Gap junctions and emergent brain rhythms: A mathematical study

Stephen Coombes

Some motivation

Gap junctions are ubiquitous

- between inhibitory cortical interneurons
- between hippocampal mossy fiber axons
- neuron to glia

- thalamo-cortical cells in LGN
B.W. Connors and M.A. Long, Electrical synapses in the mammalian brain, Annual Review of Neuroscience, 27 (2004), pp. 393-4I8.

Some motivation

Gap junctions are ubiquitous

- between inhibitory cortical interneurons
- between hippocampal mossy fiber axons
- neuron to glia

- thalamo-cortical cells in LGN
B.W. Connors and M.A. Long, Electrical synapses in the mammalian brain, Annual Review of Neuroscience, 27 (2004), pp. 393-4I8.

How do they contribute

- to phase-locking ?

Coupled Oscillator Theory

Some motivation

Gap junctions are ubiquitous

- between inhibitory cortical interneurons
- between hippocampal mossy fiber axons
- neuron to glia

- thalamo-cortical cells in LGN

How do they contribute

- to phase-locking?
- to brain rhythms ??

Coupled Oscillator Theory
Beyond weak coupling ?

Some motivation

Gap junctions are ubiquitous

- between inhibitory cortical interneurons
- between hippocampal mossy fiber axons
- neuron to glia
- thalamo-cortical cells in LGN

B.W. Connors and M.A. Long, Electrical synapses in the mammalian brain, Annual Review of Neuroscience, 27 (2004), pp. 393-4I8.

How do they contribute

- to phase-locking?
- to brain rhythms ??

Theoretical work by

- Kopell
- Chow
- Sherman
- Ostojic, Brunel \& Hakim
- Ermentrout
- Lewis
- Hansel
- \qquad
- Rinzel
- Holmes
- Pfeuty

Fast spiking interneuron model ?

Fast spiking interneuron model ?

Wang-Buzsaki X. J.Wang and G. Buzsaki. Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network. Journal of Neuroscience, 16:640264I3, 1996.

Fast spiking interneuron model?

Wang-Buzsaki X.J.Wang and G. Buzsaki. Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network. Journal of Neuroscience, 16:640264I3, I996.

Absolute integrate-and-fire model
J. Karbowski and N. Kopell. Neural Computation, I2:I573-I606, 2000.

Spike adaptation - tonic and burst firing

Mathematical structure

$$
\dot{v}=|v|+I-a
$$

$$
\dot{a}=-a / \tau_{a}
$$

$$
a\left(T^{m}\right) \longrightarrow a\left(T^{m}\right)+g_{a} / \tau_{a}
$$

Periodic orbits - closed form solution

period Δ

$$
v(\Delta)=v_{\mathrm{t} h}
$$

Periodic orbits - closed form solution

period Δ

$$
v(\Delta)=v_{\mathrm{th}}
$$

$$
\bar{a}=\frac{g_{a}}{\tau_{a}} \frac{1}{1-\mathrm{e}^{-\Delta / \tau_{a}}}
$$

$$
v(t)=v_{\mathrm{r}} e^{t}+I\left(\mathrm{e}^{t}-1\right)-\frac{\bar{a} \tau_{a}}{1+\tau_{a}}\left(\mathrm{e}^{t}-\mathrm{e}^{-t / \tau_{a}}\right)
$$

Periodic orbits - closed form solution

period Δ

$$
v(t)=v_{\mathrm{r}} e^{t}+I\left(\mathrm{e}^{t}-1\right)-\frac{\bar{a} \tau_{a}}{1+\tau_{a}}\left(\mathrm{e}^{t}-\mathrm{e}^{-t / \tau_{a}}\right)
$$

Phase Response Curve (PRC)

A phase response curve (PRC) tabulates the transient change in the cycle period of an oscillator induced by a perturbation as a function of the phase at which it is received.

