule, giving qi = det(Ψi)/ det(Ψ), where

Ψ1 =
[
1/T g(v1

th, w∗)
0 Γ12

]
, Ψ2 =

[
(f(v1

th)− w∗ + I)/µ 1/T
Γ11 − 1 0

]
. (3.15)

Similarly we may also construct the PRCs for the sub- and supra-threshold orbits (though we omit the
details here). Note that the discussion above above assumes that the underlying dynamical system is
described by a continuous vector field, so that we are free to choose any point on the orbit to fix the
condition θ̇ = 1/T . For discontinuous systems such as would arise in the singular limit µ = 0 or with a
discontinuous choice of g(v, w) then condition (3.13) is not sufficient. Techniques for tackling relaxation
style oscillations that arise in the former case have been developed in [43, 18], whilst the latter case can
easily be treated by writing down the matching conditions to fix θ̇ = 1/T at any jump discontinuities in
g(v, w). A plot of two example PRCs constructed using the above approach are shown in Figure 3.4.

3.2. Stability: Floquet theory. see for example [15].

d∆z

dt
= −D(t)∆z, (3.16)

Note that with the use of a time-ordering operator T we may write the fundamental matrix solution
of this T -periodic system as

G(t) = T
{

exp
[
−

∫ t

0
D(s)ds

]}
(3.17)

(Ermentrout and Kopell 1991)

∇Z(0) · F (Z(0)) = 1/T

we must choose initial data for Q that guarantees QT (v̇, ȧ) = ∆−1. For a
continuous trajectory this normalization condition need only be enforced
at a single point in time. However, for the aif model with adaptation
there is a single discontinuity in the orbit (at reset) and so Q is not
continuous. We therefore need to establish the conditions that ensure
Q(∆+) = Q(0). Introducing components of Q as Q = (q1, q2) this is
equivalent to demanding continuity of dq1/dq2 at reset.

For the orbit given by (7) with v > 0 the Jacobian is simply the
constant matrix

DF =

»
1 −1
0 −1/τa

–
, (10)

and the adjoint equation (9) may be solved in closed form as

q1(t) = q1(0)e
−t, q2(t) = q2(0)e

t/τa + q1(0)
τa

1 + τa
[et/τa − e−t]. (11)

The condition for continuity of dq1/dq2 at reset yields the relationship

q2(0)
q1(0)

=
q2(∆)
q1(∆)

= − τa

1 + τa
, (12)

whilst the normalization condition gives

q1(0)[vr + I − a]− q2(0)
a
τa

=
1
∆

. (13)

The simultaneous solutions of (12) and (13) then gives the adjoint in the
closed form

Q(t) =
κ
∆

e−t

»
1

−τa/(1 + τa)

–
, t ∈ [0, ∆), (14)

and κ = [vr + I−aτa/(1+ τa)]−1. A plot of the adjoint for the tonic orbit
(7) is shown in Fig. 7. Note that the orbit and PRC for other periodic
solutions (crossing through v = 0) can be obtained in a similar fashion.

3 Gap junction coupling

To model the direct gap junction coupling between two cells, one labeled
post and the other pre, we introduce an extra current to the right hand
side of v̇ in the form

ggap(vpre − vpost), (15)

where ggap is the conductance of the gap junction. Indexing neurons
in a network with the label i = 1, . . . , N and defining a gap junction
conductance strength between neurons i and j as gij means that neuron
i experiences a drive of the form N−1 PN

j=1 gij(vj − vi). For a phase
locked state then (vi(t), ai(t)) = (v(t − φi∆), a(t − φi∆)), (v(t), a(t)) =
(v(t + ∆), a(t + ∆)), (for some constant phases φi ∈ [0, 1)) and we have
N equations distinguished by the driving terms N−1 PN

j=1 gij(v(t+(φi−
φj)T ) − v(t)). For globally coupled networks with gij = g maximally
symmetric solutions describing synchronous, asynchronous, and cluster
states are expected to be generic [2]. Here we shall focus on asynchronous
states defined by φi = i/N . Such solutions are often called splay or
merry-go-round states, since all oscillators in the network pass through
some fixed phase at regularly spaced time intervals of ∆/N .
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Fig. 3.5. Plot of the stability index E. Left: Result for the McKean model using the solution branch of Figure 3.1
(left). Right: Result for the Type I model using the solution branch of Figure 3.3 (left) Since E < 0 the solution branches
in these two examples are stable.

To model the direct gap junction coupling between two cells (one post- and the other pre-synaptic)
we introduce an extra current to the right hand side of (2.1) of the form

Igap = ggap(vpost − vpre), (4.1)

where ggap is the conductance of the gap junction.

More - introduce network labels on dynamics and interaction N−1
∑N

j=1 gij(vj − vi). For a phase
locked state then zi(t) = z(t − φiT ), z(t) = z(t + T ), and we have N equations distinguished by the
driving terms N−1

∑N
j=1 gij(v(t + (φi − φj)T )− v(t))

In this section we pursue two approaches for studying networks of identical McKean neurons with
such coupling terms. The first is the more familiar coupled oscillator approach, valid for weak coupling.
The second approach exploits the equivalence of a phase-locked network state, with global coupling, to
an appropriate delayed single neuron orbit. This orbit is then solved for in closed form using techniques
from linear delay differential equations and is valid for arbitrary coupling strength. - can we use this to
see loss of existence of splay state with increasing coupling?

4.1. Weak coupling. The theory of weakly coupled oscillators [47, 26] is now a standard tool of
dynamical systems theory and has previously been invoked by several authors to study networks with
gap junctions [56, 50, 57, 24, 52, 44]. It has also previously been used to study networks of McKean
neurons in the singular limit µ → 0 [18, 21]. Introducing the conductance strength between neurons i
and j as gij we may write such a network dynamics in the form

dθi

dt
=

1
T

+
1
N

N∑

j=1

gijH(θj − θi), (4.2)

where H(θ) is the so-called phase interaction function. For gap junction coupling this is given by

H(θ) =
∫ T

0
QT (t)(v(t + θT )− v(t), 0)dt, (4.3)

where v(t), is a periodic solution of (2.1) and Q(t) is the associated adjoint. It is convenient to introduce
Fourier series for the 2× 1 vectors z and Q and write

z(t) =
∑

n

zne2πint/T , Q(t) =
∑

n

Qne2πint/T . (4.4)
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Introduce neuron labels and interaction term
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To model the direct gap junction coupling between two cells (one post- and the other pre-synaptic)
we introduce an extra current to the right hand side of (2.1) of the form

Igap = ggap(vpost − vpre), (4.1)

where ggap is the conductance of the gap junction.
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In this section we pursue two approaches for studying networks of identical McKean neurons with
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To model the direct gap junction coupling between two cells (one post- and the other pre-synaptic)
we introduce an extra current to the right hand side of (2.1) of the form

Igap = ggap(vpost − vpre), (4.1)

where ggap is the conductance of the gap junction.
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j=1 gij(vj − vi). For a phase
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driving terms N−1
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In this section we pursue two approaches for studying networks of identical McKean neurons with
such coupling terms. The first is the more familiar coupled oscillator approach, valid for weak coupling.
The second approach exploits the equivalence of a phase-locked network state, with global coupling, to
an appropriate delayed single neuron orbit. This orbit is then solved for in closed form using techniques
from linear delay differential equations and is valid for arbitrary coupling strength. - can we use this to
see loss of existence of splay state with increasing coupling?

4.1. Weak coupling. The theory of weakly coupled oscillators [47, 26] is now a standard tool of
dynamical systems theory and has previously been invoked by several authors to study networks with
gap junctions [56, 50, 57, 24, 52, 44]. It has also previously been used to study networks of McKean
neurons in the singular limit µ → 0 [18, 21]. Introducing the conductance strength between neurons i
and j as gij we may write such a network dynamics in the form

dθi

dt
=

1
T

+
1
N

N∑
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gijH(θj − θi), (4.2)

where H(θ) is the so-called phase interaction function. For gap junction coupling this is given by

H(θ) =
∫ T

0
QT (t)(v(t + θT )− v(t), 0)dt, (4.3)

where v(t), is a periodic solution of (2.1) and Q(t) is the associated adjoint. It is convenient to introduce
Fourier series for the 2× 1 vectors z and Q and write

z(t) =
∑

n

zne2πint/T , Q(t) =
∑

n

Qne2πint/T . (4.4)

Analyse phase locked states
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To model the direct gap junction coupling between two cells (one post- and the other pre-synaptic)
we introduce an extra current to the right hand side of (2.1) of the form

Igap = ggap(vpost − vpre), (4.1)

where ggap is the conductance of the gap junction.

More - introduce network labels on dynamics and interaction N−1
∑N

j=1 gij(vj − vi). For a phase
locked state then zi(t) = z(t − φiT ), z(t) = z(t + T ), and we have N equations distinguished by the
driving terms N−1

∑N
j=1 gij(v(t + (φi − φj)T )− v(t))

In this section we pursue two approaches for studying networks of identical McKean neurons with
such coupling terms. The first is the more familiar coupled oscillator approach, valid for weak coupling.
The second approach exploits the equivalence of a phase-locked network state, with global coupling, to
an appropriate delayed single neuron orbit. This orbit is then solved for in closed form using techniques
from linear delay differential equations and is valid for arbitrary coupling strength. - can we use this to
see loss of existence of splay state with increasing coupling?

4.1. Weak coupling. The theory of weakly coupled oscillators [47, 26] is now a standard tool of
dynamical systems theory and has previously been invoked by several authors to study networks with
gap junctions [56, 50, 57, 24, 52, 44]. It has also previously been used to study networks of McKean
neurons in the singular limit µ → 0 [18, 21]. Introducing the conductance strength between neurons i
and j as gij we may write such a network dynamics in the form

dθi

dt
=

1
T

+
1
N

N∑

j=1

gijH(θj − θi), (4.2)

where H(θ) is the so-called phase interaction function. For gap junction coupling this is given by

H(θ) =
∫ T

0
QT (t)(v(t + θT )− v(t), 0)dt, (4.3)
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Existence of the asynchronous state

globally coupled network gij = g and large N

network averages ~ time averages

3.1 Existence of the asynchronous state

Here we will focus on a globally coupled network in the large N limit. In
this case we have the useful result that network averages may be replaced
by time averages. In this case the coupling term for an asynchronous state
becomes

lim
N→∞

1
N

NX

j=1

v(t + j∆/N) =
1
∆

Z ∆

0

v(t)dt, (16)

which is independent of both i and t. Hence, for an asynchronous state
every neuron in the network is described by the same dynamical system,
namely

v̇ = |v|− gv + I − a + gv0, ȧ = −a/τa, (17)

where

v0 =
1
∆

Z ∆

0

v(t)dt. (18)

Once again we may use variation of parameters to obtain a closed form
solution for the trajectory:

v±(t) = v±(t0)e
±(t−t0)/τ± +

Z t

t0

e∓(s−t)/τ± [Ig − a(s)]ds, (19)

where τ± = 1/(1∓ g) and Ig = I + gv0. A self-consistent solution for the
pair (∆, v0) is now obtained from the simultaneous solution of the two

equations v(∆) = vth and v0 = ∆−1
R ∆

0
v(t)dt. For example an orbit with

v > 0 is easily constructed and generates the two equations

vth = vre
∆/τ+ + Igτ+(e∆/τ+ − 1)− aτ(e∆/τ+ − e−∆/τa), (20)

v0 = −Igτ+ +
1
∆

n
τ+[e∆/τ+ − 1][vr + Igτ+ − aτ ] + aττa[1− e−∆/τa ]

o
,

(21)

where 1/τ = 1/τ+ + 1/τa. A plot of (∆, v0) as a function of the gap
strength g is shown in Fig. 8.

3.2 Stability of the asynchronous state

Here we use a phase reduction technique, first developed by van Vreeswijk
[48] for synaptic coupling, to study the stability of the asynchronous state.
To do this we first write the coupling term N−1 PN

j=1 vj(t) in a more
convenient form for studying perturbations of the mean field, namely we
write

lim
N→∞

1
N

NX

j=1

vj(t) = lim
N→∞

1
N

NX

j=1

X

m∈Z
u(t− T m

j ), (22)

where T m
j = m∆+j∆/N . Here u(t) = 0 for t < 0 and is chosen such that

v(t) =
P

m∈Z u(t − m∆), ensuring that v(t) = v(t + ∆). For arbitrary
values of the firing-times T m

j the coupling term (22) is time-dependent,
and we may write it in the form

E(t) =

Z ∞

0

f(t− s)u(s)ds, f(t) = lim
N→∞

1
N

X

j,m

δ(t− T m
j ), (23)
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where

v0 =
1
∆

Z ∆

0

v(t)dt. (18)

Once again we may use variation of parameters to obtain a closed form
solution for the trajectory:

v±(t) = v±(t0)e
±(t−t0)/τ± +

Z t

t0

e∓(s−t)/τ± [Ig − a(s)]ds, (19)

where τ± = 1/(1∓ g) and Ig = I + gv0. A self-consistent solution for the
pair (∆, v0) is now obtained from the simultaneous solution of the two

equations v(∆) = vth and v0 = ∆−1
R ∆

0
v(t)dt. For example an orbit with

v > 0 is easily constructed and generates the two equations

vth = vre
∆/τ+ + Igτ+(e∆/τ+ − 1)− aτ(e∆/τ+ − e−∆/τa), (20)

v0 = −Igτ+ +
1
∆

n
τ+[e∆/τ+ − 1][vr + Igτ+ − aτ ] + aττa[1− e−∆/τa ]

o
,

(21)

where 1/τ = 1/τ+ + 1/τa. A plot of (∆, v0) as a function of the gap
strength g is shown in Fig. 8.

