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First-principle molecular simulation is becoming an essential tool in
Chemistry, Materials Science, Molecular Biology and Nanosciences

Some objective facts :

— The most cited four articles in Physics are
1. Kohn & Sham, PR 1965 - Density Functional Theory (LDA)
2. Hohenberg & Kohn, PR 1964 - Density Functional Theory
3. Perdew & Zunger, PRB 1981 - Density Functional Theory (GGA)
4. Ceperley & Alder, PRL 1980 - Quantum Monte Carlo

— W. Kohn and J. Pople shared the 1998 Nobel Price in Chemistry

— First-principle molecular simulation utilizes more than 20% of the
resources available in scientific computing centers

— Only a handful of Mathematicians are working in this field
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First-principle (or ab initio) molecular simulation

In the absence of nuclear reactions, matter can be described as an
assembly of quantum nuclei and electrons interacting through the
Coulomb potential : No empirical paramaters !

1
Atomic units : h=1, m.=1,e=1, — =1
47’(’80

Electrons and nuclei

Electrons : mass m, = 1, charge —1,

Nucleus k : mass 1836 < my; < 400000, charge z;, € N*
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Born-Oppenheimer approximation
(classical nuclei, quantum electrons)

Atomic positions and momenta : ({R; ()}, {Pi(t)}) € R?* x R3M

’dR%t OHuwe Pui(t)

W< ) - 8Pk my

de a1qmuc o
[Py
Ho({RY P = L W(R,,--- R
({Rx}, {Pr}) ;27% (R M)

W(Ry4,---,Ry) effective potential (free of empirical parameters)
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Ab initio interatomic potentials and forces

W(Ri, -, Ry) = Efp, + VR,

Ve, W(Ry, - Ry) = /R3 p({)er}(r>ka (R, () dr + VR, ViR,

2] .

nno nuclear Coulomb repulsion ener

Ro= 2 R.-R, b e
1<k<I<M

M
{Iﬁk}(r) = - Z e _ZkRk‘ nuclear Coulomb potential
k=1

O O . .
E{Rk} and p {Rk}(r) electronic ground state energy and density
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From now on, the positions {R;} of the nuclei are considered as fixed

In order to simplify the notation, we set

0 0
LY = Eig,y

p'(r) = pir,y(r)

M

ne ne Zk
V() = Vi) == T — Ry
k=1
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E" is the lowest eigenvalue of the electronic Schrodinger equation
HyV' = EY9Y

where the electronic Hamiltonian is given by

ZA” ZZ&—RM >

1=1 k=1 1<i<y<N

and where the electronic ground state wavefunction U satisfies
—the Pauli principle

\V/Z<j, \IJO< ’rj’... ’I'Z.,...>:_\IJO<... S R ,I-j,...>

— the normalization condition

/3N |\Ifo(r1, o ,rN)\erl coodry =1
R
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p’(r) is the density associated with UV

The density associated with a function ¥(ry,--- , ry) satisfying
—the Pauli principle

\V/7/<], \IJ( ’rj’... ’I'Z’):—\Ij< 7]:-2.7... ’rj’...

— the normalization condition

/3N W(ry,--- ,rN)|2dr1---drN =1
R

is the function py(r) defined by

pu(r) =N U(r,ry, - - ,rN)IerQ--- dr v

R3(N-1)

It holds
pu(r) >0 and / py(r)dr =N
R?’
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Strengths of the model :

— It allows to simulate a wide variety of phenomena
— It does not contain any parameter specific to the system

— It is extremely accurate

Ionization energy of Helium (Korobov & Yelkhovsky PRL 2001)
— calculations : 5 945 262 288 MHz, 5 945 204 223 MHz with RC
—exp. : 5 945 204 238 MHz (1997), 5 945 204 356 MHz (1998)

Weaknesses of the model :

— The Schrodinger equation HyV = EV is a 3N-dimensional PDE
— Chemical accuracy is required
example : atomization energy of water
AEWHQO — EHQO o 2EH o EO
= —76.4389 — 2 x (—0.5) — (=75.0840) = —0.3549 a.u.
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Methods for electronic structure calculations