Easy to compute numerically with XPPaut

Nice discussion at Scholarpedia : http://www.scholarpedia.org

PRC - exact solution

Call the orbit $z=Z(t)$ where $\dot{z}=F(z)$
Introduce a phase (isochronal coordinates) θ

Adjoint $Q=\nabla_{Z} \theta$

$$
\frac{\mathrm{d} Q}{\mathrm{~d} t}=D(t) Q, \quad D(t)=-D F^{T}(Z(t))
$$

PRC - exact solution

Call the orbit $z=Z(t)$ where $\dot{z}=F(z)$
Introduce a phase (isochronal coordinates) θ

Adjoint $Q=\nabla_{Z} \theta$

$$
\frac{\mathrm{d} Q}{\mathrm{~d} t}=D(t) Q, \quad D(t)=-D F^{T}(Z(t))
$$

$$
\nabla_{Z(0)} \cdot F(Z(0))=1 / T \quad Q\left(\Delta^{+}\right)=Q(0)
$$

PRC - exact solution

Call the orbit $z=Z(t)$ where $\dot{z}=F(z)$
Introduce a phase (isochronal coordinates) θ
Adjoint $Q=\nabla_{Z} \theta$
(Ermentrout and Kopell 1991)

$$
\frac{\mathrm{d} Q}{\mathrm{~d} t}=D(t) Q, \quad D(t)=-D F^{T}(Z(t))
$$

$\nabla_{Z(0)} \cdot F(Z(0))=1 / T \quad Q\left(\Delta^{+}\right)=Q(0)$
$Q(t)=\frac{\kappa}{\Delta} \mathrm{e}^{-t}\left[\begin{array}{c}1 \\ -\tau_{a} /\left(1+\tau_{a}\right)\end{array}\right]$

$$
\kappa=\left[v_{\mathrm{r}}+I-\bar{a} \tau_{a} /\left(1+\tau_{a}\right)\right]^{-1}
$$

Gap junction coupling

$$
I_{\text {gap }}=g_{\mathrm{gap}}\left(v_{\mathrm{post}}-v_{\text {pre }}\right)
$$

Gap junction coupling

$$
I_{\mathrm{gap}}=g_{\mathrm{gap}}\left(v_{\mathrm{post}}-v_{\mathrm{pre}}\right)
$$

Introduce neuron labels and interaction term

$$
N^{-1} \sum_{j=1}^{N} g_{i j}\left(v_{j}-v_{i}\right)
$$

Gap junction coupling

$$
I_{\text {gap }}=g_{\text {gap }}\left(v_{\text {post }}-v_{\text {pre }}\right)
$$

Introduce neuron labels and interaction term

$$
N^{-1} \sum_{j=1}^{N} g_{i j}\left(v_{j}-v_{i}\right)
$$

Analyse phase locked states
period T

$$
z_{i}(t)=z\left(t-\phi_{i} T\right), z(t)=z(t+T)
$$

Gap junction coupling

$$
I_{\mathrm{gap}}=g_{\mathrm{gap}}\left(v_{\mathrm{post}}-v_{\mathrm{pre}}\right)
$$

Introduce neuron labels and interaction term

$$
N^{-1} \sum_{j=1}^{N} g_{i j}\left(v_{j}-v_{i}\right)
$$

Analyse phase locked states
period T

$$
z_{i}(t)=z\left(t-\phi_{i} T\right), z(t)=z(t+T)
$$

N eqns distinguished by their drive:

$$
N^{-1} \sum_{j=1}^{N} g_{i j}\left(v\left(t+\left(\phi_{i}-\phi_{j}\right) T\right)-v(t)\right)
$$

Existence of the asynchronous state

 globally coupled network $g_{i j}=g$ and large N network averages \sim time averages$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{j=1}^{N} v(t+j \Delta / N)=\frac{1}{\Delta} \int_{0}^{\Delta} v(t) \mathrm{d} t
$$

