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PART 1.
FITZHUGH-NAGUMO SPDE MODEL NEURON

 FN system is simpler than HH and has some similar
properties — used also for heart dynamics and many
other things eg EEG, Spreading depression

First objectives

* (1) determine effects of noise on transmission of
solitary waves (action potentials)

e (2) compare properties of numerical solutions of
spde with those analytically determined




 References:
Neural Computation 20, 3003 (2008)

Physica A 387, 1455 (2008) — for
analytical method in case of small
perturbations




INTRODUCTION TO STOCHASTIC PDES AS
NEURON MODELS

FOR NEURAL MODELING THE SIMPLEST SOMEWHAT REALISTIC
MODEL OF A NEURON IS THE LIF (LEAKY INTEGRATE AND F IRE)
MODEL

(1) STEIN BIOPHYS J 1965
dV=-sdt+a EdN E —a IdN |

(2) TUCKWELL J THEOR BIOL 1979
dV=-svdt + a_E(V_E-V)dN_E —a_I(V_I-V)dN_|

HERE THE N'S ARE USUALLY POISSON PROCESSES.

THESE MODELS ARE CALLED “LEAKY” BECAUSE BETWEEN

INPUT EVENTS THE MEMBRANE POTENTIAL DECAYS
TOWARDS RESTING LEVEL




 Because jumps lead to differential-difference or
Integral equations, the most studied forms of
these models are the smoothed versions —
diffusion approximations where the membrane
potential is continuous and all relevant
equations are differential equations. If reversal

potentials are neglected this gives the Ornstein-
Uhlenbeck process (OUP)

However, simulation is just as facile with the
discontinuous models.




For the OUP the stochastic DE for subthreshold
voltages is linear

dX=(m - aX)dt + sdW

where m Is the mean input rate, a is the

reciprocal of the time-constant (typically
3-30 msec), s Is the standard deviation
of the input and W is a standard Wiener
process or BM (mean 0, variance t).




HOWEVER IT SEEMS THAT NEURONS CAN NOT BE
ACCURATELY REPRESENTED BY A SINGLE POINT MODEL.
INTEGRATION PHENOMENA DEPEND STRONGLY ON
SPATIAL LOCATION. Below is a typical layer 2/3 pyramida |
neuron of the rat barrel cortex

D.Feldmeyer, et al J.Physiol.538 (3) (2002) 803. The next 2
pages show synaptic distributions on a hippocampal p yramid
(Megias et al, 2001).
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SCHEMATICALLY WE HAVE ROUGHLY IN THE
PARADIGM P-CELL CASE

DEPOLARIZATION RECORDED AT
THE NEURON'S CELL BODY

SYNAPTIC
EXCITATION

INHIBITION




Thus itis hard to construct an accurate electrophys  iological
model of a neuron without taking into account the sp atial
extent of the cell.

There are packages like GENESIS and NEURON, for tryingt o
Incorporate the details of a neuron’s anatomy, but sys tematic
analysis Is a problem due to the large number of parame ters

Problem 1.
The main difficulty is the extensive branching of de ndrites.
Problem 2.

The other main difficulty is to have any idea of th e detalls in
space-time of the synaptic inputs. It's hard to see how these
could be measured, except in really simple cases.

The first problem has been overcome by various authors by
simplifying the geometry.




Some of the first attempts with cylinders
of various radii were for motoneurons
Dodge & Cooley, IBM J. Res. Devel. 17
(1973) 219.; Traub, Biol Cyb 25, 163-167
(1977).

A similar approach was adopted for a rat
barrel pyramid in lannella, Tuckwell and

Tanaka Math Biosci 188 (2004) 117-132.

>>>>

In 1993 Bush and Sejnowski obtained a
reduced P-cell model: Journal of
Neuroscience Methods, 46 (1993) 159-

100 um ’ g
(B) ®,

10um

Layer 2

Distal dendrite

Proximal dendrite Middle dendrite

Hillock

™~ Axon initial segment
Node

Telodendria ——»




 However, under certain constraints on the branching pro perties,
the potential over a dendritic tree can be mapped ont o that of an
“equivalent cylinder” (Rall, 1968; Walsh & Tuckwell, 1985)

This means that one can get some insight into spati al effects
using a neuron model with one time and one space di mension —
that is a “cable”, which may be linear or nonlinear.




