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Introduction

e The responses of neural systems to different external stimuli
can show different transient dynamics which is the sequential
In time switching between different metastable states. (O.
Mazor, G. Laurent, Neuron,2005)

e This dynamics can be associated with existence of stable
heteroclinic channel (SHC) in the phase space of
corresponding neural model (V.S. Afraimovich et al. Int. J. of
Bifurcation and Chaos, 2004; T. Nowotny and
M.l.Rabinovich, PRL, 2007; M.l. Rabinovich et al., Science
2008).
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Sequential increasing of frequency of two
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Odors evoke reliable
temporal response pattern
In  projection neurons.
Spike raster plots and
histograms of the
responses of two
simultaneously recorded
projection neurons In

locust antennal lobe to the

odour cherry (21 trials,
one trial corresponds to
one row).
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Sequential activation of neurons in
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HVC of birds

Spike raster plot
of eight HVCg,,
neurons recorded
In one bird during
singing . Each row
of tick marks
shows

spikes generated
during one
rendition of the
song (ten
renditions are
shown

for each neuron)
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Neurons in the rat’s gustatory cortex generate a taste-specific sequential
pattern. The top row shows the sequential activity among 10 cortex neurons
In response to four taste stimuli (the ticks denoting the action potentials).
The translation of the four states into firing rates for each stimulus are given

on the bottom row.
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Nonlinear dynamics approach to neural system

* Neural activity can be modeled by the system dedgntial or
difference equations. This fact allows to applyIvikalown
methods and approaches of nonlinear dynamics autiof
oscillations to study the neural activity.

e From the point of view of dynamical systems thewgytrying to
understand various processes which take placeuronal
ensembles, to detect the role of different biolagparameters
and mechanisms in neural functions, and also tesinyate the
problems of storing and processing of information.

e One of the major modern hypothesis is the followsepuential
dynamics can be modeled by the dynamical systerahwhi
consist stable heteroclinic channel in the phaseespa
(M.lI.Rabinovich)




Stable heteroclinic channel (SHC) Is a
dynamical image of sequential behavior

 SHC Is a set of trajectories in the vicinity of

heteroclinic skeleton that consists of saddles and
unstable separatreces that connect their surrousndi

(V.S. Afraimovich, 2008)

Mikhail 1. Rabinovich, Ramon Huerta, Pablo Varowalentin S. Afraimovich
Transient Cognitive Dynamics, Metastability, and
Decision Making. PLOS computational biology, 2008.
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Hodgkin-Huxley (H-H) model
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Model of chemical synaptic coupling
ds. .
i — _ _ [T] — concentration of
dt alTI(1=5;) =55 transmitter

[T] = 1 during 1 ms after

N
19" =39, S(t)(E,, —V,); spike and [T]=0 otherwise,
=1

a,f-constants Ui -

_ _ coupling
Time series of membrane potential V

and a fraction of bind receptors S

E
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An efficient method for
computing synaptic
conductances based on a
kinetic model of receptor
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Inhibitory coupling (E,.,=-10 mV)
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Red line — cross-section of saddle torus T, with
the plane (x2,y2). Trajectories from the region B
go to the stable limit cycle L,, trajectories from the
region A go the stable limit cycle L,
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Bifurcation in the models of the second type of excitability
(H-H, Bonhoeffer-Van der Pol). We change a coupling.
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Unstable torus T1 and stable limit cycle L1.

Trajectories
(red and green)




Schematic illustration of trajectories
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Imaginary(p1 2)

Saddle torus merges in the stable limit cycle —
subcritical Neimark-Sacker bifurcation
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Sequential switching between clusters of
neurons

e Neural network — huge number of neurons and
connections between them

e |s it possible to obtain sequential switching
between groups (clusters) of neurons?

* What conditions for synaptic coupling provide
sequential switching between clusters of neurons’

e Can we obtain a sequence larger than 3 states?
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Conditions of occurrence of sequential switching
between clusters

*Non- inhibitory
coupled neurons
form the clusters of
simultaneous activity
*Clusters of neurons
must be organized In

graph with all-to-all
connections

cAsymmetry of
connections is
necessary for origin
of the sequential
switching
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EXAMPLE: Sequential switching of activity
between clusters in network of N=1024 neurons.
Each cluster consists of 256 neurons.
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EXAMPLE: Synchronization of bursting activity

e Sequential dynamics leads to synchronization oftng
activity inside the clusters

1000E

8008

600

400

neuron #

2008

300 400 500 600 700
time, ms

\




Stable heteroclinic channel

S kil = sum of all s_i from the cluster K1




Network with random inhibitory connections

* |s it possible to obtain
constructions which are
able to demonstrate
sequential dynamics in
network with random
Inhibitory connections?

e |[f yes, then how many
such constructions -
functional subsystems -
can arise in random
network?

Functional subsystem
- a result of some
external force
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Network with random inhibitory connections

The mean value of number of functional
subsystems <K> which are able to
demonstrate sequential dynamics can
be estimated as follows:

CI n—i 2
m Z—ll R C? n\n |_|—m n’m
<K>=CGl-=FF%—)"(@--p"))" @L-p)
CN
m - number of clusters,
n - number of elements inside each cluster,

N - size of the network,
p — probability of unidirectional connection between any two
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The mean value of number of functional N

subsystems <K> which are able to ”
demonstrate sequential dynamics 3
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m-number of clusters, n-number of elements inside each cluster, N-size of the
network, p — probability of connection between any two neurons
Example: N=100, p=0.7, m=5, n=2 <K> =6000
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@xample: N=1000, m=5,n=9 <K>=10

max

Power law dependence of maximum <K> on
the size of network N
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EXAMPLE: 30 randomly coupled neurons. Probability

p=0.28.
This network has 392 functional subsystems from m=3
clustres of n=3 neurons each.
We take only 3 functional subsystems.