3.2 Stability of the asynchronous state

Here we use a phase reduction technique, first developed by van Vreeswijk
[48] for synaptic coupling, to study the stability of the asynchronous state.
To do this we first write the coupling term N−1 PN

j=1 vj(t) in a more
convenient form for studying perturbations of the mean field, namely we
write

lim
N→∞

1
N

NX

j=1

vj(t) = lim
N→∞

1
N

NX

j=1

X

m∈Z
u(t− T m

j ), (22)

where T m
j = m∆+j∆/N . Here u(t) = 0 for t < 0 and is chosen such that

v(t) =
P

m∈Z u(t − m∆), ensuring that v(t) = v(t + ∆). For arbitrary
values of the firing-times T m

j the coupling term (22) is time-dependent,
and we may write it in the form

E(t) =

Z ∞

0

f(t− s)u(s)ds, f(t) = lim
N→∞

1
N

X

j,m

δ(t− T m
j ), (23)

7

3.1 Existence of the asynchronous state

Here we will focus on a globally coupled network in the large N limit. In
this case we have the useful result that network averages may be replaced
by time averages. In this case the coupling term for an asynchronous state
becomes

lim
N→∞

1
N

NX

j=1

v(t + j∆/N) =
1
∆

Z ∆

0

v(t)dt, (16)

which is independent of both i and t. Hence, for an asynchronous state
every neuron in the network is described by the same dynamical system,
namely

v̇ = |v|− gv + I − a + gv0, ȧ = −a/τa, (17)
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where 1/τ = 1/τ+ + 1/τa. A plot of (∆, v0) as a function of the gap
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Stability of the asynchronous state

Stability - generalise approach for synapses.  

C. van Vreeswijk, Analysis of the asynchronous state in networks of strongly coupled oscillators, 
Physical Review Letters, 84 (2000), pp. 5110–5113. 
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with a corresponding perturbation of the flux that takes the form δJ(θ, t) = δρ(θ, t)/T + R(θ)ε(t).
Differentiation of δJ(θ, t) gives the PDE

∂tδJ(θ, t) = − 1
T

∂θδJ(θ, t) + gR(θ)ε′(t), (4.38)

where

ε(t) =
∫ ∞

0
u(s)δJ(1, t− s)ds. (4.39)

Assuming a solution of the form (δJ(θ, t), ε(t)) = eλt(δJ(θ), ε), with δJ(1) = δJ(0), we may solve (4.38)
and (4.39) to obtain an implicit equation for λ as

1
eλT − 1

{
1

ṽ(λ)
− gλT

∫ 1

0
R(θ)eλθT dθ

}
= 0. (4.40)

Here ũ(λ) =
∫∞
0 u(t)e−λtdt is the Laplace transform of u(t). By taking the Laplace transform of v(t) =∑

m u(t−mT ), we see that this may be written as

ũ(λ) = (1− e−λT )ṽ(λ), Re λ > 0. (4.41)

Hence, we may write λ (in the right hand complex plane) as the solution to E(λ) = 0, where

E(λ) =
eλT

ṽ(λ)
+ gλT

∫ 1

0
R(θ)eλθT dθ. (4.42)

Since 1/ṽ(0) = 0 we see that E(0) = 0 as expected. Writing λ = ν + iω then the pair (ν, ω) may be
found by the simultaneous solution of ER(ν, ω) = 0 and EI(ν, ω) = 0, where ER(ν, ω) = Re E(ν + iω) and
EI(ν, ω) = Im E(ν + iω). In terms of the Fourier coefficients for R(θ) and v(t) we may obtain a useful
representation for (4.42) using

∫ 1

0
R(θ)eλθT dθ = (eλT − 1)

∑

n

Rn

2πin + λT
(4.43)

ṽ(λ) = T
∑

n

v−n

2πin + λT
. (4.44)

For small g we expect to recover the stability result obtained using weakly coupled oscillator theory
(see section ??). To check this we consider solutions of the form 2πin + λT = 2πingRnv−nT , for n "= 0,
and g # 1. In this case we have that

E(λ) =
1

λT
∑

n 1/(2πinRn)
− λT

∑

n

Rn

2πin + λT
. (4.45)

Using the fact that Rn decays as 1/n (and so is an odd function of n) and λ scales with g, we may write

∑

n,m

1
2πinRn

Rm

2πim + λT
≈

∑

n

1
2πin(2πin + λT )

=
1

eλT − 1

∫ 1

0
S(θ)eλθT dθ, (4.46)

where we introduce the function S(θ) =
∑

n Sne2πinθ, with Sn = 1/(2πin). Recognising S(θ) as the
Fourier series for the sawtooth function S(θ) = S(θ + 1) with S(θ) = −θ for θ ∈ [0, 1), we may evaluate
(4.46) as 1/(λT )2. Using (4.46) in (4.45) shows that E(λn) = 0, where λn = 2πin − 2πingH−n, and we
recover the stability condition for weak coupling, namely −ngIm Hn < 0, for n "= 0.
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Mean field rhythms
S. K. Han, C. Kurrer, and Y. Kuramoto, Dephasing and bursting in coupled neural oscillators, 
Physical Review Letters, 75 (1995), pp. 3190–3193. 
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Fig. 2.1. The phase plane for the McKean model has a nullcline with an piece-wise linear cubic shape (dashed
green line) corresponding to v̇ = 0 and a linear one associated with ẇ = 0 (dotted blue line). Parameters are µ = 0.1,
I = 0.5,γ = 0.5, and a = 0.25. The red line corresponds to a stable periodic orbit.

[53, 65]. The equations for a single two-dimensional McKean neuron take the form

µv̇ = f(v)− w + I, (2.1)
ẇ = g(v, w), (2.2)

where the functions f(v) and g(v, w) are given by

f(v) =






−v, v < a/2
v − a, a/2 ≤ v ≤ (1 + a)/2
1− v, v > (1 + a)/2

, (2.3)

g(v, w) = v − γw. (2.4)

Here, µ > 0, γ > 0, I is a constant drive and f(v) is a piece-wise linear caricature of the cubic FitzHugh–
Nagumo nonlinearity f(v) = v(1 − v)(v − a), whilst g(v, w) describes the linear dynamics of the gating
variable. Another popular choice for f(v) is the function f(v) = −v + H(v − a), where H is the
Heaviside step function. The analysis of this latter nonlinearity has been pursued in detail by Tonnelier
[64, 66]. A phase-plane plot of McKean model is shown in Fig. 2.1. To generate Type I behaviour,
often associated with either a homoclinic bifurcation or a saddle-node on a limit cycle [25], necessarily
requires the introduction of a nonlinear dynamics for the gating variable, as in the Morris–Lecar model
or the cortical neuron model of Wilson [69]. A piece-wise linear idealization of the Morris-Lecar model
has already been introduced by Tonnelier and Gerstner [66], and since the nullcline of the gating variable
in the Wilson model has a quadratic shape, it too is easy to caricature. Indeed many of the shapes for
g(v, w) underlying a Type I response appear to be described with the simple continuous choice

g(v, w) =

{
(v − γ1w + b∗γ1 − b)/γ1, v < b

(v − γ2w + b∗γ2 − b)/γ2, v ≥ b
, (2.5)

with −a/2 < b∗ < (1 − a)/2 and a/2 < b < (1 + a)/2. Here we take γ2 > 0, though allow γ1 to
take both positive and negative values. Another natural choice, though this time discontinuous, is
g(v, w) = v − γw + H(v − b), which has been used to caricature the Morris–Lecar model in particular
[66]. Note that (up to a constant shift) we recover the piece-wise linear McKean model with the choice
γ1 = γ = γ2 in (2.5). An example whereby the dynamics is bistable with a stable fixed point and a stable
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ẇ = g(v, w), (2.2)

where the functions f(v) and g(v, w) are given by

f(v) =






−v, v < a/2
v − a, a/2 ≤ v ≤ (1 + a)/2
1− v, v > (1 + a)/2

, (2.3)

g(v, w) = v − γw. (2.4)

Here, µ > 0, γ > 0, I is a constant drive and f(v) is a piece-wise linear caricature of the cubic FitzHugh–
Nagumo nonlinearity f(v) = v(1 − v)(v − a), whilst g(v, w) describes the linear dynamics of the gating
variable. Another popular choice for f(v) is the function f(v) = −v + H(v − a), where H is the
Heaviside step function. The analysis of this latter nonlinearity has been pursued in detail by Tonnelier
[64, 66]. A phase-plane plot of McKean model is shown in Fig. 2.1. To generate Type I behaviour,
often associated with either a homoclinic bifurcation or a saddle-node on a limit cycle [25], necessarily
requires the introduction of a nonlinear dynamics for the gating variable, as in the Morris–Lecar model
or the cortical neuron model of Wilson [69]. A piece-wise linear idealization of the Morris-Lecar model
has already been introduced by Tonnelier and Gerstner [66], and since the nullcline of the gating variable
in the Wilson model has a quadratic shape, it too is easy to caricature. Indeed many of the shapes for
g(v, w) underlying a Type I response appear to be described with the simple continuous choice

g(v, w) =

{
(v − γ1w + b∗γ1 − b)/γ1, v < b

(v − γ2w + b∗γ2 − b)/γ2, v ≥ b
, (2.5)

with −a/2 < b∗ < (1 − a)/2 and a/2 < b < (1 + a)/2. Here we take γ2 > 0, though allow γ1 to
take both positive and negative values. Another natural choice, though this time discontinuous, is
g(v, w) = v − γw + H(v − b), which has been used to caricature the Morris–Lecar model in particular
[66]. Note that (up to a constant shift) we recover the piece-wise linear McKean model with the choice
γ1 = γ = γ2 in (2.5). An example whereby the dynamics is bistable with a stable fixed point and a stable

2 S COOMBES

0.4

0.6

0.8

1

-0.2 0.2 0.6 1

4

1

2

3
w

v

Fig. 2.1. The phase plane for the McKean model has a nullcline with an piece-wise linear cubic shape (dashed
green line) corresponding to v̇ = 0 and a linear one associated with ẇ = 0 (dotted blue line). Parameters are µ = 0.1,
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g(v, w) = v − γw + H(v − b), which has been used to caricature the Morris–Lecar model in particular
[66]. Note that (up to a constant shift) we recover the piece-wise linear McKean model with the choice
γ1 = γ = γ2 in (2.5). An example whereby the dynamics is bistable with a stable fixed point and a stable
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

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, (2.3)
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g(v, w) underlying a Type I response appear to be described with the simple continuous choice

g(v, w) =

{
(v − γ1w + b∗γ1 − b)/γ1, v < b

(v − γ2w + b∗γ2 − b)/γ2, v ≥ b
, (2.5)

with −a/2 < b∗ < (1 − a)/2 and a/2 < b < (1 + a)/2. Here we take γ2 > 0, though allow γ1 to
take both positive and negative values. Another natural choice, though this time discontinuous, is
g(v, w) = v − γw + H(v − b), which has been used to caricature the Morris–Lecar model in particular
[66]. Note that (up to a constant shift) we recover the piece-wise linear McKean model with the choice
γ1 = γ = γ2 in (2.5). An example whereby the dynamics is bistable with a stable fixed point and a stable
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limit cycle is shown in Fig. 2.2. Throughout the rest of this paper we shall work with the piece-wise
linear model defined by equations (2.3) and (2.5), though we stress here that the techniques we develop
work for all of the piece-wise linear choices for f(v) and g(v, w) that we have discussed above.

3. Periodic orbits. As a piece-wise planar linear system much can be said about the dynamics
of models defined by (2.3) and (2.5). For the special case that f(v) = −v + H(v − a) and g(v, w) = v
Tonnelier [64] has shown how to sue the method of the harmonic balance [2] to obtain information about
periodic orbits. Here we present an alternative approach that can tackle more general choices for f and
g. In essence we solve the system in each of its linear regimes and demand continuity of solutions to
construct orbits of the full nonlinear flow. To see how we do this it is first convenient to consider a
two-dimensional linear system of the form

ż = Az + b, z =
[
v
w

]
, (3.1)

where the 2 × 2 matrix A has components Aij , i, j = 1, 2, and b is constant 2 × 1 input vector. The
solution to (3.1) may be written in the form

z(t) = G(t)z(0) + K(t)b, G(t) = eAt, K(t) =
∫ t

0
G(s)ds. (3.2)

If A has real eigenvalues λ±, such that Aq± = λ±q± with q± ∈ R2, given by

λ± =
TrA±

√
(TrA)2 − 4 detA

2
, (3.3)

then we may ‘diagonlise’ and write G(t) in the computationally useful form G(t) = P eΛtP−1, where
Λ = diag(λ+, λ−), P = [q+, q−], and q± = [(λ±−A22)/A21, 1]T . If A has complex eigenvalues ρ± iω then
the associated complex eigenvector is q such that Aq = (ρ+iω)q, q ∈ C2. In this case G(t) = eρtPRωtP−1,
where

Rθ =
[
cos θ − sin θ
sin θ cos θ

]
, P = [Im(q),Re(q)] =

[
0 1
ω̂ ρ̂

]
, (3.4)
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limit cycle is shown in Fig. 2.2. Throughout the rest of this paper we shall work with the piece-wise
linear model defined by equations (2.3) and (2.5), though we stress here that the techniques we develop
work for all of the piece-wise linear choices for f(v) and g(v, w) that we have discussed above.

3. Periodic orbits. As a piece-wise planar linear system much can be said about the dynamics
of models defined by (2.3) and (2.5). For the special case that f(v) = −v + H(v − a) and g(v, w) = v
Tonnelier [64] has shown how to sue the method of the harmonic balance [2] to obtain information about
periodic orbits. Here we present an alternative approach that can tackle more general choices for f and
g. In essence we solve the system in each of its linear regimes and demand continuity of solutions to
construct orbits of the full nonlinear flow. To see how we do this it is first convenient to consider a
two-dimensional linear system of the form

ż = Az + b, z =
[
v
w

]
, (3.1)

where the 2 × 2 matrix A has components Aij , i, j = 1, 2, and b is constant 2 × 1 input vector. The
solution to (3.1) may be written in the form

z(t) = G(t)z(0) + K(t)b, G(t) = eAt, K(t) =
∫ t

0
G(s)ds. (3.2)

If A has real eigenvalues λ±, such that Aq± = λ±q± with q± ∈ R2, given by

λ± =
TrA±

√
(TrA)2 − 4 detA

2
, (3.3)

then we may ‘diagonlise’ and write G(t) in the computationally useful form G(t) = P eΛtP−1, where
Λ = diag(λ+, λ−), P = [q+, q−], and q± = [(λ±−A22)/A21, 1]T . If A has complex eigenvalues ρ± iω then
the associated complex eigenvector is q such that Aq = (ρ+iω)q, q ∈ C2. In this case G(t) = eρtPRωtP−1,
where

Rθ =
[
cos θ − sin θ
sin θ cos θ

]
, P = [Im(q),Re(q)] =

[
0 1
ω̂ ρ̂

]
, (3.4)
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limit cycle is shown in Fig. 2.2. Throughout the rest of this paper we shall work with the piece-wise
linear model defined by equations (2.3) and (2.5), though we stress here that the techniques we develop
work for all of the piece-wise linear choices for f(v) and g(v, w) that we have discussed above.