Existence of the asynchronous state

 globally coupled network $g_{i j}=g$ and large N
network averages \sim time averages

$$
\begin{gathered}
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{j=1}^{N} v(t+j \Delta / N)=\frac{1}{\Delta} \int_{0}^{\Delta} v(t) \mathrm{d} t \\
\dot{v}=|v|-g v+I-a+g v_{0}, \quad \dot{a}=-a / \tau_{a}, \\
v_{0}=\frac{1}{\Delta} \int_{0}^{\Delta} v(t) \mathrm{d} t .
\end{gathered}
$$

Existence of the asynchronous state

globally coupled network $g_{i j}=g$ and large N

network averages \sim time averages

$$
\begin{gathered}
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{j=1}^{N} v(t+j \Delta / N)=\frac{1}{\Delta} \int_{0}^{\Delta} v(t) \mathrm{d} t \\
\dot{v}=|v|-g v+I-a+g v_{0}, \quad \dot{a}=-a / \tau_{a}, \\
v_{0}=\frac{1}{\Delta} \int_{0}^{\Delta} v(t) \mathrm{d} t .
\end{gathered}
$$

advanced-retarded ode - self-consistent periodic solution

$$
v(\Delta)=v_{\mathrm{t} h} \quad v_{0}=\Delta^{-1} \int_{0}^{\Delta} v(t) \mathrm{d} t
$$

splay state as a function of coupling

Stability of the asynchronous state

Stability - generalise approach for synapses.

e -values as zeros of

$$
\begin{aligned}
& \qquad \mathcal{E}(\lambda)=\frac{\mathrm{e}^{\lambda T}}{\widetilde{v}(\lambda)}+g \lambda T \int_{0}^{1} R(\theta) \mathrm{e}^{\lambda \theta T} \mathrm{~d} \theta \\
& \text { LT of orbit }
\end{aligned}
$$

C. van Vreeswijk, Analysis of the asynchronous state in networks of strongly coupled oscillators, Physical Review Letters, 84 (2000), pp. 5II0-5II3.
spectrum for fixed g

$g_{a}=1.5$

$$
g_{a}=2.5
$$

Bifurcation

$$
\lambda=\nu+i \omega
$$

$$
\operatorname{Re}(\lambda)=\nu=0
$$

Synchronised bursting

$$
E(t)=\frac{1}{N} \sum_{i=1}^{N} v_{i}(t)
$$

Mean field rhythms

S. K. Han, C. Kurrer, and Y. Kuramoto, Dephasing and bursting in coupled neural oscillators, Physical Review Letters, 75 (1995), pp. 3190-3193.

global coupling - mean field signal as average membrane potential

Mean field rhythms

S. K. Han, C. Kurrer, and Y. Kuramoto, Dephasing and bursting in coupled neural oscillators, Physical Review Letters, 75 (1995), pp. 3190-3193.

global coupling - mean field signal as average membrane potential

A tractable model

A tractable model

$$
\begin{aligned}
\mu \dot{v} & =f(v)-w+I \\
\dot{w} & =g(v, w)
\end{aligned}
$$

A tractable model

$$
\mu \dot{v}=f(v)-w+I
$$

$$
f(v)= \begin{cases}-v, & v<a / 2 \\ v-a, & a / 2 \leq v \leq(1+a) / 2, \\ 1-v, & v>(1+a) / 2\end{cases}
$$

$$
\dot{w}=g(v, w)
$$

$$
g(v, w)=\left\{\begin{array}{ll}
\left(v-\gamma_{1} w+b^{*} \gamma_{1}-b\right) / \gamma_{1}, & v<b \\
\left(v-\gamma_{2} w+b^{*} \gamma_{2}-b\right) / \gamma_{2}, & v \geq b
\end{array},\right.
$$

Periodic orbits - PWL systems

$$
\dot{z}=A z+b, \quad z=\left[\begin{array}{c}
v \\
w
\end{array}\right]
$$

$$
z(t)=G(t) z(0)+K(t) b, \quad G(t)=\mathrm{e}^{A t}, \quad K(t)=\int_{0}^{t} G(s) \mathrm{d} s
$$