Hartree—Fock

—  Wavefunction methods { MPn, CI, CC
MCSCF

—  Density functional theory

Orbital free
(DFT) [

Kohn—-Sham

N—-body Variational MC
Schrodinger = Quantum Monte Carlo [
equation ‘ Diffusion MC

Reduced Density Matrices
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Ab initio simulations today
A few atoms (small organic molecules) : spectroscopic accuracy
A few dozens of first- or second-row atoms : chemical accuracy
Several hundreds / a few thousands of atoms : qualitative results

W.R.(?):11.8 million-atom (1.04x10'* grid points) DFT simulation
(A. Nakano et al., Int. J. High Perform. C. Appl. 2008)
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N
For a system of N non-interacting electrons : Hy = Z hy.
1=1
h=—3A+V™ on L*R?
€ T T €F

i
o1
Z
|
()]

ho; = €,¢;, Qiv; = 0ij, €1 < e2 < e3 < ... negative eigenvalues of h
R3

|
i=1 VN

det(¢i(r;),  p(r) = Z i) |?
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N N

For non-interacting electrons, E’ = Z e; and p'(r) = Z |ps(r)|* with
i=1 i=1

)

1
_§A¢z’ + V%0 =i

_/\

GiPj = 0;j
R3

L1 <ey<---<ey lowest N eigenvalues of h = —1A 4 V™

— Linear eigenvalue problem
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Galerkin approximation in atomic orbital basis sets (x,)i1<.<n,

6 12

3 9 15

dimension of the approximation space : N, 2xX N <N, <5x N

(H; =S50, H = [(xulhl)] € RN, 8 = [(xlx.)] € RN

N\

@;FSCI)J = 52']'

Le1<er<---<ey lowest NV eigenvalues of H® =S5
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Assume for simplicity that S = Iy, (orthonormal basis)

H = [(xu|h|xy)] symmetric N, x N, matrix with N, ~ 5N

(

N N | Ny

E’ = Z&“z' = (HD), Po(r) = Z Z D yxulr)| = Z Du,vxu(r)Xv(r)
1=1 1=1 | p=1 JIR%
N

D=> &df (@1, , D)
i=1

O 0; = 0y

| e1S e < Sen N H

— for a generic matrix H : algorithmic complexity in N?
— for a sparse matrix : algorithmic complexity in N?
— for some hamiltonian matrices : algorithmic complexity in N
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Fundamental remarks :

1. We do not need to compute the individual eigenvectors but only
the orthogonal projector D

2. For insulators and semiconductors, the matrix D is sparse

Formulation in D
Doy = Hl(er — H), H Heaviside function
Doy = arginf {Tr(HD), D€ Mg(N,), D*=D, Tr(D)=N}

Occupied Unoccupied (virtual)

3
energy levels ~F energy levels
- HH
L 1
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Some alternatives to brute force diagonalization

— Polynomial or rational fraction approximation of H(ep — H) :
FOE, FOP (Goedecker 1999)

— Exact penalization methods : DMM (Li, Numes, Vanderbilt 1993)

— Domain decomposition methods :
— Divide and Conquer (Yang, Lee 1992)
— Multilevel Domain Decomposition
(Barrault, Bencteux, E.C., Le Bris, Hager, 2007)
— Fragment method (Zhao, Meza, Wang 2008)

Linear scaling on grids : Garcia-Cervera, Lu, Xuan, E (2008)
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. . _ B T
Formulation in C': Dy = CopiClyys

inf {Tr(HCC"), C € M(N,,N), C'C=Iy} (1)

where C,; 1s solution to

Rotational invariance : if C, 1s solution, so is C,, U, for any ortho-
gonal matrix U € U(N)

Localized orbitals. For an insulator (¢y.; — ey > 0 not too small),
there exists a matrix Cl,. such that D,,, = C},.C,. . where the matrix
Cloc 1s made of almost locally supported vectors




1 - Linear scaling algorithms 20
For insulators, it suffices to solve
inf {Tr(HCC"), C € M(N,,N), C'C=Iy} (2)
for matrices C' of the form
m; n
Hi ]
N
0
Np= (p+l) n/2 H = H
p
0 -
N=m,+..+m, Np= (p+1) n/2