3. Periodic orbits. As a piece-wise planar linear system much can be said about the dynamics
of models defined by (2.3) and (2.5). For the special case that f(v) = −v + H(v − a) and g(v, w) = v
Tonnelier [64] has shown how to sue the method of the harmonic balance [2] to obtain information about
periodic orbits. Here we present an alternative approach that can tackle more general choices for f and
g. In essence we solve the system in each of its linear regimes and demand continuity of solutions to
construct orbits of the full nonlinear flow. To see how we do this it is first convenient to consider a
two-dimensional linear system of the form

ż = Az + b, z =
[
v
w

]
, (3.1)

where the 2 × 2 matrix A has components Aij , i, j = 1, 2, and b is constant 2 × 1 input vector. The
solution to (3.1) may be written in the form

z(t) = G(t)z(0) + K(t)b, G(t) = eAt, K(t) =
∫ t

0
G(s)ds. (3.2)

If A has real eigenvalues λ±, such that Aq± = λ±q± with q± ∈ R2, given by

λ± =
TrA±

√
(TrA)2 − 4 detA

2
, (3.3)

then we may ‘diagonlise’ and write G(t) in the computationally useful form G(t) = P eΛtP−1, where
Λ = diag(λ+, λ−), P = [q+, q−], and q± = [(λ±−A22)/A21, 1]T . If A has complex eigenvalues ρ± iω then
the associated complex eigenvector is q such that Aq = (ρ+iω)q, q ∈ C2. In this case G(t) = eρtPRωtP−1,
where

Rθ =
[
cos θ − sin θ
sin θ cos θ

]
, P = [Im(q),Re(q)] =

[
0 1
ω̂ ρ̂

]
, (3.4)
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limit cycle is shown in Fig. 2.2. Throughout the rest of this paper we shall work with the piece-wise
linear model defined by equations (2.3) and (2.5), though we stress here that the techniques we develop
work for all of the piece-wise linear choices for f(v) and g(v, w) that we have discussed above.

3. Periodic orbits. As a piece-wise planar linear system much can be said about the dynamics
of models defined by (2.3) and (2.5). For the special case that f(v) = −v + H(v − a) and g(v, w) = v
Tonnelier [64] has shown how to sue the method of the harmonic balance [2] to obtain information about
periodic orbits. Here we present an alternative approach that can tackle more general choices for f and
g. In essence we solve the system in each of its linear regimes and demand continuity of solutions to
construct orbits of the full nonlinear flow. To see how we do this it is first convenient to consider a
two-dimensional linear system of the form

ż = Az + b, z =
[
v
w

]
, (3.1)

where the 2 × 2 matrix A has components Aij , i, j = 1, 2, and b is constant 2 × 1 input vector. The
solution to (3.1) may be written in the form

z(t) = G(t)z(0) + K(t)b, G(t) = eAt, K(t) =
∫ t

0
G(s)ds. (3.2)

If A has real eigenvalues λ±, such that Aq± = λ±q± with q± ∈ R2, given by

λ± =
TrA±

√
(TrA)2 − 4 detA

2
, (3.3)

then we may ‘diagonlise’ and write G(t) in the computationally useful form G(t) = P eΛtP−1, where
Λ = diag(λ+, λ−), P = [q+, q−], and q± = [(λ±−A22)/A21, 1]T . If A has complex eigenvalues ρ± iω then
the associated complex eigenvector is q such that Aq = (ρ+iω)q, q ∈ C2. In this case G(t) = eρtPRωtP−1,
where

Rθ =
[
cos θ − sin θ
sin θ cos θ

]
, P = [Im(q),Re(q)] =

[
0 1
ω̂ ρ̂

]
, (3.4)

G(t) and K(t) can be calculated in closed form
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limit cycle is shown in Fig. 2.2. Throughout the rest of this paper we shall work with the piece-wise
linear model defined by equations (2.3) and (2.5), though we stress here that the techniques we develop
work for all of the piece-wise linear choices for f(v) and g(v, w) that we have discussed above.

3. Periodic orbits. As a piece-wise planar linear system much can be said about the dynamics
of models defined by (2.3) and (2.5). For the special case that f(v) = −v + H(v − a) and g(v, w) = v
Tonnelier [64] has shown how to sue the method of the harmonic balance [2] to obtain information about
periodic orbits. Here we present an alternative approach that can tackle more general choices for f and
g. In essence we solve the system in each of its linear regimes and demand continuity of solutions to
construct orbits of the full nonlinear flow. To see how we do this it is first convenient to consider a
two-dimensional linear system of the form

ż = Az + b, z =
[
v
w

]
, (3.1)

where the 2 × 2 matrix A has components Aij , i, j = 1, 2, and b is constant 2 × 1 input vector. The
solution to (3.1) may be written in the form

z(t) = G(t)z(0) + K(t)b, G(t) = eAt, K(t) =
∫ t

0
G(s)ds. (3.2)

If A has real eigenvalues λ±, such that Aq± = λ±q± with q± ∈ R2, given by

λ± =
TrA±

√
(TrA)2 − 4 detA

2
, (3.3)

then we may ‘diagonlise’ and write G(t) in the computationally useful form G(t) = P eΛtP−1, where
Λ = diag(λ+, λ−), P = [q+, q−], and q± = [(λ±−A22)/A21, 1]T . If A has complex eigenvalues ρ± iω then
the associated complex eigenvector is q such that Aq = (ρ+iω)q, q ∈ C2. In this case G(t) = eρtPRωtP−1,
where

Rθ =
[
cos θ − sin θ
sin θ cos θ

]
, P = [Im(q),Re(q)] =

[
0 1
ω̂ ρ̂

]
, (3.4)
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limit cycle is shown in Fig. 2.2. Throughout the rest of this paper we shall work with the piece-wise
linear model defined by equations (2.3) and (2.5), though we stress here that the techniques we develop
work for all of the piece-wise linear choices for f(v) and g(v, w) that we have discussed above.

3. Periodic orbits. As a piece-wise planar linear system much can be said about the dynamics
of models defined by (2.3) and (2.5). For the special case that f(v) = −v + H(v − a) and g(v, w) = v
Tonnelier [64] has shown how to sue the method of the harmonic balance [2] to obtain information about
periodic orbits. Here we present an alternative approach that can tackle more general choices for f and
g. In essence we solve the system in each of its linear regimes and demand continuity of solutions to
construct orbits of the full nonlinear flow. To see how we do this it is first convenient to consider a
two-dimensional linear system of the form

ż = Az + b, z =
[
v
w

]
, (3.1)

where the 2 × 2 matrix A has components Aij , i, j = 1, 2, and b is constant 2 × 1 input vector. The
solution to (3.1) may be written in the form

z(t) = G(t)z(0) + K(t)b, G(t) = eAt, K(t) =
∫ t

0
G(s)ds. (3.2)

If A has real eigenvalues λ±, such that Aq± = λ±q± with q± ∈ R2, given by

λ± =
TrA±

√
(TrA)2 − 4 detA

2
, (3.3)

then we may ‘diagonlise’ and write G(t) in the computationally useful form G(t) = P eΛtP−1, where
Λ = diag(λ+, λ−), P = [q+, q−], and q± = [(λ±−A22)/A21, 1]T . If A has complex eigenvalues ρ± iω then
the associated complex eigenvector is q such that Aq = (ρ+iω)q, q ∈ C2. In this case G(t) = eρtPRωtP−1,
where

Rθ =
[
cos θ − sin θ
sin θ cos θ

]
, P = [Im(q),Re(q)] =

[
0 1
ω̂ ρ̂

]
, (3.4)

G(t) and K(t) can be calculated in closed form

Introduce 4 labels and write

4 S COOMBES

with ω̂ = ω/A12 and ρ̂ = (ρ − A11)/A12. Note that ρ and ω may be written in terms of the coefficients
Aij (using the invariance of Tr and det) as

ρ =
A11 + A22

2
, ω2 = A11A22 −A12A21 − ρ2 > 0. (3.5)

The explicit form for G(t), necessary for carrying out computations, is given in Appendix A
To specify a periodic orbit of the piece-wise linear model of choice it is convenient to break the

solution into pieces such that on each piece the dynamics is governed by a linear dynamical system. As
a concrete example we will focus on the type of periodic orbits shown in Figures 2.1 and 2.2. In both
theses examples we need only consider four distinct pieces, labelled by µ = 1, . . . , 4. We denote the time
spent in each of these four states as Tµ. For each piece we write zµ(t) = Gµ(t)zµ(0) + Kµ(t)bµ with the
forms for Gµ and Kµ given by (3.2) under the replacement of A by Aµ. For the McKean model we have
that A1 = A3, A2 = A4where

A1 =
[
1/µ −1/µ
1 −γ

]
, A2 =

[
−1/µ −1/µ

1 −γ

]
, (3.6)

with

b1 =
[
(I − a)/µ

0

]
, b2 =

[
(1 + I)/µ

0

]
, b4 =

[
I/µ
0

]
, (3.7)

and b3 = b1. For the Type I model defined by (2.5)

A1 =
[

1/µ −1/µ
1/γ2 −1

]
, A2 =

[
−1/µ −1/µ
1/γ2 −1

]
, A4 =

[
1/µ −1/µ
1/γ1 −1

]
, (3.8)

with

b1 =
[
(I − a)/µ
b∗ − b/γ2

]
, b2 =

[
(1 + I)/µ
b∗ − b/γ2

]
, b4 =

[
(I − a)/µ
b∗ − b/γ1

]
, (3.9)

and A3 = A1 and b3 = b1. Introducing two voltage thresholds v1
th and v2

th, where (v1
th, v2

th) = (a/2, (1 +
a)/2) for the McKean model and (v1

th, v2
th) = (b, (1 + a)/2) for the Type I model, means that we can

parameterize a periodic orbit by choosing initial data such that z1(0) = (v1
th, w∗) (with w∗ as yet undeter-

mined) and zµ+1(0) = Gµ(Tµ)zµ(0) + Kµ(Tµ)bµ, for µ = 1, 2, 3. The ‘times-of-flight’ Tµ are determined
by solving the threshold crossing conditions: v1(T1) = v2

th, v2(T2) = v2
th, v3(T3) = v1

th, and v4(T4) = v1
th.

A periodic solution can then be found by solving w4(T4) = w1(0), thus yielding w∗ and the period
T =

∑4
µ=1 Tµ.

Three other types of periodic solution are also possible. Two of these involve only a single threshold
crossing. Namely one which crosses through the section v = v1

th, but not v = v2
th and another which crosses

through v = v2
th, but not v = v1

th. Calling these the sub- and supra-threshold periodic orbit respectively
then each may also be solved for using the approach (and notation) above. The sub-threshold orbit is
specified by the restriction µ = {1, 4} with z1(0) = (v1

th, w∗), subject to v1(T1) = v1
th = v4(T4) and

w4(T4) = w1(0), so that T = T1 + T4. The right orbit is specified by the restriction µ = {2, 3} with
z2(0) = (v2

th, w∗), subject to v2(T2) = v2
th = v3(T3) and w3(T3) = w2(0), so that T = T2 + T3. The final

type of orbit does not cross any thresholds, and is defined by simply by v(T ) = v0
th and v(T ) = v(0)

for some section v0
th through the orbit. We shall call such an orbit harmonic, because its shape will

be determined by a linear system of ODEs. Note however that it will only exist at an isolated point
in parameter space, namely where the coefficient matrix A has purely complex eigenvalues (TrA = 0,
det A > 0).

3.1. Phase response curve. It is common practice in neuroscience to characterise a neuronal
oscillator in terms of its phase response to a perturbation. This gives rise to the notion of a so-called
phase response curve (PRC). For a detailed discussion of PRCs we refer the reader to [27, 28, 40]. The PRC
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limit cycle is shown in Fig. 2.2. Throughout the rest of this paper we shall work with the piece-wise
linear model defined by equations (2.3) and (2.5), though we stress here that the techniques we develop
work for all of the piece-wise linear choices for f(v) and g(v, w) that we have discussed above.

3. Periodic orbits. As a piece-wise planar linear system much can be said about the dynamics
of models defined by (2.3) and (2.5). For the special case that f(v) = −v + H(v − a) and g(v, w) = v
Tonnelier [64] has shown how to sue the method of the harmonic balance [2] to obtain information about
periodic orbits. Here we present an alternative approach that can tackle more general choices for f and
g. In essence we solve the system in each of its linear regimes and demand continuity of solutions to
construct orbits of the full nonlinear flow. To see how we do this it is first convenient to consider a
two-dimensional linear system of the form

ż = Az + b, z =
[
v
w

]
, (3.1)

where the 2 × 2 matrix A has components Aij , i, j = 1, 2, and b is constant 2 × 1 input vector. The
solution to (3.1) may be written in the form

z(t) = G(t)z(0) + K(t)b, G(t) = eAt, K(t) =
∫ t

0
G(s)ds. (3.2)

If A has real eigenvalues λ±, such that Aq± = λ±q± with q± ∈ R2, given by

λ± =
TrA±

√
(TrA)2 − 4 detA

2
, (3.3)

then we may ‘diagonlise’ and write G(t) in the computationally useful form G(t) = P eΛtP−1, where
Λ = diag(λ+, λ−), P = [q+, q−], and q± = [(λ±−A22)/A21, 1]T . If A has complex eigenvalues ρ± iω then
the associated complex eigenvector is q such that Aq = (ρ+iω)q, q ∈ C2. In this case G(t) = eρtPRωtP−1,
where

Rθ =
[
cos θ − sin θ
sin θ cos θ

]
, P = [Im(q),Re(q)] =

[
0 1
ω̂ ρ̂

]
, (3.4)
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Fig. 2.2. The phase plane for the Type I piece-wise linear model with γ1 = 2, γ2 = 0.25, µ = 0.825, I = 0.1, a = 0.25
and b = 0.5 and b∗ = 0.2. The pale blue line passing through the saddle (gray filled circle) is the separatrix between the
stable fixed point (black filled circle) and the stable limit cycle (in red).

limit cycle is shown in Fig. 2.2. Throughout the rest of this paper we shall work with the piece-wise
linear model defined by equations (2.3) and (2.5), though we stress here that the techniques we develop
work for all of the piece-wise linear choices for f(v) and g(v, w) that we have discussed above.

