

Representation of high bandwidth sensory information by small circuits in the whisker system

Rasmus Petersen

Workshop on Computational Neuroscience, Warwick Dec 2008

Two views of neural coding

 Low bandwidth e.g., visual cortex

 High bandwidth e.g., fly H1

de Ruyter et al (1997)

Brecht (2007) COIN

Helmstaedter et al. (2007) Br Res Rev

Tansu Celikel

Single whisker discrimination

Carvell & Simons (1990)

- Experimentally measured micromotions
- Importance of temporal domain

Coding temporal signals

1. Response question:

What is the 'information-bearing element' of the neuronal response?

2. Stimulus question:

What stimulus features do the information-bearing elements signify?

The information-bearing element of a spike train

Hypothesis 1. Firing rate Hypothesis 2. Correlations between spikes

Firing rate vs temporal correlations

- Effect of correlations on encoded information (I_{corr}) How much does the presence of noise correlations change the information compared to a hypothetical neural system where the neuron has identical mean firing rate but zero noise correlations? (eg Schneidman et al., 2003)
- Effect of correlations on decodable information (ΔI)
 If a hypothetical downstream decoding circuit attempts to
 decode using a model that includes mean firing rates but
 ignores noise correlations, how much information will be lost?
 (Nirenberg et al., 2001)

Summary

- For VPM neurons stimulated by white noise, key "information-bearing element" is firing rate
- For most VPM neurons, higher order temporal correlations have minor impact

What stimulus features does the firing rate signify?

Approaches:

- •Pseudolinear model:
 - Spike-triggered averaging
- •Non-linear models:
 - •Spike feedback (Paninski) model
 - •Spike-triggered covariance analysis

Linear Nonlinear Poisson (LNP) Model

$$k(t) = \ddagger "_{i=0}^{i=T/\delta t} s(t - i\delta t) f(i\delta t)$$
$$r(t) = g[k(t)]$$

Position
$$r(t) = g[s(t)]$$

Velocity $r(t) = g[s(t) - s(t - \delta t)]$
Acceler. $r(t) = g[\frac{1}{2}s(t) - s(t - \delta t) + \frac{1}{2}s(t - 2\delta t)]$

How accurate is the LNP model?

- Non-linear approaches:
 - Maximum likelihood fitting of spike feedback (Paninski) model
 - Spike-triggered covariance analysis

Conclusions

- VPM neurons reliably encode complex whisker motion
- Key information-bearing element of response is firing rate on millisecond time-scale
- High reliability permits small subcortical circuits
 to support demanding sensory processing
- Most VPM neurons can be described by LNP models
- VPM exhibits a distributed code for whisker motion

Acknowledgements

Michael Bale Marco Brambilla

Andrea Alenda Marcelo Montemurro Liam Paninski Stefano Panzeri Miguel Maravall