Periodic orbits - PWL systems

$$
\dot{z}=A z+b, \quad z=\left[\begin{array}{c}
v \\
w
\end{array}\right]
$$

$$
z(t)=G(t) z(0)+K(t) b, \quad G(t)=\mathrm{e}^{A t}, \quad K(t)=\int_{0}^{t} G(s) \mathrm{d} s
$$

$\mathrm{G}(\mathrm{t})$ and $\mathrm{K}(\mathrm{t})$ can be calculated in closed form

Periodic orbits - PWL systems

$$
\dot{z}=A z+b, \quad z=\left[\begin{array}{c}
v \\
w
\end{array}\right]
$$

$$
z(t)=G(t) z(0)+K(t) b, \quad G(t)=\mathrm{e}^{A t}, \quad K(t)=\int_{0}^{t} G(s) \mathrm{d} s
$$

$\mathrm{G}(\mathrm{t})$ and $\mathrm{K}(\mathrm{t})$ can be calculated in closed form
Introduce 4 labels and write $\quad z_{\mu}(t)=G_{\mu}(t) z_{\mu}(0)+K_{\mu}(t) b_{\mu}$

Periodic orbits - PWL systems

$$
\begin{gathered}
\dot{z}=A z+b, \quad z=\left[\begin{array}{c}
v \\
w
\end{array}\right] \\
z(t)=G(t) z(0)+K(t) b, \quad G(t)=\mathrm{e}^{A t}, \quad K(t)=\int_{0}^{t} G(s) \mathrm{d} s
\end{gathered}
$$

$\mathrm{G}(\mathrm{t})$ and $\mathrm{K}(\mathrm{t})$ can be calculated in closed form
Introduce 4 labels and write $\quad z_{\mu}(t)=G_{\mu}(t) z_{\mu}(0)+K_{\mu}(t) b_{\mu}$

Continuous and periodic

- Choose initial data

$$
z_{1}(0)=\left(v_{\mathrm{th}}^{1}, w^{*}\right)
$$

- "Times of flight" determined by threshold crossings

$$
v_{1}\left(T_{1}\right)=v_{\mathrm{th}}^{2}, v_{2}\left(T_{2}\right)=v_{\mathrm{th}}^{2}, v_{3}\left(T_{3}\right)=v_{\mathrm{th}}^{1}, \text { and } v_{4}\left(T_{4}\right)=v_{\mathrm{th}}^{1}
$$

- Ensure periodicity

$$
w_{4}\left(T_{4}\right)=w_{1}(0)
$$

Continuous and periodic

- Choose initial data

$$
z_{1}(0)=\left(v_{\mathrm{th}}^{1}, w^{*}\right)
$$

- "Times of flight" determined by threshold crossings

$$
v_{1}\left(T_{1}\right)=v_{\mathrm{th}}^{2}, v_{2}\left(T_{2}\right)=v_{\mathrm{th}}^{2}, v_{3}\left(T_{3}\right)=v_{\mathrm{th}}^{1}, \text { and } v_{4}\left(T_{4}\right)=v_{\mathrm{th}}^{1}
$$

- Ensure periodicity

$$
w_{4}\left(T_{4}\right)=w_{1}(0)
$$

Yielding w^{*}
and the period

$$
T=\sum_{\mu=1}^{4} T_{\mu}
$$

Orbit and period

PRC - exact solution

Call the orbit $z=Z(t)$ where $\dot{z}=F(z)$
Introduce a phase (isochronal coordinates) θ
Adjoint $Q=\nabla_{Z} \theta$
(Ermentrout and Kopell 1991)

$$
\begin{gathered}
\frac{\mathrm{d} Q}{\mathrm{~d} t}=D(t) Q, \quad D(t)=-D F^{T}(Z(t)) \\
\nabla_{Z(0)} \theta \cdot F(Z(0))=1 / T \text { and } Q(t)=Q(t+T)
\end{gathered}
$$

