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Computation in cortical circuits

Obviously, computation in the brain is
different from computation in computers
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Computers vs brains

 Computers carry out offline computations
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Different input components are presented all at once, and there is no strict
bound on the computation time.
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Computers vs brains

* Typical computations in the brain are online
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In online computations there arrive all the time new input components.

A real-time algorithm has produce for each new input component an output within a fixed time
interval D.

An anytime algorithm can be prompted at any time to provide its current best guess of a proper
output (which should integrate as many of the previously arrived input-pieces as possible).

4
Institute for Theoretical Computer Science EPSRC Symposium Workshop on Computational Neuroscience



ﬂ

Computers vs brains

* Obvious differences:
— Computations in brains result from learning
— Brains carry out online computations

— Neural circuits consist of heterogeneous
components

e Standard computational models are not
adequate for understanding brain
computations
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An alternative model

 Computations can be viewed as trajectories to
an attractor in a dynamical system

Basins of Attraction

Problems with this model:
* Not suitable for online computing
* Conditions implausible for biological

circuits

 Attractors cannot be reached in short
time

 Data rarely show convergence to an
attractor

Trajectories

Attractors
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Computing with trajectories

* |sinformation encoded in the transient dynamics?
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Principal neurons from locust antennal-lobe in response to a specific odor [Rabinovich et al, 2008] ,
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Our approach

* How can temporally stable information be
extracted from these transient trajectories?

* We consider the perspective of the “neural
user®, i.e., projection neurons that read out
information from the circuit

— e.g., linear discriminator
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Our approach

* Alinear readout neuron computes the weighted sum of low-
pass filtered presynaptic spike trains
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This high dimensional analog input is called the liquid state
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Computing with trajectories

* High-dimensionality of state space facilitates the
extraction of temporally stable information

Linear separability of 2 randomly drawn
trajectories of length 100 in d dimensions:
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a projection neuron with d presynaptic inputs can separate almost any
pair of trajectories that are each defined by connecting /ess than d
randomly drawn points. .
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Learning of readout neurons

* How can readout neurons be trained to
discriminate between trajectories?
— Supervised learning (e.g., linear classifier)

— Reinforcement learning (Reward-modulated STDP
[Izhikevich, 2007, Legenstein et al, 2007])

* | will focus on unsupervised learning

— Slow Feature Analysis (SFA) [Wiskott and
Sejnowski, 2002]
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Slow Feature Analysis

* Based on slowness as a principle for learning invariances

* Given a multi-dimensional time series x(t), it finds those
functions g; which generate the most slowly varying signals

yi(t) = gi(x(t))

* It minimizes () x® N
s.t. VAV VARV ‘j;,g\(j; .
i) =0 A e
<y,-2> = M ¥s

* g;areinstantaneous functions of the input x(t)
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Slow Feature Analysis

* Consider the special case
— where the input x is whitened: and
— the set of linear functions ¥ =8(X) =w'x
* Minimize
) = w (i

(x)=0 (xxT) = I

T>Wi

under the constraints

lyi) =w/ (x) =0
) =w/ (xx"yw; = w/
ivi) =w] xx"ywj =w/w; =0 vj<i

XX w; =1

XX

: . (xx ")
* SFA finds the normed eigenvector of

corresponding to the smallest eigenvalue .
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SFA for classification

* Linear SFA can be related to Fisher’s Linear Discriminant (FLD)

SFA: ZxTyw = MMxx)w “

FLD: SBW - ASWW

Sp=(m; —msy)(m; — 1112)T

Sw = Z Z (x —m,)(x —m,)T

c XeS,.

