#### Tag-Trigger-Consolidation: Modeling synaptic plasticity across different time scales





When an axon of cell *j* repeatedly or persistently takes part in firing cell *i*, then *j's* efficiency as one of the cells firing *i* is increased

Hebb, 1949

### **Hebbian learning and LTP**







item memorized

Recall:

Partial info

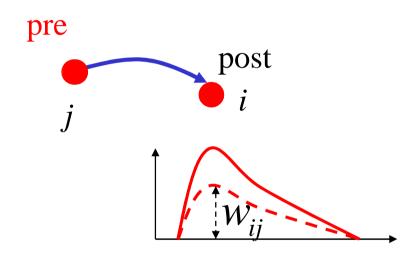


item recalled

#### Hebbian Learning: Functional Postulates

1) Useful for memory




Examples: Hopfield model, associative memory models My problem:

Existing models of Hebbian learning and associative memory describe only induction of synaptic changes but not consolidation/maintenance

Examples: Hopfield model, attractor networks – learning happens in a separate epoch, then synapses fixed (except Amit and Fusi 1994, Fusi et al. 2000, 2006, Lisman 1989, ... 2004)

# Hebbian Learning = unsupervised learning





$$\Delta w_{ij} \propto F(pre, post)$$

# Reinforcement Learning = reward + Hebb



 $\Delta w_{ij} \propto F(pre, post, SUCCESS)$   $\uparrow \qquad \uparrow \qquad \uparrow$   $local \qquad global$ 

#### My problem (2):

Existing models of Hebbian learning and associative memory do not take into account Neuromodulators/cannot describe success

Except: e.g. Schultz et al. 1997, Izhikevich, 2007

## Tag-Trigger-Consolidation: A model of early and late LTP/LTD

**✓** Introduction

Review of induction protocols

TagTriC model (Tag-Trigger-Consolidation)

- Model assumptions
- Model componenets
- Results

### Experimental induction protocols (1)





#### Hebbian interpretation:

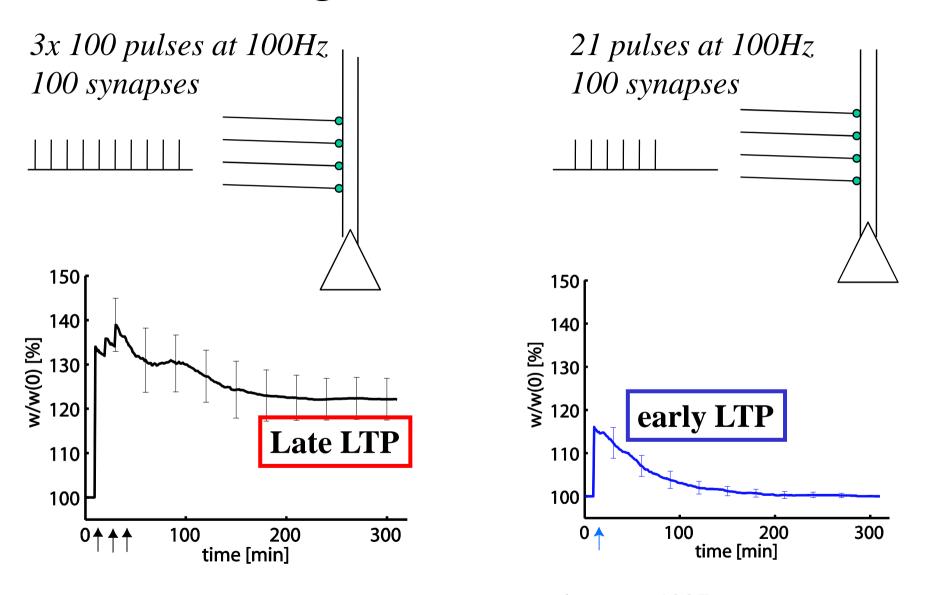
 $Pre-post = causal \ relation$ 





## Experimental induction protocols (2)








## Experimental induction protocols (3)



## Strong and weak Tetanus



Experiments: Frey and Morris 1997

#### Hebbian Learning: Functional Desiderata

- 1) memory, must persist
- 2) success/reward must modulate learning



#### Hebbian Learning: experimental aspects

- 1) Can be triggered by 'strong' tetanic stimulation
- 2) Depends on spike timing
- 3) Depends on postsynaptic voltage
- 4) Happens on different time scales (early and late LTP)

#### My problem (3): one and the same model must account for:

- different induction protocols
- different time scales

## Tag-Trigger-Consolidation: Modeling synaptic learning across time scales

- **✓** Introduction
- √ Review of Hebbian Induction protocols
- → TagTriC model (Tag-Trigger-Consolidation)
  - Model assumptions
  - Model componenets
  - Results

## TagTriC Model

Early LTP Tag

Protein synthesis

Late LTP



#### Basic ideas from synaptic tagging and capture

Frey and Morris 1997

- -Induction of LTP/LTD sets tags at individual synapses
- -Consolidation of weights requires protein synthesis
- -Consolidation happens if tagged synapses capture protein

#### additional hypothesis of the TagTriC Model

- -LTP/LTD induction is equivalent to setting the tags
   identify tag and E-LTP or E-LTD
- → -LTP/LTD induction is possible by different protocols
   → connect to Hebbian learning
  - -protein synthesis requires sufficient number of tags=E-LTP/D

    → trigger threshold
  - -long-term stability requires that synapse has 2 stable states