PRC - exact solution

Call the orbit $z=Z(t)$ where $\dot{z}=F(z)$
Introduce a phase (isochronal coordinates) θ
Adjoint $Q=\nabla_{Z} \theta$
(Ermentrout and Kopell 1991)

$$
\begin{gathered}
\frac{\mathrm{d} Q}{\mathrm{~d} t}=D(t) Q, \quad D(t)=-D F^{T}(Z(t)) \\
\nabla_{Z(0)} \theta \cdot F(Z(0))=1 / T \text { and } Q(t)=Q(t+T)
\end{gathered}
$$

Another pwl system with 4 labels!

$$
\dot{Q}_{\mu}=D_{\mu} Q_{\mu}, \text { where } D_{\mu}=-A_{\mu}^{T}
$$

Solve using

$$
Q_{\mu}(t)=G_{\mu}^{T}\left(T_{\mu}-t\right) Q_{\mu}\left(T_{\mu}\right)
$$

PRC

Weak coupling

Consider a family of weakly connected systems

$$
\dot{X}_{i}=F_{i}\left(X_{i}\right)+\epsilon G(X), \quad i=1, \ldots, n
$$

such that each equation in the uncoupled system $(\epsilon=0)$ has an exponentially orbitally stable limit cycle $\gamma_{i} \subset \mathbb{R}^{m}$ having natural frequency $\Omega_{i} \neq 0$. Then the oscillatory weakly connected system can be reduced to a phase model of the form

$$
\dot{\theta}_{i}=\Omega_{i}+\epsilon g_{i}\left(\theta_{1}, \ldots, \theta_{n}\right), \quad \theta_{i} \in S^{1}, \quad i=1, \ldots, n
$$

defined on the n-torus $T^{n}=S^{1} \times \ldots \times S^{1}$. ie there is an open neighbourhood W of $M=$ $\gamma_{1} \times \ldots \times \gamma_{n} \subset \mathbb{R}^{m n}$ and a continuous function $h: W \rightarrow T^{n}$ that maps solutions of the full model to those of the phase model.

Weak coupling

Consider a family of weakly connected systems

$$
\dot{X}_{i}=F_{i}\left(X_{i}\right)+\epsilon G(X), \quad i=1, \ldots, n
$$

such that each equation in the uncoupled system $(\epsilon=0)$ has an exponentially orbitally stable limit cycle $\gamma_{i} \subset \mathbb{R}^{m}$ having natural frequency $\Omega_{i} \neq 0$. Then the oscillatory weakly connected system can be reduced to a phase model of the form

$$
\dot{\theta}_{\mathfrak{i}}=\Omega_{\mathfrak{i}}+\epsilon g_{\mathfrak{i}}\left(\theta_{1}, \ldots, \theta_{\mathfrak{n}}\right), \quad \theta_{\mathfrak{i}} \in S^{1}, \quad \mathfrak{i}=1, \ldots, n
$$

defined on the n-torus $T^{n}=S^{1} \times \ldots \times S^{1}$. ie there is an open neighbourhood W of $M=$ $\gamma_{1} \times \ldots \times \gamma_{n} \subset \mathbb{R}^{m n}$ and a continuous function $h: W \rightarrow T^{n}$ that maps solutions of the full model to those of the phase model.

Averaging

$$
\frac{\mathrm{d} \theta_{i}}{\mathrm{~d} t}=\frac{1}{T}+\frac{1}{N} \sum_{j=1}^{N} g_{i j} H\left(\theta_{j}-\theta_{i}\right)
$$

Averaging

$$
\frac{\mathrm{d} \theta_{i}}{\mathrm{~d} t}=\frac{1}{T}+\frac{1}{N} \sum_{j=1}^{N} g_{i j} H\left(\theta_{j}-\theta_{i}\right)
$$

Phase interaction function

$$
H(\theta)=\int_{0}^{T} Q^{T}(t)(v(t+\theta T)-v(t), 0) \mathrm{d} t
$$

Averaging

$$
\frac{\mathrm{d} \theta_{i}}{\mathrm{~d} t}=\frac{1}{T}+\frac{1}{N} \sum_{j=1}^{N} g_{i j} H\left(\theta_{j}-\theta_{i}\right)
$$