The spatial LIF models corresponding to an OUP mode | are linear cable equations
+ threshold conditions with a Gaussian white noise or Poisson stimuli.

Case (1) at a single point O<x<L, W is a 1-paramete r Wiener process.
- see Wan & Tuckwell, Biol Cyb 33, 39-55 (1979)

dW
dt

+o(x—xp)|la+b

Case (2) distributed where W is a 2-parameter WP. Here alpha and beta may
depend on x and t.

-see Tuckwell & Walsh, Biol Cyb 49, 99-110 (1983)




In either case, for these linear models, on finite spa tial intervals,
one may use separation of variables and obtain solut lons for the
subthreshold regime as infinite sums of Ornstein-Uhlen beck
processes. Usually only the first few terms contribute

significantly — see Tuckwell, Introduction to Theoretical
Neurobiology volume 2 (CUP, 1988).

For recent analytical results for some two-component | inear
cable models involving a two-parameter OUP see

Tuckwell, Physica A 368, 495 (2006) and
Mathematical Biosciences 207, 246 (2007)

In the latter article the ISI density was showntob e

strongly dependent on the spatial distributions of ex citation and
Inhibition.




« Despite the complexity of ionic currents in CNS
neurons, it is expeditious and helpful to first con sider
the classical FN and HH PDE models. Here we
consider the spatial stochastic FN model — stochasti C
spatial HH is considered in Section 2.3

With nonlinear spatial models such as Hodgkin-
Huxley or Fitzhugh-Nagumo, the situation is not as

simple as for the linear passive cables, but one ha s
the advantage that threshold conditions are inbuilt

For small perturbations about a stable equilibrium
point, perturbative expansions do provide a good
approximation as we will demonstrate for FN.




Stochastic FIN eqgunations and solutions by simu-
lation

In general form. for one space dimension. the FN model can he written, with
voltage variable uiz,t) and a recovery variable vir, #),

g = Dhttee + sulu —a)il —u) — Av 41z, t) (1)

W= E-‘If::i:'r:r 3 'F-I[U — pU -+ E"'] (2]

where » = (0., L) is the space variable and ¢ = 01is time. Initial and boundary
conditions must also be specified. The quantities x. A, €. p, I} and Dy are
positive and usually taken to be constants, although they could vary with
hoth # and t. The parameter b can be positive, negative or zero. The applied
current or input signal [{z,7) may be due to external or intrinsic sources.
In the majority of applications Iy = 1 and Ds=0, which will be the case in
this article.
In the model of Fitzhugh (1969), the parameterization was
ud

uf=uﬂ+u—?—t=+ﬂ1'.f] (3)

vy = 0.08{u — 0.8v +0.7). (4)




Two-parameter white noise

The stochastic input eurrent terms of this paper contain the two-parameter
random white noise process w = {w(x, )}, where by definition

wiz, t) = Wa,

where W = {W(x,t)}, for values of » £ [0,21] and ¢ = [0,t1], is a two-
parameter Wiener process or Brownian motion. Properties of W and w
parallel those of the usual one-parameter Wiener process or Brownian mo-
tion and the nsual Gaussian white noise. Wiz, ) 18 a Gaussian random vari-
able with mean zero and variance xf and covariance Cov[W (x, 5], Wiy, )] =

min(x,y)min(s,t) so that

Cov[w(z, s), w(y, )] = §(z — y)d{s —1).

Sample paths of W are (continuonus) surfaces and for a fixed value of one of
the parameters, the process is the usual one-parameter Wiener process.




