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TOPICSTOPICS

1. FITZHUGH-NAGUMO STOCHASTIC PARTIAL DIFFERENTIAL EQUATION MODEL

A. SIMULATION 
B. ANALYTICAL METHOD 

2. EFFECTS OF NOISE ON HH RHYTHMIC SPIKING

1. SIMULATION OF THE ODES: INVERSE STOCHASTIC RESONANCE
2. MOMENT METHOD FOR THE ODES
3. SIMULATION SOLUTIONS OF THE PDE: ISR 
4. SPIKE GENERATION IN A MODEL NEURON (VERY BRIEFLY) 

See also Nottingham Meeting of Steve Coombes & Markus Dahlem January 9

SPREADING CORTICAL DEPRESSION: DETERMINISTIC &  STOCHASTIC MODELING 
IN 2 SPACE D
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PART 1:
FITZHUGH-NAGUMO SPDE MODEL NEURON

• FN system is simpler than HH and has some similar  
properties – used also for heart dynamics and many 
other things eg EEG, Spreading depression 

First objectives

• (1) determine effects of noise on transmission of 
solitary waves (action potentials) 

• (2) compare properties of numerical solutions of 
spde with those analytically determined 
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• References:
Neural Computation 20, 3003 (2008)

Physica APhysica A 387, 1455 (2008) – for 
analytical method in case of small 
perturbations 
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INTRODUCTION TO STOCHASTIC PDES AS 
NEURON MODELS

• FOR NEURAL MODELING THE SIMPLEST SOMEWHAT REALISTIC  
MODEL OF A NEURON IS THE LIF (LEAKY INTEGRATE AND F IRE) 
MODEL

• (1) STEIN BIOPHYS J 1965

dV=-sdt + a_EdN_E – a_IdN_I  

• (2) TUCKWELL J THEOR BIOL 1979

• dV=-sVdt + a_E(V_E-V)dN_E – a_I(V_I-V)dN_I 

• HERE THE N’S ARE USUALLY POISSON PROCESSES. 

• THESE MODELS ARE CALLED “LEAKY” BECAUSE BETWEEN 
INPUT EVENTS THE MEMBRANE   POTENTIAL DECAYS 
TOWARDS RESTING LEVEL
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• Because jumps lead to differential-difference or 
integral equations, the most studied forms of 
these models are the smoothed versions –
diffusion approximations where the membrane 
potential is continuous and all relevant 
equations are differential equations. If reversal 
potentials are neglected this gives the Ornstein-
Uhlenbeck process (OUP)

• However, simulation is just as facile with the 
discontinuous models. 
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For the OUP the stochastic DE for subthreshold 
voltages is  linear

dX=(m  - aX)dt + sdW  

where m is the mean input rate, a is the 
reciprocal of the time-constant (typically 
3-30 msec), s is the standard deviation 
of the input and W is a standard Wiener 
process or BM (mean 0, variance t).  
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• HOWEVER  IT SEEMS THAT NEURONS CAN NOT BE 
ACCURATELY REPRESENTED BY A SINGLE POINT MODEL. 
INTEGRATION PHENOMENA DEPEND STRONGLY ON 
SPATIAL LOCATION. Below is a typical layer 2/3 pyramida l 
neuron of the rat barrel cortex
D.Feldmeyer, et al J.Physiol.538 (3) (2002) 803. The  next 2 
pages show synaptic distributions on a hippocampal p yramid 
(Megias et al, 2001). 
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LOWER PART

KEY: ABC=EX /MIC,IN /MIC, %INHIB
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SCHEMATICALLY WE HAVE ROUGHLY IN THE 

PARADIGM P-CELL CASE 
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• Thus it is hard to  construct an accurate electrophys iological 
model of a neuron without taking into account the sp atial 
extent of the cell.

• There are packages like GENESIS and NEURON, for trying t o 
incorporate the details of a neuron’s anatomy, but sys tematic 
analysis is a problem due to the large number of parame ters

• Problem 1.
The main difficulty is the extensive branching of de ndrites.

• Problem 2.
The other main difficulty is to have any idea of th e details in 
space-time of the synaptic inputs. It’s hard to see how these 
could be measured, except in really simple cases. 

• The first problem has been overcome by various authors by 
simplifying the geometry.
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Some of the first attempts with cylinders 
of various  radii were for motoneurons 
Dodge & Cooley, IBM J. Res. Devel. 17 
(1973) 219.; Traub, Biol Cyb 25, 163-167 
(1977). 