3. Periodic orbits. As a piece-wise planar linear system much can be said about the dynamics
of models defined by (2.3) and (2.5). For the special case that f(v) = −v + H(v − a) and g(v, w) = v
Tonnelier [64] has shown how to sue the method of the harmonic balance [2] to obtain information about
periodic orbits. Here we present an alternative approach that can tackle more general choices for f and
g. In essence we solve the system in each of its linear regimes and demand continuity of solutions to
construct orbits of the full nonlinear flow. To see how we do this it is first convenient to consider a
two-dimensional linear system of the form

ż = Az + b, z =
[
v
w

]
, (3.1)

where the 2 × 2 matrix A has components Aij , i, j = 1, 2, and b is constant 2 × 1 input vector. The
solution to (3.1) may be written in the form

z(t) = G(t)z(0) + K(t)b, G(t) = eAt, K(t) =
∫ t

0
G(s)ds. (3.2)

If A has real eigenvalues λ±, such that Aq± = λ±q± with q± ∈ R2, given by

λ± =
TrA±

√
(TrA)2 − 4 detA

2
, (3.3)

then we may ‘diagonlise’ and write G(t) in the computationally useful form G(t) = P eΛtP−1, where
Λ = diag(λ+, λ−), P = [q+, q−], and q± = [(λ±−A22)/A21, 1]T . If A has complex eigenvalues ρ± iω then
the associated complex eigenvector is q such that Aq = (ρ+iω)q, q ∈ C2. In this case G(t) = eρtPRωtP−1,
where

Rθ =
[
cos θ − sin θ
sin θ cos θ

]
, P = [Im(q),Re(q)] =

[
0 1
ω̂ ρ̂

]
, (3.4)

G(t) and K(t) can be calculated in closed form

Introduce 4 labels and write

4 S COOMBES

with ω̂ = ω/A12 and ρ̂ = (ρ − A11)/A12. Note that ρ and ω may be written in terms of the coefficients
Aij (using the invariance of Tr and det) as

ρ =
A11 + A22

2
, ω2 = A11A22 −A12A21 − ρ2 > 0. (3.5)

The explicit form for G(t), necessary for carrying out computations, is given in Appendix A
To specify a periodic orbit of the piece-wise linear model of choice it is convenient to break the

solution into pieces such that on each piece the dynamics is governed by a linear dynamical system. As
a concrete example we will focus on the type of periodic orbits shown in Figures 2.1 and 2.2. In both
theses examples we need only consider four distinct pieces, labelled by µ = 1, . . . , 4. We denote the time
spent in each of these four states as Tµ. For each piece we write zµ(t) = Gµ(t)zµ(0) + Kµ(t)bµ with the
forms for Gµ and Kµ given by (3.2) under the replacement of A by Aµ. For the McKean model we have
that A1 = A3, A2 = A4where

A1 =
[
1/µ −1/µ
1 −γ

]
, A2 =

[
−1/µ −1/µ

1 −γ

]
, (3.6)

with

b1 =
[
(I − a)/µ

0

]
, b2 =

[
(1 + I)/µ

0

]
, b4 =

[
I/µ
0

]
, (3.7)

and b3 = b1. For the Type I model defined by (2.5)

A1 =
[

1/µ −1/µ
1/γ2 −1

]
, A2 =

[
−1/µ −1/µ
1/γ2 −1

]
, A4 =

[
1/µ −1/µ
1/γ1 −1

]
, (3.8)

with

b1 =
[
(I − a)/µ
b∗ − b/γ2

]
, b2 =

[
(1 + I)/µ
b∗ − b/γ2

]
, b4 =

[
(I − a)/µ
b∗ − b/γ1

]
, (3.9)

and A3 = A1 and b3 = b1. Introducing two voltage thresholds v1
th and v2

th, where (v1
th, v2

th) = (a/2, (1 +
a)/2) for the McKean model and (v1

th, v2
th) = (b, (1 + a)/2) for the Type I model, means that we can

parameterize a periodic orbit by choosing initial data such that z1(0) = (v1
th, w∗) (with w∗ as yet undeter-

mined) and zµ+1(0) = Gµ(Tµ)zµ(0) + Kµ(Tµ)bµ, for µ = 1, 2, 3. The ‘times-of-flight’ Tµ are determined
by solving the threshold crossing conditions: v1(T1) = v2

th, v2(T2) = v2
th, v3(T3) = v1

th, and v4(T4) = v1
th.

A periodic solution can then be found by solving w4(T4) = w1(0), thus yielding w∗ and the period
T =

∑4
µ=1 Tµ.

Three other types of periodic solution are also possible. Two of these involve only a single threshold
crossing. Namely one which crosses through the section v = v1

th, but not v = v2
th and another which crosses

through v = v2
th, but not v = v1

th. Calling these the sub- and supra-threshold periodic orbit respectively
then each may also be solved for using the approach (and notation) above. The sub-threshold orbit is
specified by the restriction µ = {1, 4} with z1(0) = (v1

th, w∗), subject to v1(T1) = v1
th = v4(T4) and

w4(T4) = w1(0), so that T = T1 + T4. The right orbit is specified by the restriction µ = {2, 3} with
z2(0) = (v2

th, w∗), subject to v2(T2) = v2
th = v3(T3) and w3(T3) = w2(0), so that T = T2 + T3. The final

type of orbit does not cross any thresholds, and is defined by simply by v(T ) = v0
th and v(T ) = v(0)

for some section v0
th through the orbit. We shall call such an orbit harmonic, because its shape will

be determined by a linear system of ODEs. Note however that it will only exist at an isolated point
in parameter space, namely where the coefficient matrix A has purely complex eigenvalues (TrA = 0,
det A > 0).

3.1. Phase response curve. It is common practice in neuroscience to characterise a neuronal
oscillator in terms of its phase response to a perturbation. This gives rise to the notion of a so-called
phase response curve (PRC). For a detailed discussion of PRCs we refer the reader to [27, 28, 40]. The PRC
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with ω̂ = ω/A12 and ρ̂ = (ρ − A11)/A12. Note that ρ and ω may be written in terms of the coefficients
Aij (using the invariance of Tr and det) as

ρ =
A11 + A22

2
, ω2 = A11A22 −A12A21 − ρ2 > 0. (3.5)

The explicit form for G(t), necessary for carrying out computations, is given in Appendix A
To specify a periodic orbit of the piece-wise linear model of choice it is convenient to break the

solution into pieces such that on each piece the dynamics is governed by a linear dynamical system. As
a concrete example we will focus on the type of periodic orbits shown in Figures 2.1 and 2.2. In both
theses examples we need only consider four distinct pieces, labelled by µ = 1, . . . , 4. We denote the time
spent in each of these four states as Tµ. For each piece we write zµ(t) = Gµ(t)zµ(0) + Kµ(t)bµ with the
forms for Gµ and Kµ given by (3.2) under the replacement of A by Aµ. For the McKean model we have
that A1 = A3, A2 = A4where

A1 =
[
1/µ −1/µ
1 −γ

]
, A2 =

[
−1/µ −1/µ

1 −γ

]
, (3.6)

with

b1 =
[
(I − a)/µ

0

]
, b2 =

[
(1 + I)/µ

0

]
, b4 =

[
I/µ
0

]
, (3.7)

and b3 = b1. For the Type I model defined by (2.5)

A1 =
[

1/µ −1/µ
1/γ2 −1

]
, A2 =

[
−1/µ −1/µ
1/γ2 −1

]
, A4 =

[
1/µ −1/µ
1/γ1 −1

]
, (3.8)

with

b1 =
[
(I − a)/µ
b∗ − b/γ2

]
, b2 =

[
(1 + I)/µ
b∗ − b/γ2

]
, b4 =

[
(I − a)/µ
b∗ − b/γ1

]
, (3.9)

and A3 = A1 and b3 = b1. Introducing two voltage thresholds v1
th and v2

th, where (v1
th, v2

th) = (a/2, (1 +
a)/2) for the McKean model and (v1

th, v2
th) = (b, (1 + a)/2) for the Type I model, means that we can

parameterize a periodic orbit by choosing initial data such that z1(0) = (v1
th, w∗) (with w∗ as yet undeter-

mined) and zµ+1(0) = Gµ(Tµ)zµ(0) + Kµ(Tµ)bµ, for µ = 1, 2, 3. The ‘times-of-flight’ Tµ are determined
by solving the threshold crossing conditions: v1(T1) = v2

th, v2(T2) = v2
th, v3(T3) = v1

th, and v4(T4) = v1
th.

A periodic solution can then be found by solving w4(T4) = w1(0), thus yielding w∗ and the period
T =

∑4
µ=1 Tµ.

Three other types of periodic solution are also possible. Two of these involve only a single threshold
crossing. Namely one which crosses through the section v = v1

th, but not v = v2
th and another which crosses

through v = v2
th, but not v = v1

th. Calling these the sub- and supra-threshold periodic orbit respectively
then each may also be solved for using the approach (and notation) above. The sub-threshold orbit is
specified by the restriction µ = {1, 4} with z1(0) = (v1

th, w∗), subject to v1(T1) = v1
th = v4(T4) and

w4(T4) = w1(0), so that T = T1 + T4. The right orbit is specified by the restriction µ = {2, 3} with
z2(0) = (v2

th, w∗), subject to v2(T2) = v2
th = v3(T3) and w3(T3) = w2(0), so that T = T2 + T3. The final

type of orbit does not cross any thresholds, and is defined by simply by v(T ) = v0
th and v(T ) = v(0)

for some section v0
th through the orbit. We shall call such an orbit harmonic, because its shape will

be determined by a linear system of ODEs. Note however that it will only exist at an isolated point
in parameter space, namely where the coefficient matrix A has purely complex eigenvalues (TrA = 0,
det A > 0).

3.1. Phase response curve. It is common practice in neuroscience to characterise a neuronal
oscillator in terms of its phase response to a perturbation. This gives rise to the notion of a so-called
phase response curve (PRC). For a detailed discussion of PRCs we refer the reader to [27, 28, 40]. The PRC

• Choose initial data

• “Times of flight” determined by threshold crossings
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with ω̂ = ω/A12 and ρ̂ = (ρ − A11)/A12. Note that ρ and ω may be written in terms of the coefficients
Aij (using the invariance of Tr and det) as

ρ =
A11 + A22

2
, ω2 = A11A22 −A12A21 − ρ2 > 0. (3.5)

The explicit form for G(t), necessary for carrying out computations, is given in Appendix A
To specify a periodic orbit of the piece-wise linear model of choice it is convenient to break the

solution into pieces such that on each piece the dynamics is governed by a linear dynamical system. As
a concrete example we will focus on the type of periodic orbits shown in Figures 2.1 and 2.2. In both
theses examples we need only consider four distinct pieces, labelled by µ = 1, . . . , 4. We denote the time
spent in each of these four states as Tµ. For each piece we write zµ(t) = Gµ(t)zµ(0) + Kµ(t)bµ with the
forms for Gµ and Kµ given by (3.2) under the replacement of A by Aµ. For the McKean model we have
that A1 = A3, A2 = A4where

A1 =
[
1/µ −1/µ
1 −γ

]
, A2 =

[
−1/µ −1/µ

1 −γ

]
, (3.6)

with

b1 =
[
(I − a)/µ

0

]
, b2 =

[
(1 + I)/µ

0

]
, b4 =

[
I/µ
0

]
, (3.7)

and b3 = b1. For the Type I model defined by (2.5)

A1 =
[

1/µ −1/µ
1/γ2 −1

]
, A2 =

[
−1/µ −1/µ
1/γ2 −1

]
, A4 =

[
1/µ −1/µ
1/γ1 −1

]
, (3.8)

with

b1 =
[
(I − a)/µ
b∗ − b/γ2

]
, b2 =

[
(1 + I)/µ
b∗ − b/γ2

]
, b4 =

[
(I − a)/µ
b∗ − b/γ1

]
, (3.9)

and A3 = A1 and b3 = b1. Introducing two voltage thresholds v1
th and v2

th, where (v1
th, v2

th) = (a/2, (1 +
a)/2) for the McKean model and (v1

th, v2
th) = (b, (1 + a)/2) for the Type I model, means that we can

parameterize a periodic orbit by choosing initial data such that z1(0) = (v1
th, w∗) (with w∗ as yet undeter-

mined) and zµ+1(0) = Gµ(Tµ)zµ(0) + Kµ(Tµ)bµ, for µ = 1, 2, 3. The ‘times-of-flight’ Tµ are determined
by solving the threshold crossing conditions: v1(T1) = v2

th, v2(T2) = v2
th, v3(T3) = v1

th, and v4(T4) = v1
th.

A periodic solution can then be found by solving w4(T4) = w1(0), thus yielding w∗ and the period
T =

∑4
µ=1 Tµ.

Three other types of periodic solution are also possible. Two of these involve only a single threshold
crossing. Namely one which crosses through the section v = v1

th, but not v = v2
th and another which crosses

through v = v2
th, but not v = v1

th. Calling these the sub- and supra-threshold periodic orbit respectively
then each may also be solved for using the approach (and notation) above. The sub-threshold orbit is
specified by the restriction µ = {1, 4} with z1(0) = (v1

th, w∗), subject to v1(T1) = v1
th = v4(T4) and

w4(T4) = w1(0), so that T = T1 + T4. The right orbit is specified by the restriction µ = {2, 3} with
z2(0) = (v2

th, w∗), subject to v2(T2) = v2
th = v3(T3) and w3(T3) = w2(0), so that T = T2 + T3. The final

type of orbit does not cross any thresholds, and is defined by simply by v(T ) = v0
th and v(T ) = v(0)

for some section v0
th through the orbit. We shall call such an orbit harmonic, because its shape will

be determined by a linear system of ODEs. Note however that it will only exist at an isolated point
in parameter space, namely where the coefficient matrix A has purely complex eigenvalues (TrA = 0,
det A > 0).