SPATIAL FN WITH 2-PARAM WHITE NOISE

GENERAL EXPLICIT NUMERICAL METHOD WORKS WELL (VERIF IED WITH
EXACT RESULTS FOR LINEAR AND NONLINEAR SPDE )

CONSIDER THE SPDE

g = D, + flu) 4+ ow(x, 1)

Suppose the
space interval is 0 < ¢ < L and the time interval is 0 < ¢ < 7. Then put
Ar=L/mand At=T/nand let x; = (i — 1)Axr fori =0, 1,....m, and let
t; = (j—1)At for j =0,1....,n. Approximating u at the grid point (z,,7;)
by u; ; the simulation proceeds by the following scheme:

Ui = Wi 511 ":"[Ur'—l._;'—l —Eﬂf_j_1 +Uj_1___|i_]] —I—ﬂi"fl:?a:'__._._l [ SRV .ﬂ.","'ﬁ:.'.‘;ﬁ'r'—;'__l:,

where
: DAt

d = -
(Ax)e

and where the N, ;'s are a collection of independent standard {zero mean,

unit variance) normal random variables which will be generated by a com-

puter routine, The method generally works well if 4 < 0.5 and particularly

well if & = 0.2,




Simulation of the original FN model with white noise

We are interested firstly in the effects of noise on the propagation of an action
potential so we consider an FN syatem with the original parameterization
as in (3), (4) and let

I{z,t) =olx)w(z,t),

that is, driftless white noise with amplitude which may depend on position.
Sealed end conditions will usually be emploved. In order to start an action
potential we apply a current J at r = 0 for 0 < ¢ < #*. The boundary
conditions are thus

w01 =J, 0<t<th

w.(0.t)=0, t>t1"

u L, t)=0, t=0.

For initial conditions for the general system of SPDEs w, = Dy, +flu, v)+
aw(x,t) and vy = Daves + glu, v) we choose suitable equilibrium values

ulr,0)=u*, wvizr 0 =v", 0O0<zx<l,
where u* and v* satisfv

flu*, v*) =0, glu*, v*) =0,

For the standard FN model (3),(4), these equilibrium values are u* =
—1.1994 and v* = —.6243, being the unique real solution of u —u®/3 —v =10
and 0.08(u — 080+ 0.7) = 0.




RESULTS 1

<

X in mm

Simulated solutions of the FIN system with original parameters as
in (3),(4). The variables are plotted versus distance at 0.75 msec (blue), 1.5
msee (black) and 2.25 meee (purple). In the left column there = no noise
and in the right eolumn a small uniform noise of ¢ = 0.06.




xin 0.1 mm

Simulated solutions of the FN system with original parameters
as in (3).(4) for larger (uniform) neise amplitudes. uw — w* is plotred versus
distance at (.75 msee (blue), 1.5 msec (black) and 2.25 msee (purple). In
the top two examples, ¢ = 0.225 whereas in the bottom figure ¢ = 0.25
For ¢ = 0.25, v — " is also shown for 1.1 msec (red) and 1.3 msec(green)
illustrating the annihilation of the original wave by a left-going noise-induced

Wave.




EFFECTS OF NOISE ON RELIABILITY OF TRANSMISSION

MNOISE RESTRICTED
TOZ25 =X <23

UNIFORM
NOISE

L=3

The probability of faithful transmission of the action potential
versus noise amplitude, Blue crosses are for uniform noise whereas red
crosses are for the case of noise restricted to a small region. 100 trials per
point. The point P demarcates for the uniform ecase the regime for smaller
a where the noise essentially kills the oncoming wave from the regime for
larger o where the noise is sufficiently strong to give rise to non-local large
often disruptive responses.




The results for uniform
Nolse | Dllle crosscs, cad e divided mto two regimes, to the left and right
of the point P. The rate of decline of pyane a8 o inereases from 0.12 to
about 0.26 is slower by a factor of about 4.5 than that as & increases from
0.26 to 0.40. Examination of the sample paths shows that there are two
kinds of transmission failure. One is due purely neise interference oceuring
at the smaller values of & and resulting in the annihilation of the traveling
wave. The other oceurs when the noise itself starts a secondary disturbance
of sufficient magnitude that it may grow into a substantial response. which
may take the form of another wave or multiple waves.

« Such phenomena could never arise in a point
model as all the action potentials arise at a single

point, develop at a single point and go nowhere!




COMPARISON OF ANALYTICAL AND NUMERICAL SOLUTIONS

Mean and standard deviation of u and v at = L /2 as obtained by
simulation of the two-component svastem (10, (11) with uniform white noise.
For parameter values, see the text. The same quantities are also shown
caleulated analytically and are depicted by smooth blue curves. Values of ©
from simulation are shown but are extremely small for this parameter set.



his last set of analytical results was
obtained using a perturbation
expansion for the SPDE. Such
calculations are very lengthy, but
useful to check numerical
approximations. Briefly we have...