A similar approach was adopted for a rat 
barrel pyramid  in Iannella, Tuckwell and 
Tanaka  Math Biosci 188 (2004) 117–132.                            
>>>>

In 1993 Bush and Sejnowski obtained a 
reduced P-cell model: Journal of 
Neuroscience Methods, 46 (1993) 159-
166
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• However, under certain constraints on the branching pro perties, 
the potential over a dendritic tree can be mapped ont o that of an 
“equivalent cylinder” (Rall, 1968; Walsh & Tuckwell,  1985)

• This means that one can get some insight into spati al effects 
using a neuron model with one time and one space di mension –
that is a “cable”, which may be linear or nonlinear.
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• The spatial LIF models corresponding to an OUP mode l are  linear cable equations 
+ threshold conditions with a Gaussian white noise or Poisson stimuli. 

• Case (1) at a single point 0<x<L, W is a 1-paramete r Wiener process.

• - see Wan & Tuckwell,  Biol Cyb 33, 39-55 (1979)

Case (2)  distributed where W is a 2-parameter WP.  Here alpha and beta may 
depend on x and t.
-see Tuckwell & Walsh, Biol Cyb 49, 99-110 (1983) 
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• In either case, for these linear models, on finite spa tial intervals, 
one may use separation of variables and obtain solut ions for the
subthreshold regime as infinite sums of Ornstein-Uhlen beck 
processes. Usually only the first few terms contribute 
significantly – see Tuckwell, Introduction to Theoretical 
Neurobiology volume 2 (CUP, 1988). 

• For recent analytical results for some two-component l inear
cable models involving a two-parameter OUP see
Tuckwell, Physica A 368, 495 (2006) and 
Mathematical Biosciences 207, 246 (2007) 

In the latter article the ISI density was shown to b e 
strongly dependent on the spatial distributions of ex citation and 
inhibition.   
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• Despite the complexity of ionic currents in CNS 
neurons, it is expeditious and helpful to first con sider 
the classical FN and HH PDE models.  Here we 
consider the spatial stochastic FN model – stochasti c 
spatial HH is considered in Section 2.3

• With nonlinear spatial models such as Hodgkin-
Huxley or Fitzhugh-Nagumo, the situation is not as 
simple as for the linear passive cables, but one ha s 
the advantage that threshold conditions are inbuilt .

• For small perturbations about a stable equilibrium 
point, perturbative expansions do provide a good 
approximation as we will demonstrate for FN. 
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SPATIAL FN WITH 2-PARAM WHITE NOISE
GENERAL EXPLICIT NUMERICAL METHOD WORKS WELL (VERIF IED WITH 

EXACT RESULTS FOR LINEAR AND NONLINEAR SPDE )

CONSIDER THE SPDE
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RESULTS 1
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RESULTS 2
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EFFECTS OF NOISE ON RELIABILITY OF TRANSMISSION
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• Such phenomena could never arise in a point 
model as all the action potentials arise at a single 
point, develop at a single point and go nowhere!
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COMPARISON OF ANALYTICAL AND NUMERICAL SOLUTIONS
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• This last set of analytical results was 
obtained using a perturbation 
expansion for the SPDE.  Such 
calculations are very lengthy, but 
useful to check numerical 
approximations.  Briefly we have...
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ANALYTICAL METHOD

• CONSIDER WITH EPSILON SMALL

• AND ASSUME g(u_0)=0,

Try a perturbation expansion 
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• Substitute in the PDE and equate coeffs of powers o f epsilon
• This gives a recursive set of linear SPDEs for u_1, u_ 2 etc
• The first is 

• with solution, 

• and the second is 
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• First and second order moments 

• are evaluated  using the Green’s function for the 
cable equation but the calculations are very 
laborious past 3 rd powers of epsilon
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AN EXAMPLE SHOWING LINEAR VERSUS 
NONLINEAR (ANALYTICAL)
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ONE CAN SEE WHEN THE SERIES IS NOT CONVERGING BY EXAMINING 
THE STATIONARY DISTRIBUTION RELATIVE TO EQUILIBRIA
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PART 2: NOISE AND THE POINT AND SPATIAL HH 
MODEL

JOINT WITH BORIS GUTKIN (ENS, PARIS) AND JUERGEN JOST 
(MIS, MPI, LEIPZIG)

• We firstly consider two types of stimulation 
of an HH (point) model neuron. 