3.1. Phase response curve. It is common practice in neuroscience to characterise a neuronal
oscillator in terms of its phase response to a perturbation. This gives rise to the notion of a so-called
phase response curve (PRC). For a detailed discussion of PRCs we refer the reader to [27, 28, 40]. The PRC

• Ensure periodicity
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with ω̂ = ω/A12 and ρ̂ = (ρ − A11)/A12. Note that ρ and ω may be written in terms of the coefficients
Aij (using the invariance of Tr and det) as

ρ =
A11 + A22

2
, ω2 = A11A22 −A12A21 − ρ2 > 0. (3.5)

The explicit form for G(t), necessary for carrying out computations, is given in Appendix A
To specify a periodic orbit of the piece-wise linear model of choice it is convenient to break the

solution into pieces such that on each piece the dynamics is governed by a linear dynamical system. As
a concrete example we will focus on the type of periodic orbits shown in Figures 2.1 and 2.2. In both
theses examples we need only consider four distinct pieces, labelled by µ = 1, . . . , 4. We denote the time
spent in each of these four states as Tµ. For each piece we write zµ(t) = Gµ(t)zµ(0) + Kµ(t)bµ with the
forms for Gµ and Kµ given by (3.2) under the replacement of A by Aµ. For the McKean model we have
that A1 = A3, A2 = A4where

A1 =
[
1/µ −1/µ
1 −γ

]
, A2 =

[
−1/µ −1/µ

1 −γ

]
, (3.6)

with

b1 =
[
(I − a)/µ

0

]
, b2 =

[
(1 + I)/µ

0

]
, b4 =

[
I/µ
0

]
, (3.7)

and b3 = b1. For the Type I model defined by (2.5)

A1 =
[

1/µ −1/µ
1/γ2 −1

]
, A2 =

[
−1/µ −1/µ
1/γ2 −1

]
, A4 =

[
1/µ −1/µ
1/γ1 −1

]
, (3.8)

with

b1 =
[
(I − a)/µ
b∗ − b/γ2

]
, b2 =

[
(1 + I)/µ
b∗ − b/γ2

]
, b4 =

[
(I − a)/µ
b∗ − b/γ1

]
, (3.9)

and A3 = A1 and b3 = b1. Introducing two voltage thresholds v1
th and v2

th, where (v1
th, v2

th) = (a/2, (1 +
a)/2) for the McKean model and (v1

th, v2
th) = (b, (1 + a)/2) for the Type I model, means that we can

parameterize a periodic orbit by choosing initial data such that z1(0) = (v1
th, w∗) (with w∗ as yet undeter-

mined) and zµ+1(0) = Gµ(Tµ)zµ(0) + Kµ(Tµ)bµ, for µ = 1, 2, 3. The ‘times-of-flight’ Tµ are determined
by solving the threshold crossing conditions: v1(T1) = v2

th, v2(T2) = v2
th, v3(T3) = v1

th, and v4(T4) = v1
th.

A periodic solution can then be found by solving w4(T4) = w1(0), thus yielding w∗ and the period
T =

∑4
µ=1 Tµ.

Three other types of periodic solution are also possible. Two of these involve only a single threshold
crossing. Namely one which crosses through the section v = v1

th, but not v = v2
th and another which crosses

through v = v2
th, but not v = v1

th. Calling these the sub- and supra-threshold periodic orbit respectively
then each may also be solved for using the approach (and notation) above. The sub-threshold orbit is
specified by the restriction µ = {1, 4} with z1(0) = (v1

th, w∗), subject to v1(T1) = v1
th = v4(T4) and

w4(T4) = w1(0), so that T = T1 + T4. The right orbit is specified by the restriction µ = {2, 3} with
z2(0) = (v2

th, w∗), subject to v2(T2) = v2
th = v3(T3) and w3(T3) = w2(0), so that T = T2 + T3. The final

type of orbit does not cross any thresholds, and is defined by simply by v(T ) = v0
th and v(T ) = v(0)

for some section v0
th through the orbit. We shall call such an orbit harmonic, because its shape will

be determined by a linear system of ODEs. Note however that it will only exist at an isolated point
in parameter space, namely where the coefficient matrix A has purely complex eigenvalues (TrA = 0,
det A > 0).

3.1. Phase response curve. It is common practice in neuroscience to characterise a neuronal
oscillator in terms of its phase response to a perturbation. This gives rise to the notion of a so-called
phase response curve (PRC). For a detailed discussion of PRCs we refer the reader to [27, 28, 40]. The PRC
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Continuous and periodic
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with ω̂ = ω/A12 and ρ̂ = (ρ − A11)/A12. Note that ρ and ω may be written in terms of the coefficients
Aij (using the invariance of Tr and det) as

ρ =
A11 + A22

2
, ω2 = A11A22 −A12A21 − ρ2 > 0. (3.5)

The explicit form for G(t), necessary for carrying out computations, is given in Appendix A
To specify a periodic orbit of the piece-wise linear model of choice it is convenient to break the

solution into pieces such that on each piece the dynamics is governed by a linear dynamical system. As
a concrete example we will focus on the type of periodic orbits shown in Figures 2.1 and 2.2. In both
theses examples we need only consider four distinct pieces, labelled by µ = 1, . . . , 4. We denote the time
spent in each of these four states as Tµ. For each piece we write zµ(t) = Gµ(t)zµ(0) + Kµ(t)bµ with the
forms for Gµ and Kµ given by (3.2) under the replacement of A by Aµ. For the McKean model we have
that A1 = A3, A2 = A4where

A1 =
[
1/µ −1/µ
1 −γ

]
, A2 =

[
−1/µ −1/µ

1 −γ

]
, (3.6)

with

b1 =
[
(I − a)/µ

0

]
, b2 =

[
(1 + I)/µ

0

]
, b4 =

[
I/µ
0

]
, (3.7)

and b3 = b1. For the Type I model defined by (2.5)

A1 =
[

1/µ −1/µ
1/γ2 −1

]
, A2 =

[
−1/µ −1/µ
1/γ2 −1

]
, A4 =

[
1/µ −1/µ
1/γ1 −1

]
, (3.8)

with

b1 =
[
(I − a)/µ
b∗ − b/γ2

]
, b2 =

[
(1 + I)/µ
b∗ − b/γ2

]
, b4 =

[
(I − a)/µ
b∗ − b/γ1

]
, (3.9)

and A3 = A1 and b3 = b1. Introducing two voltage thresholds v1
th and v2

th, where (v1
th, v2

th) = (a/2, (1 +
a)/2) for the McKean model and (v1

th, v2
th) = (b, (1 + a)/2) for the Type I model, means that we can

parameterize a periodic orbit by choosing initial data such that z1(0) = (v1
th, w∗) (with w∗ as yet undeter-

mined) and zµ+1(0) = Gµ(Tµ)zµ(0) + Kµ(Tµ)bµ, for µ = 1, 2, 3. The ‘times-of-flight’ Tµ are determined
by solving the threshold crossing conditions: v1(T1) = v2

th, v2(T2) = v2
th, v3(T3) = v1

th, and v4(T4) = v1
th.

A periodic solution can then be found by solving w4(T4) = w1(0), thus yielding w∗ and the period
T =

∑4
µ=1 Tµ.

Three other types of periodic solution are also possible. Two of these involve only a single threshold
crossing. Namely one which crosses through the section v = v1

th, but not v = v2
th and another which crosses

through v = v2
th, but not v = v1

th. Calling these the sub- and supra-threshold periodic orbit respectively
then each may also be solved for using the approach (and notation) above. The sub-threshold orbit is
specified by the restriction µ = {1, 4} with z1(0) = (v1

th, w∗), subject to v1(T1) = v1
th = v4(T4) and

w4(T4) = w1(0), so that T = T1 + T4. The right orbit is specified by the restriction µ = {2, 3} with
z2(0) = (v2

th, w∗), subject to v2(T2) = v2
th = v3(T3) and w3(T3) = w2(0), so that T = T2 + T3. The final

type of orbit does not cross any thresholds, and is defined by simply by v(T ) = v0
th and v(T ) = v(0)

for some section v0
th through the orbit. We shall call such an orbit harmonic, because its shape will

be determined by a linear system of ODEs. Note however that it will only exist at an isolated point
in parameter space, namely where the coefficient matrix A has purely complex eigenvalues (TrA = 0,
det A > 0).

3.1. Phase response curve. It is common practice in neuroscience to characterise a neuronal
oscillator in terms of its phase response to a perturbation. This gives rise to the notion of a so-called
phase response curve (PRC). For a detailed discussion of PRCs we refer the reader to [27, 28, 40]. The PRC

• Choose initial data

• “Times of flight” determined by threshold crossings
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with ω̂ = ω/A12 and ρ̂ = (ρ − A11)/A12. Note that ρ and ω may be written in terms of the coefficients
Aij (using the invariance of Tr and det) as

ρ =
A11 + A22

2
, ω2 = A11A22 −A12A21 − ρ2 > 0. (3.5)

The explicit form for G(t), necessary for carrying out computations, is given in Appendix A
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th and v2

th, where (v1
th, v2

th) = (a/2, (1 +
a)/2) for the McKean model and (v1

th, v2
th) = (b, (1 + a)/2) for the Type I model, means that we can

parameterize a periodic orbit by choosing initial data such that z1(0) = (v1
th, w∗) (with w∗ as yet undeter-
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th = v3(T3) and w3(T3) = w2(0), so that T = T2 + T3. The final

type of orbit does not cross any thresholds, and is defined by simply by v(T ) = v0
th and v(T ) = v(0)

for some section v0
th through the orbit. We shall call such an orbit harmonic, because its shape will

be determined by a linear system of ODEs. Note however that it will only exist at an isolated point
in parameter space, namely where the coefficient matrix A has purely complex eigenvalues (TrA = 0,
det A > 0).

3.1. Phase response curve. It is common practice in neuroscience to characterise a neuronal
oscillator in terms of its phase response to a perturbation. This gives rise to the notion of a so-called
phase response curve (PRC). For a detailed discussion of PRCs we refer the reader to [27, 28, 40]. The PRC
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6 S COOMBES

of an oscillator may be related to a phase function defined by the isochrons of an attracting limit cycle.
Following [12] we consider a dynamical system ż = F (z) with a T -periodic solution Z(t) = Z(t + T ) and
introduce an infinitesimal perturbation ∆z to the trajectory Z(t) at time t = 0. The resulting trajectory
z(t) = Z(t)+∆z(t) induces a phase shift defined as ∆θ = θ(z)−θ(Z) (using isochronal coordinates) such
that to first order in ∆z

∆θ = 〈Q,∆z〉, (3.10)

where 〈·, ·〉 defines the standard inner product, and Q = ∇Zθ is the gradient of θ evaluated at Z(t). This
gradient can be shown to satisfy the linear equation

dQ

dt
= D(t)Q, D(t) = −DFT (Z(t)) (3.11)

subject to the conditions ∇Z(0)θ · F (Z(0)) = 1/T and Q(t) = Q(t + T ). Here DF (Z) denotes the
Jacobian of F evaluated along Z. The (vector) PRC, R, is related to Q according to the simple scaling
R = QT . In general (3.10) and (3.11) must be solved numerically to obtain the PRC, say using the adjoint
routine in XPP [23]. However, for the McKean model DF (Z) is piece-wise linear and we can obtain a
solution in closed form. Introducing a labelling as for the periodic orbit we re-write (3.10) in the form
Q̇µ = DµQµ, where Dµ = −AT

µ . The solution of each subsystem is given by Qµ(t) = GT
µ (Tµ − t)Qµ(Tµ)

with Qµ(Tµ) = Qµ+1(0), for µ = 1, 2, 3. Denoting Q4(T4) = (q1, q2) we have the relation

q1

µ

[
f(v1

th)− w∗ + I
]
+ q2g(v1

th, w∗) =
1
T

. (3.12)

Periodicity is ensured by choosing Q1(0) = Q4(T4). After introducing the 2×2 matrix Γ = GT
1 (T1)GT

2 (T2)GT
3 (T3)GT

4 (T4),
this periodicity condition takes the form

(Γ11 − 1)q1 + Γ12q2 = 0. (3.13)

Hence (3.12) and (3.13) define a pair of linear equations for (q1, q2) that we may write in the form

Ψ
[
q1

q2

]
=

[
1/T
0

]
, Ψ =

[
(f(v1

th)− w∗ + I)/µ g(v1
th, w∗)

Γ11 − 1 Γ12

]
. (3.14)

This is easily solved, with say Cramer’s rule, giving qi = det(Ψi)/ det(Ψ), where

Ψ1 =
[
1/T g(v1

th, w∗)
0 Γ12

]
, Ψ2 =

[
(f(v1

th)− w∗ + I)/µ 1/T
Γ11 − 1 0

]
. (3.15)

Similarly we may also construct the PRCs for the sub- and supra-threshold orbits (though we omit the
details here). Note that the discussion above above assumes that the underlying dynamical system is
described by a continuous vector field, so that we are free to choose any point on the orbit to fix the
condition θ̇ = 1/T . For discontinuous systems such as would arise in the singular limit µ = 0 or with a
discontinuous choice of g(v, w) then condition (3.13) is not sufficient. Techniques for tackling relaxation
style oscillations that arise in the former case have been developed in [43, 18], whilst the latter case can
easily be treated by writing down the matching conditions to fix θ̇ = 1/T at any jump discontinuities in
g(v, w). A plot of two example PRCs constructed using the above approach are shown in Figure 3.4.