ANALYTICAL METHOD

e CONSIDER WITH EPSILON SMALL
U = Upy + glu) +ela+ W), 0 <z < Lt > 0.

 AND ASSUME g(u_0)=0,

Try a perturbation expansion

wlr, t) = ug + euqlx. t) 4+ e us (. t) + Q) (e”)




Substitute in the PDE and equate coeffs of powers o f epsilon
This gives a recursive set of linear SPDEsforu 1,u_ 2 etc
The firstis

. . t pL t pL
with solution, ui(x.r) = aff f G(x,y;t —s)dvds + B [ f G(x, y;t —s)dW(y, s),
0 Jo JO SO

where G is the Green’s function for
an a%i

B P + yu,

and the second is

so that

0 t pL )
ua(x.r) = — / f G(x,y:t —s)uj(y, s)dyds.
2 Jo Jo




e First and second order moments

Elu(x, /)] = ug + €Elu; (x, )] + ’Eluz (x, )] + O(e”).

K(x,s:y, t)=Covlu(x,s), u(y, )]

e are evaluated using the Green’s function for the
cable equation but the calculations are very
laborious past 3 ' powers of epsilon




AN EXAMPLE SHOWING LINEAR VERSUS
NONLINEAR (ANALYTICAL)

NONLINEAR.

Figure 6: Computed mean of the voltage variable u(xz, ) satistying (13) with
net inhibition (a < 0) at various r and t. Mean computed from (14). Also
shown are the total nonlinear and linear contributons. For parameter values
see text.




ONE CAN SEE WHEN THE SERIES IS NOT CONVERGING BY EXAMINING
THE STATIONARY DISTRIBUTION RELATIVE TO EQUILIBRIA

«— 9(u) * £ 0 (scaled upwards)

Figure 8: Histograms of the long-term values of (0, t) shown in relation to
the source function g(u) + ea (scaled) for two values of /7 in the case where
o = 1. For 3 = 1.5 the analvtical method is accurate but not for 3 = 3. For




PART 2: NOISE AND THE POINT AND SPATIAL HH
MODEL

JOINT WITH BORIS GUTKIN (ENS, PARIS) AND JUERGEN JOST
(MIS, MPI, LEIPZIG)

* We firstly consider two types of stimulation
of an HH (point) model neuron.

e (1) Additive or “current” noise

e (2) Conductance based noise, more akin

to synaptic input.




BACKGROUND

As a prelude to this study, we had been considering the effects of
noise on coupled type 1 (QIF) neurons —see Gutkin, Jost & Tuckwell
Theory in Biosciences 127, 135-139 (2008)

Europhysics Letters 81, 20005 (2008)

We commenced a similar study of coupled HH neurons and
some of the results are shown on the next page

Initially we had thought that the minima had been d ue to coupling
but found the same occurred with zero coupling. Th

a systematic study of single HH neurons with noise.

IS led us to






(1) SDE model for HH with additive noise

dV = %{[,u 4+ exnt (Vg = V) + graam*h(Vaga — V)
+21(Vi — V)]dt + o dW)

dn = |a,(1 —n) — fun]dr
dm = [et, (1 —m) — Bym] de
dh = [ep(l — k) — Bph] dt,

where C is the membrane capacitance in pF/em?. ¥
1s the depolarization from resting membrane poten-
tial in mV and Vg and Vi, are the Nernst equilibrium
potentials (mV) for potassium and sodium 1ons. The
constants gg and gy, are the maximal membrane con-
ductances. in mS/em?, for potassium and sodium.




USING STANDARD PARAMETER VALUES THE CRITICAL VALUE OF pTO
INDUCE REPETITIVE FIRING (HOPF BIFURCATION) IS ABOU T 6.44. WE
EXAMINED SPIKE TRAINS FOR VARIOUS VALUES OF p

AND o AND GOT RESULTS SUCH AS THESE (p=6.6):

NO NOISE




PLOTTING NUMBER OF SPIKES, N, VERSUS uAND o FOR VALUES OF p
GREATER THAN 6.44 GAVE THE FOLLOWING PICTURE. THES E
RESULTS ARE BASED ON 500 TRIALS FOR EACH POINT. AD ISTINCT
MINIMUM OCCURS AS o INCREASES AWAY FROM ZERO WHEN p IS
NEAR THE CRITICAL VALUE. A MORE COMPLETE PICTURE FO LLOWS.