    > synaptic weight can be maintained over weeks

## TagTriC Model

Early LTP

<u>Tag</u>

-LTP/LTD induction = setting the tags

→ identify tag and E-LTP or E-LTD



Tags are set by

Hebbian

induction protocol

→ E-LTP/E-LTD

## TagTriC Model



## Setting the tag= changing the weight Voltage dependence of LTP/LTD induction





$$\rho_{H} = A_{LTP} \overline{x} \, \overline{u} \, (u - \vartheta_{LTP})$$

# Setting the tag=changing the weight frequency dependence of LTP/LTD



#### Basic ideas from synaptic tagging and capture

- -Induction of LTP/LTD sets tags at individual synapses
- -Consolidation of weights requires protein synthesis
- -Consolidation happens if tagged synapses capture protein

#### additional hypothesis of the TagTriC Model

- ✓ -LTP/LTD induction is possible by different protocols
   → connect to Hebbian learning
- -LTP/LTD induction is equivalent to setting the tags
   → identify tag and E-LTP or E-LTD
- → -protein synthesis requires sufficient number of tags=E-LTP/D
   → trigger threshold
  - -long-term stability requires that synapse has 2 stable states

    > synaptic weight can be maintained over weeks



#### Basic ideas from synaptic tagging and capture

- -Induction of LTP/LTD sets tags at individual synapses
- -Consolidation of weights requires protein synthesis
- -Consolidation happens if tagged synapses capture protein

#### additional hypothesis of the TagTriC Model

- ✓ -LTP/LTD induction is possible by different protocols→ connect to Hebbian learning
- -LTP/LTD induction is equivalent to setting the tags
   → identify tag and E-LTP or E-LTD
- → protein synthesis requires sufficient number of tags=E-LTP/D
   → trigger threshold
- -long-term stability requires that synapse has 2 stable states

  > synaptic weight can be maintained over weeks

-long-term stability requires that synapse has 2 stable states

> synaptic weight can be maintained over weeks







**Problem:** Molecular turnover:

- -AMPA receptor recycling
- -scaffolding proteins recycled

#### Generic form of bistability

- -e.g. some autocatalytic process (Lisman 1985, Crick 1984)
- -e.g. clustering of AMPA receptors
- -e.g. ...

See talk of Paul Bressloff

-How does it get from one well to the other?



For this to happen we need:

- LTP tag (h=1)
- *protein* (*p*>0.5)



-How does it get from one well to the other?



$$\tau_{z} \frac{dz}{dt} \uparrow f(z)$$

$$\longrightarrow \longleftarrow \longrightarrow z$$

For a change we need:

- LTP tag (h=1)
- protein(p>0.5)

$$\tau_z \frac{dz}{dt} = f(z)$$



-How does it get from one well to the other?



For a change we need:

- LTD tag (l=1)
- protein (p>0.5)

$$\tau_z \frac{dz}{dt} \uparrow f(z) \longrightarrow \longleftrightarrow z$$





## TagTriC Model - Results

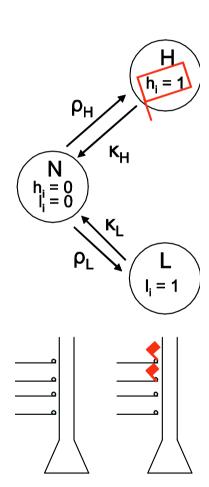
- Standard tagging paradigm (Frey and Morris 1997)
- Cross-tagging (Sajikumar et al. 2005)
- Protein synthesis blocker (Frey and Morris 1997)

### Strong and weak Tetanus





## TagTriC model dynamics




## TagTriC Model

Early LTP Tag

Protein synthesis

Late LTP



Protein shared by all synapses

## Weakly tetanized synapses stabilized by other input





## TagTriC model dynamics



both protein synthesis and tags must be active



#### Hebbian Learning: Functional Postulates

1) Useful for memory



My problem (1):

Our model combines Hebbian learning (induction) of synaptic changes with consolidation/maintenance

*My problem (3):* 

Our model describes different induction protocols and experiments across different time scales

### Reinforcement Learning = reward + Hebb



**SUCCESS** 

 $\Delta w_{ij} \propto F(pre, post, SUCCESS)$   $\uparrow \qquad \uparrow$   $local \qquad global$ 

My problem (2):

Protein synthesis depends on neuromodulators, in particular dopamine → success signal

# Number of consolidated synapses as a function of tagged synapses



#### Discussion and conclusions

- Other induction protocols should give consolidation, e.g., STDP
- LTD tags could occur even with LTP protocols
- Consolidation is non-Hebbian (non-local)
- Trigger threshold depends on neuromodulators
- 2-stable states only: Consolidation of LTP is only possible if synapses start in down state
- Resetting of tags: E-LTP not equal LTP-tag (additional hidden states)

## The End

- a phenomenological model of early and late LTP/LTD
- -clarifies existing ideas on tagging and capture
- -does not depend on specific molecules

#### Thanks to:

Jean-Pascal Pfister (STDP model of E-LTP/LTD)
Claudia Clopath, Lars Busing, Eleni Vasilaki (voltage model of E-LTP)
Lorric Ziegler (consolidation model of L-LTP/LTD)

See: Clopath et al., PLOS Comput. Biol. 2009 (to appear)

See also: Billings, Adams, Morris, van Rossum (to appear)

## TagTriC Model

Early LTP Tag

Protein synthesis

Late LTP



### Crosstagging/cross-capture



### Protein synthesis blocker