3.2. Stability: Floquet theory. see for example [15].

d∆z

dt
= −D(t)∆z, (3.16)

Note that with the use of a time-ordering operator T we may write the fundamental matrix solution
of this T -periodic system as

G(t) = T
{

exp
[
−

∫ t

0
D(s)ds

]}
(3.17)

Call the orbit ż = F (z)z = Z(t) where

θIntroduce a phase (isochronal coordinates)
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Following [12] we consider a dynamical system ż = F (z) with a T -periodic solution Z(t) = Z(t + T ) and
introduce an infinitesimal perturbation ∆z to the trajectory Z(t) at time t = 0. The resulting trajectory
z(t) = Z(t)+∆z(t) induces a phase shift defined as ∆θ = θ(z)−θ(Z) (using isochronal coordinates) such
that to first order in ∆z

∆θ = 〈Q,∆z〉, (3.10)

where 〈·, ·〉 defines the standard inner product, and Q = ∇Zθ is the gradient of θ evaluated at Z(t). This
gradient can be shown to satisfy the linear equation

dQ

dt
= D(t)Q, D(t) = −DFT (Z(t)) (3.11)

subject to the conditions ∇Z(0)θ · F (Z(0)) = 1/T and Q(t) = Q(t + T ). Here DF (Z) denotes the
Jacobian of F evaluated along Z. The (vector) PRC, R, is related to Q according to the simple scaling
R = QT . In general (3.10) and (3.11) must be solved numerically to obtain the PRC, say using the adjoint
routine in XPP [23]. However, for the McKean model DF (Z) is piece-wise linear and we can obtain a
solution in closed form. Introducing a labelling as for the periodic orbit we re-write (3.10) in the form
Q̇µ = DµQµ, where Dµ = −AT

µ . The solution of each subsystem is given by Qµ(t) = GT
µ (Tµ − t)Qµ(Tµ)

with Qµ(Tµ) = Qµ+1(0), for µ = 1, 2, 3. Denoting Q4(T4) = (q1, q2) we have the relation

q1

µ

[
f(v1

th)− w∗ + I
]
+ q2g(v1

th, w∗) =
1
T

. (3.12)

Periodicity is ensured by choosing Q1(0) = Q4(T4). After introducing the 2×2 matrix Γ = GT
1 (T1)GT

2 (T2)GT
3 (T3)GT

4 (T4),
this periodicity condition takes the form

(Γ11 − 1)q1 + Γ12q2 = 0. (3.13)

Hence (3.12) and (3.13) define a pair of linear equations for (q1, q2) that we may write in the form

Ψ
[
q1

q2

]
=

[
1/T
0

]
, Ψ =

[
(f(v1

th)− w∗ + I)/µ g(v1
th, w∗)

Γ11 − 1 Γ12

]
. (3.14)

This is easily solved, with say Cramer’s rule, giving qi = det(Ψi)/ det(Ψ), where

Ψ1 =
[
1/T g(v1

th, w∗)
0 Γ12

]
, Ψ2 =

[
(f(v1

th)− w∗ + I)/µ 1/T
Γ11 − 1 0

]
. (3.15)

Similarly we may also construct the PRCs for the sub- and supra-threshold orbits (though we omit the
details here). Note that the discussion above above assumes that the underlying dynamical system is
described by a continuous vector field, so that we are free to choose any point on the orbit to fix the
condition θ̇ = 1/T . For discontinuous systems such as would arise in the singular limit µ = 0 or with a
discontinuous choice of g(v, w) then condition (3.13) is not sufficient. Techniques for tackling relaxation
style oscillations that arise in the former case have been developed in [43, 18], whilst the latter case can
easily be treated by writing down the matching conditions to fix θ̇ = 1/T at any jump discontinuities in
g(v, w). A plot of two example PRCs constructed using the above approach are shown in Figure 3.4.

3.2. Stability: Floquet theory. see for example [15].

d∆z

dt
= −D(t)∆z, (3.16)

Note that with the use of a time-ordering operator T we may write the fundamental matrix solution
of this T -periodic system as

G(t) = T
{

exp
[
−

∫ t

0
D(s)ds

]}
(3.17)

Call the orbit ż = F (z)z = Z(t) where

θIntroduce a phase (isochronal coordinates)

6 S COOMBES

of an oscillator may be related to a phase function defined by the isochrons of an attracting limit cycle.
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Following [12] we consider a dynamical system ż = F (z) with a T -periodic solution Z(t) = Z(t + T ) and
introduce an infinitesimal perturbation ∆z to the trajectory Z(t) at time t = 0. The resulting trajectory
z(t) = Z(t)+∆z(t) induces a phase shift defined as ∆θ = θ(z)−θ(Z) (using isochronal coordinates) such
that to first order in ∆z

∆θ = 〈Q,∆z〉, (3.10)

where 〈·, ·〉 defines the standard inner product, and Q = ∇Zθ is the gradient of θ evaluated at Z(t). This
gradient can be shown to satisfy the linear equation

dQ

dt
= D(t)Q, D(t) = −DFT (Z(t)) (3.11)

subject to the conditions ∇Z(0)θ · F (Z(0)) = 1/T and Q(t) = Q(t + T ). Here DF (Z) denotes the
Jacobian of F evaluated along Z. The (vector) PRC, R, is related to Q according to the simple scaling
R = QT . In general (3.10) and (3.11) must be solved numerically to obtain the PRC, say using the adjoint
routine in XPP [23]. However, for the McKean model DF (Z) is piece-wise linear and we can obtain a
solution in closed form. Introducing a labelling as for the periodic orbit we re-write (3.10) in the form
Q̇µ = DµQµ, where Dµ = −AT

µ . The solution of each subsystem is given by Qµ(t) = GT
µ (Tµ − t)Qµ(Tµ)

with Qµ(Tµ) = Qµ+1(0), for µ = 1, 2, 3. Denoting Q4(T4) = (q1, q2) we have the relation

q1

µ

[
f(v1

th)− w∗ + I
]
+ q2g(v1

th, w∗) =
1
T

. (3.12)

Periodicity is ensured by choosing Q1(0) = Q4(T4). After introducing the 2×2 matrix Γ = GT
1 (T1)GT

2 (T2)GT
3 (T3)GT

4 (T4),
this periodicity condition takes the form

(Γ11 − 1)q1 + Γ12q2 = 0. (3.13)

Hence (3.12) and (3.13) define a pair of linear equations for (q1, q2) that we may write in the form

Ψ
[
q1

q2

]
=

[
1/T
0

]
, Ψ =

[
(f(v1

th)− w∗ + I)/µ g(v1
th, w∗)

Γ11 − 1 Γ12

]
. (3.14)

This is easily solved, with say Cramer’s rule, giving qi = det(Ψi)/ det(Ψ), where

Ψ1 =
[
1/T g(v1

th, w∗)
0 Γ12

]
, Ψ2 =

[
(f(v1

th)− w∗ + I)/µ 1/T
Γ11 − 1 0

]
. (3.15)

Similarly we may also construct the PRCs for the sub- and supra-threshold orbits (though we omit the
details here). Note that the discussion above above assumes that the underlying dynamical system is
described by a continuous vector field, so that we are free to choose any point on the orbit to fix the
condition θ̇ = 1/T . For discontinuous systems such as would arise in the singular limit µ = 0 or with a
discontinuous choice of g(v, w) then condition (3.13) is not sufficient. Techniques for tackling relaxation
style oscillations that arise in the former case have been developed in [43, 18], whilst the latter case can
easily be treated by writing down the matching conditions to fix θ̇ = 1/T at any jump discontinuities in
g(v, w). A plot of two example PRCs constructed using the above approach are shown in Figure 3.4.

3.2. Stability: Floquet theory. see for example [15].

d∆z

dt
= −D(t)∆z, (3.16)

Note that with the use of a time-ordering operator T we may write the fundamental matrix solution
of this T -periodic system as

G(t) = T
{

exp
[
−

∫ t

0
D(s)ds

]}
(3.17)

Solve using

Q

T
1

T
2

T
3

T
4

(Ermentrout and Kopell 1991)
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2.3 Networks of interacting phase oscillators

Theorem: Phase equations for oscillatory networks

Consider a family of weakly connected systems

Ẋi = Fi(Xi) + εG(X), i = 1, . . . , n

such that each equation in the uncoupled system (ε = 0) has an exponentially orbitally stable
limit cycle γi ⊂ Rm having natural frequency Ωi "= 0. Then the oscillatory weakly connected
system can be reduced to a phase model of the form

θ̇i = Ωi + εgi(θ1, . . . , θn), θi ∈ S1, i = 1, . . . , n

defined on the n-torus Tn = S1 × . . . × S1. ie there is an open neighbourhood W of M =
γ1 × . . . × γn ⊂ Rmn and a continuous function h : W → Tn that maps solutions of the full
model to those of the phase model. !
The proof of this theorem is based around the fact that the direct product of hyperbolic limit
cycles M = γ1× . . .×γn is a normally hyperbolic invariant manifold (Limit cycles are hyperbolic
if Floquet multipliers are not on the unit circle). The invariant manifold theorem guarantees the
persistence of a manifold Mε, ε close to M. The restriction of the dynamics to M (non-zero ε)
then has something to say about the dynamics on Mε for small enough ε.

Since γi is homemorphic to S1, we can parameterise it using the phase variable θi ∈ S1, θi = Ωi:

Γi : S1 → γi, Γi(θi(t)) = xi(t) ∈ γi, t ∈ [0, 2π/Ωi]

Then we have

ẋi =
dΓi(θi(t))

dt
= Γ ′

i(θi)θ̇i = Γ ′
i(θi)Ωi = Fi(Γi(θi(t)))

for all t. Therefore

Γ ′
i(θi) =

Fi(Γi(θi))

Ωi

Applying this transformation to the full system (when ε "= 0) gives

Γ ′
i(θi)θ̇i = Fi(Γi(θi)) + εGi(Γ(θ))

3
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such that each equation in the uncoupled system (ε = 0) has an exponentially orbitally stable
limit cycle γi ⊂ Rm having natural frequency Ωi "= 0. Then the oscillatory weakly connected
system can be reduced to a phase model of the form

θ̇i = Ωi + εgi(θ1, . . . , θn), θi ∈ S1, i = 1, . . . , n

defined on the n-torus Tn = S1 × . . . × S1. ie there is an open neighbourhood W of M =
γ1 × . . . × γn ⊂ Rmn and a continuous function h : W → Tn that maps solutions of the full
model to those of the phase model. !
The proof of this theorem is based around the fact that the direct product of hyperbolic limit
cycles M = γ1× . . .×γn is a normally hyperbolic invariant manifold (Limit cycles are hyperbolic
if Floquet multipliers are not on the unit circle). The invariant manifold theorem guarantees the
persistence of a manifold Mε, ε close to M. The restriction of the dynamics to M (non-zero ε)
then has something to say about the dynamics on Mε for small enough ε.

Since γi is homemorphic to S1, we can parameterise it using the phase variable θi ∈ S1, θi = Ωi:

Γi : S1 → γi, Γi(θi(t)) = xi(t) ∈ γi, t ∈ [0, 2π/Ωi]

Then we have

ẋi =
dΓi(θi(t))

dt
= Γ ′

i(θi)θ̇i = Γ ′
i(θi)Ωi = Fi(Γi(θi(t)))

for all t. Therefore

Γ ′
i(θi) =

Fi(Γi(θi))

Ωi

Applying this transformation to the full system (when ε "= 0) gives

Γ ′
i(θi)θ̇i = Fi(Γi(θi)) + εGi(Γ(θ))

3

Multiplying both sides by

Ri(θi) =
ΩiFi(Γi(θi))!

|Fi(Γi(θi)|2

gives

θ̇i = Ωi + εRi(θi)Gi(Γ(θ))

To illustrate the analysis of such systems we consider the following restricted phase-difference
example

θ̇1 = ω1 + K1 sin(θ2 − θ1)

θ̇2 = ω2 + K2 sin(θ1 − θ2)

In the uncoupled state (K1 = K2 = 0) we have θ1(t) = θ1(0) + ω1t and θ2(t) = θ2(0) + ω2t
such that dθ2/dθ1 = ω2/ω1. If the slope is rational, ω2/ω1 = p/q, p, q ∈ Z, then all
trajectories lie on closed orbits of the torus (with coords (θ1,θ2)). For irrational slopes the flow
is quasiperiodic. Each trajectory is dense on the torus (ie comes arbitrarily close to any given
point). Introducing φ = θ1 − θ2 the coupled system takes the form

φ̇ = ω1 − ω2 − (K1 + K2) sin(φ)

There are two fixed points if |ω1 − ω2| < K1 + K2, defined by sin φ∗ = (ω1 − ω2)/(K1 + K2),
and a saddle-node (tangent) bifurcation occurs when |ω1 − ω2| = K1 + K2. In this case φ̇ = 0
so that θ̇1 = θ̇2 = constant = ω∗, where

ω∗ = ω2 + K2 sin φ∗ =
K1ω2 + K2ω1

K1 + K2

We may regard ω∗ as a co-operative frequency that is an emergent property of the coupled
system. When no-cooperative frequency can be established the two oscillators cannot phase-lock
(although they may still frequency lock).

Consider now Gi to decribe the synaptic input to neuron i in a network of N neurons with
connections specified by Wij:

Gi(t) =
N∑

j=1

Wijsj(t), sj(t)
∑

m

η(t − Tm(j))

where neuron j fires at times Tm(j). In the case that all oscillators are identical so that all PRCs
and natural frequencies are the same, then Ri = R, and Ωi = Ω = 1/∆. In the absence of any
coupling the phase variable θi(t) = θi(0)+Ωt and all oscillators fire with their natural frequency
Ω. For weak coupling, each oscillator still approximately fires at the unperturbed rate but now
θi(t)−Ωt slowly drifts. To first order in ε, we can take the firing-times to be Tm(j) = (m−θj)∆
to obtain the phase equation

θ̇i = Ωε
∑

j

WijR(θi)P(θj + Ωt)

where P(θ + 1) = P(θ) for all θ and

P(θ) =
∑

m

η((θ + m)∆), 0 ≤ θ < 1

4
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Fig. 3.5. Plot of the stability index E. Left: Result for the McKean model using the solution branch of Figure 3.1
(left). Right: Result for the Type I model using the solution branch of Figure 3.3 (left) Since E < 0 the solution branches
in these two examples are stable.

To model the direct gap junction coupling between two cells (one post- and the other pre-synaptic)
we introduce an extra current to the right hand side of (2.1) of the form

Igap = ggap(vpost − vpre), (4.1)

where ggap is the conductance of the gap junction.

More - introduce network labels on dynamics and interaction N−1
∑N

j=1 gij(vj − vi). For a phase
locked state then zi(t) = z(t − φiT ), z(t) = z(t + T ), and we have N equations distinguished by the
driving terms N−1

∑N
j=1 gij(v(t + (φi − φj)T )− v(t))

In this section we pursue two approaches for studying networks of identical McKean neurons with
such coupling terms. The first is the more familiar coupled oscillator approach, valid for weak coupling.
The second approach exploits the equivalence of a phase-locked network state, with global coupling, to
an appropriate delayed single neuron orbit. This orbit is then solved for in closed form using techniques
from linear delay differential equations and is valid for arbitrary coupling strength. - can we use this to
see loss of existence of splay state with increasing coupling?