ALL DATA,




SOME PARTICULAR RESULTS HELP TO ILLUSTRATE WHAT IS
GOING ON

CURRENT-DRIVEN




IT IS CLEAR THAT AT CERTAIN VALUES OF THE MEAN
CURRENT, THE RESPONSE UNDERGOES A DISTINCT

MINIMUM AS THE NOISE VARIES.

BECAUSE STOCHASTIC RESONANCE, FAMILIAR IN MANY

SENSORY SYSTEMS, ENTAILS A MAXIMUM IN THE RESPONSE

(OFTEN MEASURED BY A SIGNAL TO NOISE RATIO), THIS

PHENOMENON IS CALLED "INVERSE STOCHASTIC RESONANCE".




THE EXPLANATION LIES IN THE NATURES OF
THE ATTRACTORS OF WHICH, FOR MEAN
CURRENTS GREATER THAN THE CRITICAL
VALUE, THERE ARE TWO : A STABLE REST
STATE AND A STABLE LIMIT CYCLE.

JUST PAST THE CRITICAL VALUE THE BOA FOR
THE LIMIT CYCLE IS SMALL AND A SMALL
NOISY SIGNAL (OR ANY)

CAN KICK THE DYNAMICS INTO THE BOA OF
THE STABLE REST POINT - THUS
TERMINATING THE SPIKING. THIS IS
ILLUSTRATED IN THE FOLLOWING PICTURE.







We have sought explanations of these
phenomena in terms of the variance
of the process: the idea is that Iif the variance
becomes large in one of the basins of attraction
then the process has a large chance to exit and
either stop or start spiking

To approach this analytically we have found

the moment equations for an hh neuron with

noise — in the additive noise case there are 14
de’s.




INTRODUCTION TO THE MOMENT METHOD

WITH ONE-DIMENSIONAL DIFFUSION PROCESSEES DEFINED BY AN SDE
dX = a(X,t)dt + b(X,1t)dW
IT IS OFTEN POSSIBLE TO MAKE PROGRESS IN SOLVING THE
KOLMOGOROV OR FOKKER-PLANCK EQUATION (LINEAR PDE) FOR THE
TRANSITION PROBABILITY DENSITY FUNCTION. HOWEVER, IN

COMPLEX MULTIDIMENSIONAL CASES IT IS DESIRABLE TO HAVE
APPROXIMATE ANALYTICAL TECHNIQUES.

ONE SUCH METHOD IS TO CONSTRUCT A SYSTEM OF DETERMINISTIC

ORDINARY DIFFERENTIAL EQUATIONS FOR THE MEANS AND
COVARTIANCES.

WE FOLLOW RODRIGUEZ AND TUCKWELL, PRE 54, 5585 (1996),




NEURAL (NETWORK) DYNAMICAL SYSTEMS CAN OFTEN BE
PUT IN THE FOLLOWING FORM.

Let X={X(7).r1=0}=(X(1).X5(r) (1)).r=01, with
n=1, be an n-dimensional random process with components
satisfying the stochastic differential equations

i

dX()=f;(X(1),0)dt+ D, gu(X().)dW(1),
' k=1 "

where j=1.2.....n and m=1. The W, ={W.(1).t=0}.
k=1.2.....m are standard Wiener processes (that is. they
each have zero mean, mitial value zero with probability one.
and variance equal to ¢ at time 7) which we assume are in-
dependent.




Define the » means for the various COMMpPOonSnts

X,(1)=E[X;(1)].

; 1 o
where j=1.....n. and the n~ quantities

K (1) =E[(X;(t) =X ()X (1) —X;(1)) ],

where 7.j=1.....n. Of these n~ quantities there are n vari-
ances,

Vi) =E[(X;(t) - X ()],

where j=1,....n. and sn({n—1) distinct covariances, K,.(1)
with 7<Zj.




* Applying this to the expressions for
the means gives

M H

Jrul.