C; € M(n,m;), m; €N,
D

CZ-TTCZ'+1 = O, Zmz - N} (3)
1=1
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Comparison with LAPACK and DMM (sequential codes)

1e+08 1le+09 T T T
APACK —+— [APACK —+——
DMM ---x--- DMM —--%-—-
MDD ---%--- MDD ------
1e+07 |
1e+08 -
1e+06 2
% 1e+07
N4
=
100000 | =
£
o 1e+06 -
E
10000 | ]
>
o
- £ 100000 |
1000 F =
10000 |
100 |
10 1 1 1 1000 1 1 1
100 1000 10000 100000 1e+06 100 1000 10000 100000 1e+06
Np Ny

Parallel MDD code (G. Bencteux, EDF) :

5 million atom polyethylen chain , STO-3G (17.5 x 10° AO)
solution of the linear subproblem in 60 minutes on 1024 processors
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. Our approach (exact decomposition of the energy, localization of
the constraints) provides a general framework for constructing effi-
cient, variational, linear scaling, domain decomposition algorithms

. We have demonstrated the efficiency of this general strategy by
proposing a multilevel domain decomposition algorithm (MDD)
performing very well on a benchmark of linear molecules

. The convergence properties of the MDD algorithm have been es-
tablished in a simplified setting (G. Bencteux, E.C., W.W. Hager
and C. Le Bris, submitted)

. Relaxing the orthonormality constraints on the localized orbitals
would further increase the performance of the MDD algorithm

. The implementation of a 3D version of the MDD algorithm is a
work in progress (G. Bencteux, EDF and Cermics, ANR Parmat)
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Constrained optimization formulation of the non-interacting model

For non-interacting electrons, the ground state energy and density
can be obtained by solving

inf {ENI(QD), ® = (¢1,--,0n) € (H' (R, . Gipj = 5@7}
(@) = Z 6115, Z s [Lvers [ pr
Ve (r Z = Rk| pa(r) = Zzl i(r)|?
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The case of interacting electrons

In the Kohn-Sham model, the ground state energy and density are
obtained by solving

ni { B, 0= o0 € R [ a0, =5

N
1 pa(r
KS _ - _2 ne
E (@)_;2[@3\%4 /pV /Rg/Rg ‘r_r| drdr+EXC[pq>]
N
ne — . 2
v Z = UL

E.. : exchange—correlatlon functional

Hohenberg-Kohn theorem : existence of an exact XC functional

Prototypical approximate XC functional : EXY[p| = —Cx / p*3(r) dr
R3
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Kohn-Sham equations (’insulating’ case)

70 - Z ’¢z><¢2| — 1(—00,5F]<H,00)’ ’Oo<r) B 70(1‘7 I‘) D Z ‘¢Z(r>|2

I

Hp0¢z‘ = &,
i9; = 0ij
w0 I
g1 <&y <---<ey lowest N eigenvalues of H +
N=5
1 ne 4 o1
Ho= S8 eV VS =Vl Sy

— Nonlinear eigenvalue problem
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Mathematical and numerical analysis of the models arising in DFT

1. Proof of existence of a solution for neutral and positively charged
systems

(a) for LDA :  EIPA(p) = [sex(p(r))dr (Le Bris 1993)

(b) for GGA :  ESp) = [esex(p(r), Vp(r))dr but only for two
electron systems (Anantharaman, E.C., submitted)

2. Construction and proof of convergence of some simple SCF al-
gorithms (E.C., Le Bris, 2000-2003). A priori error estimates for
Kohn-Sham LDA (E.C., Chakir, Maday, ongoing work)

3. Thermodynamical limits with F,.(p) = 0 : perfect crystal (Catto,
Le Bris, Lions 1998), crystals with local defects (E.C., Deleurence,
Lewin, 2008)

4. A lot of work remains to be done!
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Spectrum of the N-body Hamiltonian (operating on H, = /\LQ(R?’))
i=1

1
ZA” sz—fm > e - Y

1=1 k=1 1<i<y<N
M
If 7 = Z 2. > N (neutral or positively charged system),
k=1

— Oess(HN) = [Xn, +00) with Xy <0 if N >2 and ¥ =0;