• (1) Additive or “current” noise

• (2) Conductance based noise, more akin

to synaptic input.
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BACKGROUND

• As a prelude to this study, we had been considering  the effects of 
noise on coupled type 1 (QIF) neurons –see Gutkin, Jost & Tuckwell
Theory in Biosciences 127, 135-139 (2008) 
Europhysics Letters 81, 20005 (2008)

We commenced a similar study of coupled HH neurons and
some of the results are shown on the next page 

Initially we had thought that the minima had been d ue to coupling
but found the same occurred with zero coupling.  Th is led us to
a systematic study of single HH neurons with noise.  
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(1) SDE model for HH with additive noise
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• USING STANDARD PARAMETER VALUES THE CRITICAL VALUE OF  µ TO 
INDUCE REPETITIVE FIRING (HOPF BIFURCATION) IS ABOU T 6.44.  WE 
EXAMINED SPIKE TRAINS FOR VARIOUS VALUES OF µ

AND σ AND GOT RESULTS SUCH AS THESE (µ=6.6): 
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PLOTTING NUMBER OF SPIKES, N,  VERSUS µ AND σ FOR VALUES OF µ
GREATER THAN 6.44 GAVE THE FOLLOWING PICTURE.  THES E 

RESULTS ARE BASED ON 500 TRIALS FOR EACH POINT. A D ISTINCT 
MINIMUM OCCURS AS σ INCREASES AWAY FROM ZERO WHEN µ IS 
NEAR THE CRITICAL VALUE. A MORE COMPLETE PICTURE FO LLOWS.
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SOME PARTICULAR RESULTS HELP TO ILLUSTRATE WHAT IS 
GOING ON
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• IT IS CLEAR THAT AT CERTAIN VALUES OF THE MEAN 

CURRENT, THE RESPONSE UNDERGOES A  DISTINCT 

MINIMUM AS THE NOISE VARIES. 

BECAUSE STOCHASTIC RESONANCE, FAMILIAR IN MANY  

SENSORY SYSTEMS, ENTAILS A MAXIMUM IN THE RESPONSE 

(OFTEN MEASURED BY A SIGNAL TO NOISE RATIO), THIS 

PHENOMENON IS CALLED “INVERSE STOCHASTIC RESONANCE”.



44

THE EXPLANATION LIES IN THE NATURES OF 
THE ATTRACTORS OF WHICH, FOR MEAN 
CURRENTS GREATER THAN THE CRITICAL 
VALUE, THERE ARE TWO : A STABLE REST 
STATE AND A STABLE LIMIT CYCLE.  

JUST PAST THE CRITICAL VALUE THE BOA FOR 
THE LIMIT CYCLE IS SMALL AND A SMALL 
NOISY SIGNAL (OR ANY)
CAN KICK THE DYNAMICS INTO THE BOA OF 

THE STABLE REST POINT – THUS 
TERMINATING THE SPIKING. THIS IS 
ILLUSTRATED IN THE FOLLOWING PICTURE. 
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We have sought explanations of these 
phenomena in terms of the variance

of the process: the idea is that if the variance 
becomes large in one of the basins of attraction 
then the process has a large chance to exit and 

either stop or start spiking

To approach this analytically  we have found 
the moment equations for an hh neuron with 

noise – in the additive noise case there are 14 
de’s. 
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INTRODUCTION  TO THE MOMENT METHOD

WITH ONE-DIMENSIONAL DIFFUSION PROCESSEES DEFINED BY AN SDE

dX = a(X,t)dt + b(X,t)dW

IT IS OFTEN POSSIBLE TO MAKE PROGRESS IN SOLVING THE 
KOLMOGOROV OR FOKKER-PLANCK EQUATION (LINEAR PDE) FOR THE 
TRANSITION PROBABILITY DENSITY FUNCTION.  HOWEVER, IN 
COMPLEX MULTIDIMENSIONAL CASES IT IS DESIRABLE TO HAVE 
APPROXIMATE ANALYTICAL TECHNIQUES.  

ONE SUCH METHOD IS TO CONSTRUCT A SYSTEM OF DETERMINISTIC 

ORDINARY DIFFERENTIAL EQUATIONS FOR THE MEANS AND 
COVARIANCES. 

WE FOLLOW RODRIGUEZ AND TUCKWELL, PRE 54, 5585 (1996), 
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• NEURAL (NETWORK) DYNAMICAL SYSTEMS CAN OFTEN BE 
PUT IN THE FOLLOWING FORM.  
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• Applying this to the expressions for 
the means gives 
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and to the covariances gives
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FOR HH THE COMPONENTS  ARE X1=V, 
X2=n, X3=m AND X4=h.