4.1. Weak coupling. The theory of weakly coupled oscillators [47, 26] is now a standard tool of
dynamical systems theory and has previously been invoked by several authors to study networks with
gap junctions [56, 50, 57, 24, 52, 44]. It has also previously been used to study networks of McKean
neurons in the singular limit µ → 0 [18, 21]. Introducing the conductance strength between neurons i
and j as gij we may write such a network dynamics in the form

dθi

dt
=

1
T

+
1
N

N∑

j=1

gijH(θj − θi), (4.2)

where H(θ) is the so-called phase interaction function. For gap junction coupling this is given by

H(θ) =
∫ T

0
QT (t)(v(t + θT )− v(t), 0)dt, (4.3)

where v(t), is a periodic solution of (2.1) and Q(t) is the associated adjoint. It is convenient to introduce
Fourier series for the 2× 1 vectors z and Q and write

z(t) =
∑

n

zne2πint/T , Q(t) =
∑

n

Qne2πint/T . (4.4)
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In this section we pursue two approaches for studying networks of identical McKean neurons with
such coupling terms. The first is the more familiar coupled oscillator approach, valid for weak coupling.
The second approach exploits the equivalence of a phase-locked network state, with global coupling, to
an appropriate delayed single neuron orbit. This orbit is then solved for in closed form using techniques
from linear delay differential equations and is valid for arbitrary coupling strength. - can we use this to
see loss of existence of splay state with increasing coupling?

4.1. Weak coupling. The theory of weakly coupled oscillators [47, 26] is now a standard tool of
dynamical systems theory and has previously been invoked by several authors to study networks with
gap junctions [56, 50, 57, 24, 52, 44]. It has also previously been used to study networks of McKean
neurons in the singular limit µ → 0 [18, 21]. Introducing the conductance strength between neurons i
and j as gij we may write such a network dynamics in the form

dθi

dt
=

1
T

+
1
N

N∑
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gijH(θj − θi), (4.2)

where H(θ) is the so-called phase interaction function. For gap junction coupling this is given by

H(θ) =
∫ T

0
QT (t)(v(t + θT )− v(t), 0)dt, (4.3)

where v(t), is a periodic solution of (2.1) and Q(t) is the associated adjoint. It is convenient to introduce
Fourier series for the 2× 1 vectors z and Q and write

z(t) =
∑

n
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∑
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Qne2πint/T . (4.4)

Phase interaction function
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To model the direct gap junction coupling between two cells (one post- and the other pre-synaptic)
we introduce an extra current to the right hand side of (2.1) of the form

Igap = ggap(vpost − vpre), (4.1)

where ggap is the conductance of the gap junction.
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In this section we pursue two approaches for studying networks of identical McKean neurons with
such coupling terms. The first is the more familiar coupled oscillator approach, valid for weak coupling.
The second approach exploits the equivalence of a phase-locked network state, with global coupling, to
an appropriate delayed single neuron orbit. This orbit is then solved for in closed form using techniques
from linear delay differential equations and is valid for arbitrary coupling strength. - can we use this to
see loss of existence of splay state with increasing coupling?

4.1. Weak coupling. The theory of weakly coupled oscillators [47, 26] is now a standard tool of
dynamical systems theory and has previously been invoked by several authors to study networks with
gap junctions [56, 50, 57, 24, 52, 44]. It has also previously been used to study networks of McKean
neurons in the singular limit µ → 0 [18, 21]. Introducing the conductance strength between neurons i
and j as gij we may write such a network dynamics in the form
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+
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H(θ) =
∫ T

0
QT (t)(v(t + θT )− v(t), 0)dt, (4.3)
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To model the direct gap junction coupling between two cells (one post- and the other pre-synaptic)
we introduce an extra current to the right hand side of (2.1) of the form

Igap = ggap(vpost − vpre), (4.1)

where ggap is the conductance of the gap junction.
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In this section we pursue two approaches for studying networks of identical McKean neurons with
such coupling terms. The first is the more familiar coupled oscillator approach, valid for weak coupling.
The second approach exploits the equivalence of a phase-locked network state, with global coupling, to
an appropriate delayed single neuron orbit. This orbit is then solved for in closed form using techniques
from linear delay differential equations and is valid for arbitrary coupling strength. - can we use this to
see loss of existence of splay state with increasing coupling?

4.1. Weak coupling. The theory of weakly coupled oscillators [47, 26] is now a standard tool of
dynamical systems theory and has previously been invoked by several authors to study networks with
gap junctions [56, 50, 57, 24, 52, 44]. It has also previously been used to study networks of McKean
neurons in the singular limit µ → 0 [18, 21]. Introducing the conductance strength between neurons i
and j as gij we may write such a network dynamics in the form
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dt
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1
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+
1
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gijH(θj − θi), (4.2)

where H(θ) is the so-called phase interaction function. For gap junction coupling this is given by

H(θ) =
∫ T

0
QT (t)(v(t + θT )− v(t), 0)dt, (4.3)

where v(t), is a periodic solution of (2.1) and Q(t) is the associated adjoint. It is convenient to introduce
Fourier series for the 2× 1 vectors z and Q and write

z(t) =
∑

n

zne2πint/T , Q(t) =
∑
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Qne2πint/T . (4.4)

Phase interaction function

For convenience introduce Fourier series representation

H(θ) =
∑

n

Hne2πinθ
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To model the direct gap junction coupling between two cells (one post- and the other pre-synaptic)
we introduce an extra current to the right hand side of (2.1) of the form
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where ggap is the conductance of the gap junction.
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In this section we pursue two approaches for studying networks of identical McKean neurons with
such coupling terms. The first is the more familiar coupled oscillator approach, valid for weak coupling.
The second approach exploits the equivalence of a phase-locked network state, with global coupling, to
an appropriate delayed single neuron orbit. This orbit is then solved for in closed form using techniques
from linear delay differential equations and is valid for arbitrary coupling strength. - can we use this to
see loss of existence of splay state with increasing coupling?

4.1. Weak coupling. The theory of weakly coupled oscillators [47, 26] is now a standard tool of
dynamical systems theory and has previously been invoked by several authors to study networks with
gap junctions [56, 50, 57, 24, 52, 44]. It has also previously been used to study networks of McKean
neurons in the singular limit µ → 0 [18, 21]. Introducing the conductance strength between neurons i
and j as gij we may write such a network dynamics in the form

dθi

dt
=

1
T

+
1
N

N∑

j=1

gijH(θj − θi), (4.2)

where H(θ) is the so-called phase interaction function. For gap junction coupling this is given by

H(θ) =
∫ T

0
QT (t)(v(t + θT )− v(t), 0)dt, (4.3)

where v(t), is a periodic solution of (2.1) and Q(t) is the associated adjoint. It is convenient to introduce
Fourier series for the 2× 1 vectors z and Q and write

z(t) =
∑

n

zne2πint/T , Q(t) =
∑

n

Qne2πint/T . (4.4)

Phase interaction function

For the pwl model we can obtain the Fourier 
coefficients in closed form  (spare the details!)

For convenience introduce Fourier series representation

H(θ) =
∑

n

Hne2πinθ
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Global coupling and large N

Synchrony (relative):
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and H ′(φ) = dH(φ)/dφ. One of the eigenvalues of the Jacobian Ĥ is always zero, and the corresponding
eigenvector points in the direction of the flow, that is (1, 1, . . . , 1). The phase-locked solution will be
stable provided that all other eigenvalues have a negative real part. For two neurons a phase locked state
is therefore defined by G(φ) = 0 where G(φ) = g[H(−φ) − H(φ)] and φ is the relative phase between
the two. The condition for stability is simply G′(φ) < 0. By symmetry the phase locked state (φ = 0)
and the anti-synchronous state (φ = 1/2) are guaranteed to exist. In Figure 4.2 we plot G(φ) for the
phase interaction functions of Figure 4.1. In this example we see that the McKean model admits a stable
synchronous solution, whilst the Type I model admits a stable anti-synchronous solution.

For globally coupled networks with gij = g the system (4.2) is SN×T1 equivariant. By the equivariant
branching lemma maximally symmetric solutions describing synchronous, splay, and cluster states are
expected to be generic [5]. For the synchronous state with φi(t) = 0, Ω = 1/T and there is a single zero
eigenvalue and an eigenvalue λ = −gH ′(0) of multiplicity N − 1. Hence for the examples in Figure 4.1
we see that the McKean model has a stable synchronous solution whilst the Type I model does not. For
a splay state of the form φi = i/N the eigenvalues are given by λn = g

∑
j H ′(j/N)(e2πinj/N − 1)/N for

n = 0, . . . , N − 1. For a recent review of the stability of cluster states we refer the reader to [11]. In the
limit N → ∞ we have the useful result that (for global coupling) network averages may be replaced by
time averages:

lim
N→∞

1
N

N∑

j=1

F (jT/N) =
1
T

∫ T

0
F (t)dt = F0 (4.17)

for some T-periodic function F (t) = F (t + T ). Hence in the large N limit the collective frequency of a
splay state (global coupling) is given by

Ω =
1
T

+ gH0, (4.18)

with eigenvalues

λn =
g

T

∫ T

0
H ′(t/T )e2πint/T dt = −2πingH−n. (4.19)

Hence a splay state is stable if

−ngIm Hn < 0, (4.20)

where we have used the fact that since H(θ) is real then Im H−n = −Im Hn. A numerical examination
of condition (4.20) for the phase interaction functions shown in Figure 4.1, shows that the splay state
is unstable for both these examples. One natural way to stabilise the splay state is to include some
synaptic coupling as in the work of [35, 24]. Another mechanism is to include noise, as originally noted
by Kuramoto [47]. If we consider the addition of zero mean white noise with variance σ2 to the voltage
dynamics then the phase-reduced system also feels an additive zero mean white noise noise source, though
with variance σ2

θ given by

σ2
θ =
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∫ T

0
[R(t)]2 dt. (4.21)

For a globally coupled network the asynchronous state is stable if [48]

−ngIm Hn < σ2
θn2 ∀n &= 0. (4.22)

This is the natural generalisation of (4.20) in the presence of noise. This nicely shows us that if the
eigenvalues associated with the deterministic model stray slightly into the right hand complex plane then
a small amount of noise can be used to compensate and restabilise the splay state. However, since this is
an argument that relies upon weak-coupling then it can necessarily only work if the unstable eigenvalues
are sufficiently close to the imaginary axis.
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and H ′(φ) = dH(φ)/dφ. One of the eigenvalues of the Jacobian Ĥ is always zero, and the corresponding
eigenvector points in the direction of the flow, that is (1, 1, . . . , 1). The phase-locked solution will be
stable provided that all other eigenvalues have a negative real part. For two neurons a phase locked state
is therefore defined by G(φ) = 0 where G(φ) = g[H(−φ) − H(φ)] and φ is the relative phase between
the two. The condition for stability is simply G′(φ) < 0. By symmetry the phase locked state (φ = 0)
and the anti-synchronous state (φ = 1/2) are guaranteed to exist. In Figure 4.2 we plot G(φ) for the
phase interaction functions of Figure 4.1. In this example we see that the McKean model admits a stable
synchronous solution, whilst the Type I model admits a stable anti-synchronous solution.

For globally coupled networks with gij = g the system (4.2) is SN×T1 equivariant. By the equivariant
branching lemma maximally symmetric solutions describing synchronous, splay, and cluster states are
expected to be generic [5]. For the synchronous state with φi(t) = 0, Ω = 1/T and there is a single zero
eigenvalue and an eigenvalue λ = −gH ′(0) of multiplicity N − 1. Hence for the examples in Figure 4.1
we see that the McKean model has a stable synchronous solution whilst the Type I model does not. For
a splay state of the form φi = i/N the eigenvalues are given by λn = g

∑
j H ′(j/N)(e2πinj/N − 1)/N for

n = 0, . . . , N − 1. For a recent review of the stability of cluster states we refer the reader to [11]. In the
limit N → ∞ we have the useful result that (for global coupling) network averages may be replaced by
time averages:

lim
N→∞

1
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j=1

F (jT/N) =
1
T

∫ T

0
F (t)dt = F0 (4.17)

for some T-periodic function F (t) = F (t + T ). Hence in the large N limit the collective frequency of a
splay state (global coupling) is given by

Ω =
1
T

+ gH0, (4.18)

with eigenvalues

λn =
g

T

∫ T

0
H ′(t/T )e2πint/T dt = −2πingH−n. (4.19)

Hence a splay state is stable if

−ngIm Hn < 0, (4.20)

where we have used the fact that since H(θ) is real then Im H−n = −Im Hn. A numerical examination
of condition (4.20) for the phase interaction functions shown in Figure 4.1, shows that the splay state
is unstable for both these examples. One natural way to stabilise the splay state is to include some
synaptic coupling as in the work of [35, 24]. Another mechanism is to include noise, as originally noted
by Kuramoto [47]. If we consider the addition of zero mean white noise with variance σ2 to the voltage
dynamics then the phase-reduced system also feels an additive zero mean white noise noise source, though
with variance σ2

θ given by

σ2
θ =
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T

∫ T

0
[R(t)]2 dt. (4.21)

For a globally coupled network the asynchronous state is stable if [48]

−ngIm Hn < σ2
θn2 ∀n &= 0. (4.22)

This is the natural generalisation of (4.20) in the presence of noise. This nicely shows us that if the
eigenvalues associated with the deterministic model stray slightly into the right hand complex plane then
a small amount of noise can be used to compensate and restabilise the splay state. However, since this is
an argument that relies upon weak-coupling then it can necessarily only work if the unstable eigenvalues
are sufficiently close to the imaginary axis.
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stable provided that all other eigenvalues have a negative real part. For two neurons a phase locked state
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the two. The condition for stability is simply G′(φ) < 0. By symmetry the phase locked state (φ = 0)
and the anti-synchronous state (φ = 1/2) are guaranteed to exist. In Figure 4.2 we plot G(φ) for the
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Hence a splay state is stable if

−ngIm Hn < 0, (4.20)

where we have used the fact that since H(θ) is real then Im H−n = −Im Hn. A numerical examination
of condition (4.20) for the phase interaction functions shown in Figure 4.1, shows that the splay state
is unstable for both these examples. One natural way to stabilise the splay state is to include some
synaptic coupling as in the work of [35, 24]. Another mechanism is to include noise, as originally noted
by Kuramoto [47]. If we consider the addition of zero mean white noise with variance σ2 to the voltage
dynamics then the phase-reduced system also feels an additive zero mean white noise noise source, though
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∫ T
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For a globally coupled network the asynchronous state is stable if [48]