— Hy has an infinite sequence of finite multiplicity eigenvalues
E' = X\ (Hy) < M(Hy) < A3(Hy) < -+ converging to Yy

Ground state Excited states Eigenvalues embedded in
i / l \ / the continuous spectrum

2N Essential spectrum
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Notations :
— Electronic ground state (supposed to be non-degenerate)
HyU' = E%)Y E = \(Hy)
—Let v = X\(Hy) — M(Hy) >0

— Let ¥U; be a trial wavefunction, relatively close to VW, for which the
local fields

b(x) = and  FEi(r) = (ngj(;))(x) = —%A\ié? +V(z)

are not too difficult to compute (finite sum of Slater determinants)
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Let us consider the parabolic (imaginary time Schrédinger) equation

6 1
o~ Mo =gRe e (4

o0, 2) = V()

and
~ (HNY7, (1)) 2
B = o) R
One has
0 < B(t)-E" < ((HN\(IJ\I]JB,\P\IIJ%LQ_E) exp(—t)

Diffusion Monte Carlo : simulation of (4)-(5) with probabilistic me-
thods using variance reduction techniques (importance sampling).
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Set fi(t,z) = V(z)o(t,z). A simple calculation shows that

B(f) = NV 00)se / (HyVr)() o(t, @) d:c: /R Ey(x) it @) da

(U, &(t)) 2 Ui (2)o(t, x) da filt,x) dx

R3 R3

and that f; solves

(of 1 |
E—§Af—dlv (bf) — ELf

\ f(O,CC) — \IJ%(;C%

(HyUp)(z)  1AU(2)

b(x) = and Er(zr) = T

+ V(x)
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Interpretation of the equation on f; in terms of stochastic process

O Af—div (o)~

ot
| | |
diffusion drift birth-death

One can then try to approximate E(t) by

o E (ELQQ) exp (— /0 B, (XS)> ds)

E(exp (_ /OtEL X, ds))

where (X;);>o is the stochastic process defined by

dX; = b(X,) dt + dW,
Xo ~ U2,
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With B. Jourdain et T. Leliévre, we have proved the following results
(M3AS 2006) : under some technical assumptions,

\
1. Because of the singularity of the drift b(x) = v ](a?)7 the trajecto-

qf](il?)

ries defined by

dX} =0(X})) dt +dW,
Xj=ux

cannot cross the nodal surfaces ¥, (0).

The random variable X}’ has a density p(¢, z,y) and the function

(xy) —  Vi(2)p(t,z,y)

1S symmetric.
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2. It holds

| | Bula) filt, ) da

| Buo) o) do
E(t) = EPMO(t) = 2

filt,x)dx fo(t,x) dx
R3 R3

where f; and f, are two different weak solutions of

(of 1 ,
: E—§Af—dw (0f) — ELf

\ f((),il?) — \D%@j)a
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36

More precisely

fl(ta aj) - \Ijl(:U) ¢(t7 33)

f2<t7 CC) — \If[(CC) qb?(tv ZE)

(0¢ 1
T

_/\\

\ gb(O,QIZ) - qf](iC),

( Opy 1

o §A¢2 — Vo

92(0,2) = V()

| P2(t,2) =0 on U0
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3. The function EPMC(t) converges when t goes to +oo to

N
inf {<\If,Hpr>, ve NH R, [V|pz=1V=0on @[1(0)} .
1=1

which is an upper bound of the exact ground state energy

N
E° — inf{(\IJ,HN\IJ>, ve NH' R, |[V]p= 1}.
1=1
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This mathematical analysis points out one of the main limitations of
the Diffusion Monte Carlo method, well known by its users : using an
importance function V; introduces a systematic error, except in the
peculiar case when the nodal surfaces of U” and ¥; exactly coincide

Mathematical and numerical challenges :

1. Analysis and improvement of the existing numerical schemes
(stochastic particle methods)

2. Computation of interatomic forces

3. How to go beyond the fixed node approximation ?
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The (Fixed Node) Diffusion Monte Carlo method remains to date the
reference method for accurate Quantum Monte Carlo simulations on
large systems

So — S