Phase interaction function

$$
H(\theta)=\int_{0}^{T} Q^{T}(t)(v(t+\theta T)-v(t), 0) \mathrm{d} t
$$

For convenience introduce Fourier series representation

$$
H(\theta)=\sum_{n} H_{n} \mathrm{e}^{2 \pi i n \theta}
$$

Averaging

$$
\frac{\mathrm{d} \theta_{i}}{\mathrm{~d} t}=\frac{1}{T}+\frac{1}{N} \sum_{j=1}^{N} g_{i j} H\left(\theta_{j}-\theta_{i}\right)
$$

Phase interaction function

$$
H(\theta)=\int_{0}^{T} Q^{T}(t)(v(t+\theta T)-v(t), 0) \mathrm{d} t
$$

For convenience introduce Fourier series representation

$$
H(\theta)=\sum_{n} H_{n} \mathrm{e}^{2 \pi i n \theta}
$$

For the pwl model we can obtain the Fourier coefficients in closed form (spare the deails')

Phase interaction function H

Global coupling and large N

Synchrony (relative): $\phi_{i}(t)=0, \Omega=1 / T$ eigenvalue $\quad \lambda=-g H^{\prime}(0)$

Global coupling and large N

Synchrony (relative): $\phi_{i}(t)=0, \Omega=1 / T$ eigenvalue $\quad \lambda=-g H^{\prime}(0)$

Splay: $\quad \phi_{i}=i / N \quad \Omega=\frac{1}{T}+g H_{0}$

$$
\lambda_{n}=-2 \pi i n g H_{-n}
$$

Global coupling and large N

Synchrony (relative): $\phi_{i}(t)=0, \Omega=1 / T$ eigenvalue $\quad \lambda=-g H^{\prime}(0)$

Splay: $\quad \phi_{i}=i / N \quad \Omega=\frac{1}{T}+g H_{0}$
$\lambda_{n}=-2 \pi i n g H_{-n}$

Synchronous and splay state unstable

Beyond weak coupling

Synchrony - existence as for uncoupled model
Stability - Floquet theory shows restabilisation with increasing g

Beyond weak coupling

Synchrony - existence as for uncoupled model

Stability - Floquet theory shows restabilisation with increasing g Splay - analysis as for absolute integrate-and-fire model

Understanding rhythms

Understanding rhythms

Future Challenges

Future Challenges

Wilson-Cowan style model with gaps?
"Equation Free Modelling" - role of architectecture, and allowing spatio-temporal pattern analysis

Future Challenges

Wilson-Cowan style model with gaps?
"Equation Free Modelling" - role of architectecture, and allowing spatio-temporal pattern analysis

Gaps are not static conductances
Voltage gated channel models

Future Challenges

Wilson-Cowan style model with gaps?
"Equation Free Modelling" - role of architectecture, and allowing spatio-temporal pattern analysis

Gaps are not static conductances
Voltage gated channel models
Influenced by neuromodulators
eg cannabinoids

Future Challenges

Wilson-Cowan style model with gaps?
"Equation Free Modelling" - role of architectecture, and allowing spatio-temporal pattern analysis

Gaps are not static conductances
Voltage gated channel models
Influenced by neuromodulators eg cannabinoids

Gaps on distal dendrites

already known to "tune" network dynamics

2nd Annual meeting of the UK Mathematical

 Neuroscience Network: 22-25 Mar 2009, Edinburgh.

http://icms.org.uk/workshops/mathneuro2009

Ad Aertsen
Michael Breakspear
Carson Chow
Geoff Goodhill
Vincent Hakim
Viktor Jirsa
Carlo Laing
Peter Latham

Andre Longtin
Stefano Panzeri
David Pinto
Horacio Rotstein
Andrey Shilnikov
Dan Tranchina
Krasimira Tsaneva-Atanasova
Carl Van Vreeswijk