• The means are m_1, m_2, m_3, m_4
and there are 4 variances C_11, C_22, C_33 and 
C_44 together with another

6 covariances C_12, C_13, C_14, C_23, C_24, C_34 = 
14 1st and 2nd order moments. 

For example, C_24 = Cov (n(t), h(t)) 
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FAIRLY LENGTHY CALCULATIONS  GIVE FOR EXAMPLE THE D E’S 
FOR THE MEAN AND VARIANCE OF THE VOLTAGE VARIABLE 
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• OTHER EQUATIONS INVOLVE THE ALPHA’S AND BETA’S 
AND THEIR DERIVS E.G. 
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FOLLOWING SHOW THE MEAN AND VARIANCE OF THE 
VOLTAGE: THE FIRST TWO SETS OF RESULTS ARE FOR SMALL 

NOISE AND SHOW THE EXCELLENT AGREEMENT BETWEEN 
ANALYTICAL AND SIMULATION RESULTS
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THIS SHOWS HOW THE VARIANCE OF V DEPENDS ON 
SIGMA FOR VARIOUS MU: THE GRAPHS STOP WHEN 

THE METHOD FAILS
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THIS SHOWS HOW A SMALL NOISE MAY 
STOP THE SPIKING AFTER 1 SPIKE
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LONG DURATION EXAMPLE – LARGE NOISE
SWITCHING FROM LIM CYCLE TO REST
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LONG DURATION 3000 msec - SUMMARY
JUST SUB            JUST SUP             SUP
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• Hence one sees that there is a 
“competition” between the tendency of 
noise to stop the spiking and the 
tendency for it to induce spiking.
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Theory : use exit-time theory for Markov 
processes

• Theorem: The process switches from spiking to non-spiking st ates (and vice-
versa) in a finite time with probability one. The  expected times which the system 
remains in one or the other state are the solutions  of linear partial differential 
equations given below

• Sketch proof
• The process has an infinitesimal operator L.  That is, the transition 

density p satisfies a Kolmogorov equation 
• ∂p/ ∂ t = Lp
• The prob p L of leaving the BOA BL  of the limit cycle satisfies   
• Lp L =0 on BL (*)
• with boundary condition 
• pL =1. 
• The solution of * is p L = a constant.  Hence, because process is 

continuous, p L =1 throughout BL. 
• Similarly for the prob p R of leaving the BOA BR of the rest state.   

Standard theory gives that the expected time to sta y in the spiking state
satisfies LF L =-1 on BL with boundary condition F L = 0.
Similarly for the expected time to leave BR. The be haviour of the system 
is thus characterized by a sequence of alternate ex it times from BL and 
BR.
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(2) We also considered HH model with conductance-
based noise: n, m and h equations the same as befor e
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RESULTS: WE OBTAINED A SIMILAR 
RESULT WITH COND-BASED NOISE: 

VOILA!
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2.3   INCLUDING  SPATIAL EXTENT: THE 
HODGKIN-HUXLEY  SPDE
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HH SPDE
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RESULTS 1 : no noise: TRAIN OF AP’s
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RESULTS 2
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RESULTS 3
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RESULTS 4
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RESULTS 5
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WAVE INTERFERENCE
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Wave instigation at t-zone: preliminary 
result
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EXPERIMENTAL CONFIRMATION OF THE SILENCING OF NEURO NAL 
ACTIVITY BY NOISE CAME IN 2006 ON SQUID AXON – AN AR TICLE BY 

Paydarfar,  Forger  & Clay:  Noisy inputs and the i nduction of on-off 
switching behavior in a neuronal pacemaker. J. Neurophysiol. 96, 3338-

3348.   8 AXONS WERE EXAMINED. 
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THESE PHENOMENA ARE EXPECTED TO OCCUR WHEN A STABLE REST 
POINT AND A STABLE LIMIT CYCLE CO-EXIST. 

THE IMPLICATIONS FOR NEURAL ACTIVITY REMAIN TO BE F ULLY 
EXPLORED.  THE RESULTS FOR NOISE IN THE PDES MAY BE  RELEVANT 
TO TRANSMISSION OF DENDRITICALLY INSTIGATED SPIKING

APART FROM IN SINGLE CELL PACEMAKER ACTIVITY THERE MAY BE 
APPLICATIONS IN

BRAIN OSCILLATIONS INCLUDING EPILEPSY
CARDIOLOGY
CELL KINETICS – TUMOR GROWTH (P53) 
ASTROPHYSICS
ECOLOGY
CLIMATOLOGY

IN ALL OF WHICH STABLE LIMIT CYCLES ARE FOUND. 
END  