We changed |'e« +Al \We added noise. We
changed initial condtions

~
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Neuron
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Responses of the random network in the form of different active
sequences of clusters to different sets of stimuli. In time (0:750) we force
neurons from three clusters: K1=(1,3,18); K2=(20,25,27); K3=(9,21,29)...
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Switching and synchronization (Mean field voltage)
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Conclusions

e Sequential dynamics in models of neuronal networks
can be a result of arising of stable heteroclinic
channels (SHC) in the phase space of the system.
Subcritical Neimark-Sacker bifurcation,

* Even the networks with random inhibitory connections
can contain huge number of functional subsystems -
constructions which are able to demonstrate sequential
dynamics

e Certain set of external stimuli on the network provides
certain sequence of firing clusters of neurons

e Observed rhythmic behavior is stable against noise and
flexible to the inputs to the sensory system
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Heteroclinic channels
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Bohnoeffer — Van der Pol egs.

We consider the motif of three neurons (shown in Fig. 1), modeled by the Bonhoeffer-Van der Pol equations:

o dTIEE = Ij— %I‘f(f} b y;(gj = 3-1-“)(&?-5(?-) — -trj + 5 a
i !EE = Iitr) - by'i!-(f) +ﬂ':. .|1' —_ ]-g .“:3
synaptically inhibitory connected through the coupling z;(f) which is defined by
_ dxlt) 5
T2 p =Z§ijﬂ$”_”'*(”' (2)

Here 2;(t) denotes the membrane potential of the i-th neuron, y;(#) the variable corresponding to the action of all ionie
currents, S; the external stimuli to each nenron, v the reversal potential, g;; the coupling coefficients between the i-th
and j-th neuron and F(z;) = 1/(1 4 exp((0.5 — z;)/20}) . The values of the parameters are fixed in all simulations
toa =07, b=08. 1 =0.08, 7=3.1, v = —1.5 and we chose the parameters S; > 0.35 that corresponds to tonic
spiking regime of individual uncoupled neurons. Depends on the level of nonsymmetry of inhibitory coupling this
simple network demonstrates the variety of dynamical regimes:




FIG. 3: {a) Bifurcation diagram of regimes in an ensemble of three inhibitory coupled neurons (see text for details); (b) Detailed
area of the diagram.

Region A: Coexistence of three limit cycles L] , 5 (Fig.2(a)) and three limit cycles L7 5 5 (Fig.2(h)).

Region B: Coexistence of three limit cycles Liﬂj.

Region C: Periodic sequential switching of activity between all neurons (Fig.2(c)).

Region D: Coexistence of three limit cycles L] , 5, three limit cycles LY ; 5, and limit eycle L® (Fig.2(d)).

Region E: Coexistence of three limit cycles Li 5 5 and limit cycle L3,

Region F: Region with complex structure. The black areas in the inserted figure correspond to coexistence of the three limit
cveles L7 2 3 with the limit cyele L®. The white regions are the areas of coexistence of the sequential dynamics and the stable
limit evele L5

Region G: Existence of limit cycle L2
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FIG. 12: Irregular sequential activation of neurons in the region F.




Let us suppose that the whole network can be divided
into m = 3 subnetworks with clusters X; consisting of
uncoupled neurons:

{1,.... N} =K1U...UKp. (4)

Each cluster X; consists of n; neurons. To order these
subsets we introduce a transformation of variables by the
N x N permutation matrix P such that a new coupling
matrix £ = PGP may be introduced in block form:

E:{EH}, kil=1,...,m. (3)
An arbitrary partition of (4) under this permutation
leads to the form

.. N}=KuU.. . UKy=

(1,...,mufl... nab U UL, ... (&)

,ﬂ,m}

with N = E:‘;l ng. Each block =¥ of size ni = n; has
entries

ki kL -
e = {55 i=1,..., Nk,

In the partition, we have

T
ei; =0,

t=1,...,k, JF=1,...,1. (2)

To determine the conditions of sequential switching of
the activity between clusters of neurons, we introduce
Kclm matrix § = {si} which defines a strong or weak

coupling between any two clusters K and .

Definition 1. The coefficients of the m < m matriz 5
are defined as

3 03 o)
B = L (QJ
el

where

(10}

Lo Lo

1, if @ =
= { 0, if = <
According to (9) all sy £ [0,1]. The influence of the
cluster Xy to the cluster K is strong if s = 1, and
the influence of the cluster &5 to the cluster K is weak
if s = 0. Strong unidirectional coupling between two
clusters means that all neurons of the influenced eluster
are suppressed (generating subthreshold oscillations).
Despite weak coupling, all neurons of the inhibited
cluster remain active., Note that sgp = 0 for all k.
The remaining values of sy that are within the range
(0,1) are neither strong nor weak connections (i.e. the
influenced clusters are not fully active or not fully
suppressed).

Condition A. The sequential switehing between g
clusters Ky, Kz, ..., Ky is possible if s; i 1(mod qy =0
and all other s; = 1.

For example, the matrix

(11)

N
o o e [ o
(SR s T e
o i

defines a sequential switching between clusters 1, 2, 3. 4.
Definition 2. The sequence of suitching of g clusters
Ky, K, Ky is defined as a Functional Structure (FS).
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