−ngIm Hn < σ2
θn2 ∀n &= 0. (4.22)

This is the natural generalisation of (4.20) in the presence of noise. This nicely shows us that if the
eigenvalues associated with the deterministic model stray slightly into the right hand complex plane then
a small amount of noise can be used to compensate and restabilise the splay state. However, since this is
an argument that relies upon weak-coupling then it can necessarily only work if the unstable eigenvalues
are sufficiently close to the imaginary axis.
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1
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Hence a splay state is stable if

−ngIm Hn < 0, (4.20)

where we have used the fact that since H(θ) is real then Im H−n = −Im Hn. A numerical examination
of condition (4.20) for the phase interaction functions shown in Figure 4.1, shows that the splay state
is unstable for both these examples. One natural way to stabilise the splay state is to include some
synaptic coupling as in the work of [35, 24]. Another mechanism is to include noise, as originally noted
by Kuramoto [47]. If we consider the addition of zero mean white noise with variance σ2 to the voltage
dynamics then the phase-reduced system also feels an additive zero mean white noise noise source, though
with variance σ2

θ given by
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∫ T

0
[R(t)]2 dt. (4.21)

For a globally coupled network the asynchronous state is stable if [48]

−ngIm Hn < σ2
θn2 ∀n &= 0. (4.22)

This is the natural generalisation of (4.20) in the presence of noise. This nicely shows us that if the
eigenvalues associated with the deterministic model stray slightly into the right hand complex plane then
a small amount of noise can be used to compensate and restabilise the splay state. However, since this is
an argument that relies upon weak-coupling then it can necessarily only work if the unstable eigenvalues
are sufficiently close to the imaginary axis.
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and H ′(φ) = dH(φ)/dφ. One of the eigenvalues of the Jacobian Ĥ is always zero, and the corresponding
eigenvector points in the direction of the flow, that is (1, 1, . . . , 1). The phase-locked solution will be
stable provided that all other eigenvalues have a negative real part. For two neurons a phase locked state
is therefore defined by G(φ) = 0 where G(φ) = g[H(−φ) − H(φ)] and φ is the relative phase between
the two. The condition for stability is simply G′(φ) < 0. By symmetry the phase locked state (φ = 0)
and the anti-synchronous state (φ = 1/2) are guaranteed to exist. In Figure 4.2 we plot G(φ) for the
phase interaction functions of Figure 4.1. In this example we see that the McKean model admits a stable
synchronous solution, whilst the Type I model admits a stable anti-synchronous solution.
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for some T-periodic function F (t) = F (t + T ). Hence in the large N limit the collective frequency of a
splay state (global coupling) is given by
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∫ T

0
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Hence a splay state is stable if

−ngIm Hn < 0, (4.20)

where we have used the fact that since H(θ) is real then Im H−n = −Im Hn. A numerical examination
of condition (4.20) for the phase interaction functions shown in Figure 4.1, shows that the splay state
is unstable for both these examples. One natural way to stabilise the splay state is to include some
synaptic coupling as in the work of [35, 24]. Another mechanism is to include noise, as originally noted
by Kuramoto [47]. If we consider the addition of zero mean white noise with variance σ2 to the voltage
dynamics then the phase-reduced system also feels an additive zero mean white noise noise source, though
with variance σ2
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∫ T

0
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For a globally coupled network the asynchronous state is stable if [48]

−ngIm Hn < σ2
θn2 ∀n &= 0. (4.22)

This is the natural generalisation of (4.20) in the presence of noise. This nicely shows us that if the
eigenvalues associated with the deterministic model stray slightly into the right hand complex plane then
a small amount of noise can be used to compensate and restabilise the splay state. However, since this is
an argument that relies upon weak-coupling then it can necessarily only work if the unstable eigenvalues
are sufficiently close to the imaginary axis.
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expected to be generic [5]. For the synchronous state with φi(t) = 0, Ω = 1/T and there is a single zero
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we see that the McKean model has a stable synchronous solution whilst the Type I model does not. For
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n = 0, . . . , N − 1. For a recent review of the stability of cluster states we refer the reader to [11]. In the
limit N → ∞ we have the useful result that (for global coupling) network averages may be replaced by
time averages:
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for some T-periodic function F (t) = F (t + T ). Hence in the large N limit the collective frequency of a
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1
T

+ gH0, (4.18)
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0
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Hence a splay state is stable if

−ngIm Hn < 0, (4.20)

where we have used the fact that since H(θ) is real then Im H−n = −Im Hn. A numerical examination
of condition (4.20) for the phase interaction functions shown in Figure 4.1, shows that the splay state
is unstable for both these examples. One natural way to stabilise the splay state is to include some
synaptic coupling as in the work of [35, 24]. Another mechanism is to include noise, as originally noted
by Kuramoto [47]. If we consider the addition of zero mean white noise with variance σ2 to the voltage
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with variance σ2
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∫ T

0
[R(t)]2 dt. (4.21)

For a globally coupled network the asynchronous state is stable if [48]

−ngIm Hn < σ2
θn2 ∀n &= 0. (4.22)

This is the natural generalisation of (4.20) in the presence of noise. This nicely shows us that if the
eigenvalues associated with the deterministic model stray slightly into the right hand complex plane then
a small amount of noise can be used to compensate and restabilise the splay state. However, since this is
an argument that relies upon weak-coupling then it can necessarily only work if the unstable eigenvalues
are sufficiently close to the imaginary axis.
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and H ′(φ) = dH(φ)/dφ. One of the eigenvalues of the Jacobian Ĥ is always zero, and the corresponding
eigenvector points in the direction of the flow, that is (1, 1, . . . , 1). The phase-locked solution will be
stable provided that all other eigenvalues have a negative real part. For two neurons a phase locked state
is therefore defined by G(φ) = 0 where G(φ) = g[H(−φ) − H(φ)] and φ is the relative phase between
the two. The condition for stability is simply G′(φ) < 0. By symmetry the phase locked state (φ = 0)
and the anti-synchronous state (φ = 1/2) are guaranteed to exist. In Figure 4.2 we plot G(φ) for the
phase interaction functions of Figure 4.1. In this example we see that the McKean model admits a stable
synchronous solution, whilst the Type I model admits a stable anti-synchronous solution.

For globally coupled networks with gij = g the system (4.2) is SN×T1 equivariant. By the equivariant
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expected to be generic [5]. For the synchronous state with φi(t) = 0, Ω = 1/T and there is a single zero
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∑
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n = 0, . . . , N − 1. For a recent review of the stability of cluster states we refer the reader to [11]. In the
limit N → ∞ we have the useful result that (for global coupling) network averages may be replaced by
time averages:
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1
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∫ T

0
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Hence a splay state is stable if

−ngIm Hn < 0, (4.20)

where we have used the fact that since H(θ) is real then Im H−n = −Im Hn. A numerical examination
of condition (4.20) for the phase interaction functions shown in Figure 4.1, shows that the splay state
is unstable for both these examples. One natural way to stabilise the splay state is to include some
synaptic coupling as in the work of [35, 24]. Another mechanism is to include noise, as originally noted
by Kuramoto [47]. If we consider the addition of zero mean white noise with variance σ2 to the voltage
dynamics then the phase-reduced system also feels an additive zero mean white noise noise source, though
with variance σ2
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∫ T

0
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For a globally coupled network the asynchronous state is stable if [48]

−ngIm Hn < σ2
θn2 ∀n &= 0. (4.22)

This is the natural generalisation of (4.20) in the presence of noise. This nicely shows us that if the
eigenvalues associated with the deterministic model stray slightly into the right hand complex plane then
a small amount of noise can be used to compensate and restabilise the splay state. However, since this is
an argument that relies upon weak-coupling then it can necessarily only work if the unstable eigenvalues
are sufficiently close to the imaginary axis.
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eigenvector points in the direction of the flow, that is (1, 1, . . . , 1). The phase-locked solution will be
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branching lemma maximally symmetric solutions describing synchronous, splay, and cluster states are
expected to be generic [5]. For the synchronous state with φi(t) = 0, Ω = 1/T and there is a single zero
eigenvalue and an eigenvalue λ = −gH ′(0) of multiplicity N − 1. Hence for the examples in Figure 4.1
we see that the McKean model has a stable synchronous solution whilst the Type I model does not. For
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n = 0, . . . , N − 1. For a recent review of the stability of cluster states we refer the reader to [11]. In the
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0
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Hence a splay state is stable if

−ngIm Hn < 0, (4.20)

where we have used the fact that since H(θ) is real then Im H−n = −Im Hn. A numerical examination
of condition (4.20) for the phase interaction functions shown in Figure 4.1, shows that the splay state
is unstable for both these examples. One natural way to stabilise the splay state is to include some
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For a globally coupled network the asynchronous state is stable if [48]

−ngIm Hn < σ2
θn2 ∀n &= 0. (4.22)

This is the natural generalisation of (4.20) in the presence of noise. This nicely shows us that if the
eigenvalues associated with the deterministic model stray slightly into the right hand complex plane then
a small amount of noise can be used to compensate and restabilise the splay state. However, since this is
an argument that relies upon weak-coupling then it can necessarily only work if the unstable eigenvalues
are sufficiently close to the imaginary axis.
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synchronous solution, whilst the Type I model admits a stable anti-synchronous solution.

For globally coupled networks with gij = g the system (4.2) is SN×T1 equivariant. By the equivariant
branching lemma maximally symmetric solutions describing synchronous, splay, and cluster states are
expected to be generic [5]. For the synchronous state with φi(t) = 0, Ω = 1/T and there is a single zero
eigenvalue and an eigenvalue λ = −gH ′(0) of multiplicity N − 1. Hence for the examples in Figure 4.1
we see that the McKean model has a stable synchronous solution whilst the Type I model does not. For
a splay state of the form φi = i/N the eigenvalues are given by λn = g

∑
j H ′(j/N)(e2πinj/N − 1)/N for

n = 0, . . . , N − 1. For a recent review of the stability of cluster states we refer the reader to [11]. In the
limit N → ∞ we have the useful result that (for global coupling) network averages may be replaced by
time averages:

lim
N→∞

1
N

N∑

j=1

F (jT/N) =
1
T

∫ T

0
F (t)dt = F0 (4.17)

for some T-periodic function F (t) = F (t + T ). Hence in the large N limit the collective frequency of a
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Hence a splay state is stable if
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where we have used the fact that since H(θ) is real then Im H−n = −Im Hn. A numerical examination
of condition (4.20) for the phase interaction functions shown in Figure 4.1, shows that the splay state
is unstable for both these examples. One natural way to stabilise the splay state is to include some
synaptic coupling as in the work of [35, 24]. Another mechanism is to include noise, as originally noted
by Kuramoto [47]. If we consider the addition of zero mean white noise with variance σ2 to the voltage
dynamics then the phase-reduced system also feels an additive zero mean white noise noise source, though
with variance σ2
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−ngIm Hn < σ2
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This is the natural generalisation of (4.20) in the presence of noise. This nicely shows us that if the
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a small amount of noise can be used to compensate and restabilise the splay state. However, since this is
an argument that relies upon weak-coupling then it can necessarily only work if the unstable eigenvalues
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This is the natural generalisation of (4.20) in the presence of noise. This nicely shows us that if the
eigenvalues associated with the deterministic model stray slightly into the right hand complex plane then
a small amount of noise can be used to compensate and restabilise the splay state. However, since this is
an argument that relies upon weak-coupling then it can necessarily only work if the unstable eigenvalues
are sufficiently close to the imaginary axis.

λn = −2πingH−n



Beyond weak coupling
Synchrony - existence as for uncoupled model

Stability - Floquet theory shows restabilisation with increasing g



Beyond weak coupling
Synchrony - existence as for uncoupled model

Stability - Floquet theory shows restabilisation with increasing g

Splay - analysis as for absolute integrate-and-fire model

−1 0 1.5
−8

0

8

ν

ω

−0.6 0 0.4
−4

0

4

ν

ω

strong gweak g



Understanding rhythmsFROM PHASE-LOCKING TO BURSTING 17

0.2

0.4

0.6

0.4 0.6

w

v

0.2

0.4

0.6

0.4 0.6

w

v

0.2

0.4

0.6

0.4 0.6

w

v

0.4

0.60.2

0.4

0.6

0

0.5

1

!

v

w

0.45

0.65

200 600 1000 1400 1800

E

t

0.5

0.6

200 600 1000 1400 1800

E

t

0.5

0.6

200 600 1000 1400 1800

E

t

Fig. 5.1. Top: A family of coexisting unstable orbits in the Type I model; synchronous (green), splay (blue), sub-
threshold splay (light blue) and harmonic splay (red). Here g = 0.1, I = 0.085 and other parameters as in Figure 2.2. left:
µ < 1 − g (µ = 0.89). middle: µ = 1 − g (µ = 0.9). right: µ < 1 − g (µ = 0.91). Middle: Numerical simulation (after
dropping transients) with N = 100 neurons showing a pseudo color plot of the triple (θ, vi, wi), where θ = t/∆ mod 1 for
some fixed ∆. Initial data chosen to lie between the splay and synchronous state. left: The network cycles between the
unstable synchronous state and the unstable splay state. ∆ is the chosen as the mean of the synchronous and splay period.
middle: The network cycles between the unstable synchronous state and the unstable harmonic splay state. ∆ is the chosen
as the mean of the synchronous and harmonic splay period. right: The network cycles between the unstable synchronous
state and the unstable fixed point. ∆ is the chosen as the period of the synchronous state. Bottom: Mean field signal E(t)
showing bursting fluctuations. left: Fluctuations around the splay state (with v0 = 0.52107). middle: Fluctuations around
the splay state (with v0 = 0.52583) with right: Fluctuations around the fixed point (with v0 = 0.545).
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Fig. 5.2. A bursting state around the unstable fixed point. Parameters as in Figure 5.1 right with µ = 0.95.

Rebound.
CBs [34]
Type 1* dynamics. Pic of phase plane with narrow region, plot of itinerant chaos - further work!

Acknowledgments.
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Wilson-Cowan style model with gaps?

“Equation Free Modelling”  - role of architectecture, 
and allowing spatio-temporal pattern analysis

Gaps are not static conductances

Voltage gated channel models

Influenced by neuromodulators

eg cannabinoids

Gaps on distal dendrites

already known to “tune” network dynamics
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