.: 1 P

T
am 1
: =fm. 1)+ — »

|
ar




and to the covariances gives

i | {,__-! fll: N Tl - f:_:‘. f“ .: 5
e |\ Dxy ), et | Dy )
=1 ~ LA m,t) I=1 AmLE)
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dridry, dryp drp dry, Or dridry (1m.t)




FOR HH THE COMPONENTS ARE X1=V,
X2=n, X3=m AND X4=h.

e Themeansarem 1, m 2, m 3, m 4
and there are 4 variances C_11, C 22, C 33 and
C_44 together with another

6 covariances C_12, C_13,C_14,C_23,C_24,C_34 =
14 1st and 2" order moments.

For example, C_24 = Cov (n(t), h(t))




FAIRLY LENGTHY CALCULATIONS GIVE FOR EXAMPLE THE D E'S

FOR THE MEAN AND VARIANCE OF THE VOLTAGE VARIABLE

1 1, ! - . r PR .

_4@{”13012 ‘3(‘“??1 myCls — Gy, m: CM

— 2717 K il
+6G 5 ms (Ve — m1)Caz + 3Gnamama (Ve — my ) Clg

+30nama(Vve — '”?-1}@:3.4] -

dC'yy 2

—_ p 4 5 :-|:' :
dt C L'.f:'_ﬁ; Moy + G, MMy + 5;,[.] Ch
+th—-mz[lx;{ — mq )Cs

6 = ) %
-+ 8l InaMamy( Ve, — my)Cig

2 G o+ (Z2)
+£j Mal VNe — M1 )Cha + C



« OTHER EQUATIONS INVOLVE THE ALPHA'S AND BETA'S
AND THEIR DERIVS E.G.

dmmo

= a,(my)(1—ms) — 3, (my)ms
g U (1721 ( 2) (1721 )12

+ {(r:r’:{rm (1 — mz2) — B (m1)m2)Chy

—2(a! (my) + B, (mq))C z]

dims

= a,,(my) (1 —msg) — B,,(m;)ms
dt

[{;_—.5’;’; (m1)(1 —msz) — B (my ]m..;;)(”l I

—2(ay, (mq) + B,.(my)) C ;_-..}




FOLLOWING SHOW THE MEAN AND VARIANCE OF THE
VOLTAGE: THE FIRST TWO SETS OF RESULTS ARE FOR SMALL
NOISE AND SHOW THE EXCELLENT AGREEMENT BETWEEN
ANALYTICAL AND SIMULATION RESULTS

' RED:
MOMENT EQUATIONS

BLUE:
EVt)] 50+ SIMULATION

Var[Vv(t)] 5




50
E[V(t)]

60

40
Var[V(t)]

RED: MOMENT EQUATIONS
-BLUE: SIMULATION




THIS SHOWS HOW THE VARIANCE OF V DEPENDS ON
SIGMA FOR VARIOUS MU: THE GRAPHS STOP WHEN

THE METHOD FAILS




THIS SHOWS HOW A SMALL NOISE MAY
STOP THE SPIKING AFTER 1 SPIKE

p=6.8 ©=0.005
150 150

1t "spike" 2nd "spike"”
100 P 100 P

EV(t]
50 50
0 0

-50 -50
15 25 30

0.2
Var[Vv(t)]

0.1

0




LONG DURATION EXAMPLE — LARGE NOISE
SWITCHING FROM LIM CYCLE TO REST




LONG DURATION 3000 msec - SUMMARY
JUST SUB JUST SUP SUP

p=6 pn=6.5 p=7

1 SPIKE 6 SPIKES 172 SPIKES

0.5 18

1 SPIKE 3 SPIKES 14 SPIKES

0.5 18 18

80 SPIKES 98 SPIKES 104 SPIKES

=
100
151




 Hence one sees that there is a
“competition” between the tendency of
noise to stop the spiking and the
tendency for it to induce spiking.




Theory : use exit-time theory for Markov
processes

Theorem: The process switches from spiking to non-spiking st ates (and vice-
versa) in a finite time with probability one. The expected times which the system
remains in one or the other state are the solutions of linear partial differential
equations given below

Sketch proof

The process has an infinitesimal operator L. That IS, the transition
density p satisfies a Kolmogorov equation

ap/ dt=Lp
The prob p | of leaving the BOA BL of the limit cycle satisfies
Lp, =0 on BL (¥)
with boundary condition
p,. =1.
The solution of *is p | = a constant. Hence, because process is
continuous, p |, =1 throughout BL.