* Convert the input to the classification problem into a time series for SFA
e At each time select random point from a class chosen by a Markov model
p
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SFA for classification

* If the transition probabilities between classes are low, the

eigenvalues are the same T W = (xxT) WA

<xxT>t = Sw + SB 2SwW = SwWA +SpWA

2SWwWA™L =SyW +SpW

A
(xx7 )¢ ~ 28w SpW = Sy W [2A"! — E]

* If the class is slowly varying, SFA finds the same subspace as

F LD original input points SFA output
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Training readouts with SFA

e Our model of a cortical microcircuit:

Computer model (560 neurons) from
[Haeusler and Maass, 2007],

based on data from the Labs of
Alex Thomson, Henry Markram,

simulated with single compartment
HH-neurons, conductance based
synapses with short-term plasticity

with noise reflecting in-vivo-conditions
according to Destexhe et al.

We have applied long-term plasticity so far

only to projection neurons in this model.

Institute for Theoretical Computer Science
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Training readouts with SFA

* |[solated spoken digits task [Hopfield and Brody]
* Inputs preprocessed with cochlea model [Lyon, 1982]
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Training readouts with SFA

* Linear SFA applied to a long random sequence of circuit trajectories in
response to different versions of words “one” and “two” (of a single
speaker)

SFA output in response to 5 test trajectories of each class:
SFA test output -
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Slow features encode “pattern location” (Where-information)
and pattern identity (What-information) 18
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. TECHUSCHEUNVERSTATORAZ
Liquid Computing model

 The computational performance of a cortical
microcircuit should be judged on the basis how
well it supports the task of readout neurons

* A microcircuit could support the learning
capability of linear projection neurons by
providing:

— analog fading memory (to accumulate information
over time in the state)

— nonlinear projection into high-dimensional space
(kernel property)
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Liquid Computing model

* Liquid State Machine (LSM) generalizes finite state machines to continuous
input values u(s), continuous output values y(t), and continuous time t

complex dynamical

system
(viewed as a memoryless readout,

nonlinear filter) trained for a specific task

XD = (L"w)(0)
»() =11 @0)

u(s) for
all s< ¢

x(0)

= liquid state of the
Liquid State Machine

[Maass, Natschlager, Markram, 2002] 50
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Liquid Computing model
 What is the computational power of this model?

— If the dynamical system L is sufficiently large and
consists of sufficiently diverse components, the
readout function f can be trained to approximate any
Volterra series. [Maass, Markram, 2004]

— If one allows feedback from the readout into the

dynamical system, then this model becomes already
for rather simple dynamical systems L universal for
analog (and digital) computation on input streams

(in particular it can simulate any Turing machine).
[Maass, Joshi, Sontag, 2007]
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Liquid Computing model

* Experimentally testable predictions of the
liquid computing model for cortical
microcircuits:

— Temporal integration of information (fading
memory)

— General purpose nonlinear preprocessing (kernel
property)
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Data from visual cortex

Recordings by D. Nikolic from primary visual
cortex of anaesthesized cat

[Nikolic, Haeusler, Singer, Maass, 2007]
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Data from visual cortex

* Information about previously shown letters is maintained during
presentation of subsequent letters (temporal integration)
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Data from visual cortex

* Information from two subsequent letters is nonlinearly combined in the
circuit (kernel property)
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Data from auditory cortex

* Recordings with 4 electrodes from area Al in awake ferrets (unpublished
data from the lab of Shibab Shamma)

unpublished experimental data was
removed from this publicly available
version
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Data from auditory cortex

* Information is maintained during presentation of the next tone (temporal
integration)

unpublished experimental data was
removed from this publicly available
version
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Data from auditory cortex

* Almost all information contained in the spike trains can be extracted by
linear classifiers (kernel property)

unpublished experimental data was
removed from this publicly available
version
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Summary

* | have presented a model for online computing
with trajectories in cortical microcircuits

|t views cortical computations from the
perspective of generic preprocessing for learning

* Slow Feature Analysis (SFA) as an unsupervised
mechanism for training readouts

* Predictions of this model (temporal integration of
information, kernel property) have been tested
by experimental data
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Thank you for your attention
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