Similarly for the prob p ; of leaving the BOA BR of the rest state.
Standard theory gives that the expected time to sta Yy in the spiking state

satisfies LF | =-1 on BL with boundary condition F | = 0.

Similarly for the expected time to leave BR. The be  haviour of the system
Is thus characterized by a sequence of alternate ex it times from BL and
BR.




(2) We also considered HH model with conductance-
based noise: n, m and h equations the same as befor e

1
([:_f[ﬁn (Vi = V) + gy m h(Vive — V)

+gr. (Ve — V)] + 1, [ﬂ) .

1 = -
—— |98 —Gp|dt + opdWg(t)
TR B

—[g1r — 9] dt + o1 dW;(2)




RESULTS: WE OBTAINED A SIMILAR
RESULT WITH COND-BASED NOISE:
VOILAI

CONDUCTANCE-DRIVEN
g.=0.1318

0.01 0.015  0.02 0.025 0.03
o in mSlem’imsec




2.3 INCLUDING SPATIAL EXTENT: THE
HODGKIN-HUXLEY SPDE

g r AT

AV a O0°V

Ot 2R Oz2

where @ = radius, €' = membrane capacitance/unit area, R= specific resis-

+ I(x, 1)

tance of intracellular material.

The current I may consist of ionic components, applied currents or
synaptic input.
We use the usual HH ionic terms

I =9k (Vg — V) + TNg m3h(Vve — V) + gn(Vy, — V)
The applied current is

Ii(z,t) = p(z.t) + oz, t)w(z, t)

where w is a standard two parameter white noise.




HH SPDE

In the following the mean is pu(z,t) = 6.5 for all
&> 0

and
L = g |G

This is sufficient to ensure a train of spikes. The noise amplitude is a con-
stant for all z and t.

Standard HH parameters are employed and an explicit integration method
whose accuracy was checked (see below)

.
&




RESULTS 1 : no noise: TRAIN OF AP’s

p=6.5 NO NOISE TIME IN MSEC

T=12

|
0.8 1 1.2
DISTANCE (CM)




RESULTS 2

-200
2

9 trials




RESULTS 3

6=0.2 p=6.5

A

200

-200
2 0

5 trials




RESULTS 4

6=0.6 p=6.5

200

-200
2 0

5 trials




RESULTS 5

0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 0.45 0.5

Noise amplitude &




WAVE INTERFERENCE

HODGKIN-HUXLEY + UNIFORM NOISE
o=1 INITIALLY RESTING STATE




Wave Instigation at t-zone: preliminary
result

SPIKE 2 ;(I:-)Ih:-\EXON AND TRIGGER

USPIKE1

e

60

TIME msec




EXPERIMENTAL CONFIRMATION OF THE SILENCING OF NEURO NAL
ACTIVITY BY NOISE CAME IN 2006 ON SQUID AXON — AN AR TICLE BY
Paydarfar, Forger & Clay: Noisy inputs and the i  nduction of on-off
switching behavior in a neuronal pacemaker. J. Neurophysiol. 96, 3338-
3348. 8 AXONS WERE EXAMINED.
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THESE PHENOMENA ARE EXPECTED TO OCCUR WHEN A STABLE REST
POINT AND A STABLE LIMIT CYCLE CO-EXIST.

THE IMPLICATIONS FOR NEURAL ACTIVITY REMAIN TO BE F ULLY
EXPLORED. THE RESULTS FOR NOISE IN THE PDES MAY BE RELEVANT
TO TRANSMISSION OF DENDRITICALLY INSTIGATED SPIKING

APART FROM IN SINGLE CELL PACEMAKER ACTIVITY THERE MAY BE
APPLICATIONS IN

BRAIN OSCILLATIONS INCLUDING EPILEPSY
CARDIOLOGY

CELL KINETICS — TUMOR GROWTH (P53)
ASTROPHYSICS

ECOLOGY

CLIMATOLOGY

IN ALL OF WHICH STABLE LIMIT CYCLES ARE FOUND.
END




