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Motivation for problem: flow in heterogeneous porous
media
Motivation for methods: recent theory of “multiscale
coarsening” in domain decomposition
Model Problem: Elliptic interface problems (jumping
coefficients)
MSFE: Solve local homogeneous PDEs for basis functions
New result: methods with optimal convergence
independent of the contrast even with “naive meshing”.
Method involves new boundary conditions on element
edges for basis functions.
Theory involves new regularity results for elliptic interface
problems
Method is a generalisation of the P1-continuous Galerkin
method. (Theory presented in 2D).



Flow in porous medium

Find u ∈ H1
0 (Ω):∫

Ω
A(x)∇u(x).∇v(x)dx =

∫
Ω
F (x)v(x)dx , v ∈ H1

0 (Ω) ,

where A exhibits a high degree of heterogeneity.
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Gaussian Random Field

Lengthscale λ, variance σ2

In this picture h = 2−8 , λ = 4h, σ2 = 8.

max
x,y∈Ω

α(x)
α(y)

≈ 1010 .



Multiscale methods

Special basis functions to capture local features,
feed into variational formulation.

“Subgrid modelling”, e.g. LES in turbulence models,
modelling convective storms in NWF, etc..

Hughes 1995... Variational Multiscale Method, RFB’s

Hou and Wu, JCP 1997:

−∇.a(x/ε)∇u = f with a periodic, smooth

Many related papers, Abdulle and E, 03, E & Engquist 04,
Efendiev, Hou and Wu, 00, Arbogast & Boyd 06...
Proofs of accuracy by homgenization arguments

A different use of the same idea: preconditioning



A diversion: Preconditioning and Robustness

IGG, Lechner, Scheichl (Numer Math 2007):

Suppose the discretisation resolves the heterogeneity.
DD Preconditioner P : local solves plus global coarse solve on
span {Φp}, then (under some conditions)

κ(P−1A) . max
p
H2−d
p |Φp|H1(Ω),α .

Robustness indicator

X_p

K

e

Motivates local problems :
for coarse basis
Φp ∈ Sh(K):∫
K α(x)∇Φp.∇vh = 0

for all vh ∈ Sh0 (K).



Gaussian Random Field
h = 2−8 , λ = 4h, σ2 = 8.

Average CG Iterates and (CPU times) over 100 realisations :

σ2 Linear MS, Oscil.
0 17 (1.66) 17 (1.71)
4 47 (3.57) 30 (2.55)
8 88 (6.19) 41 (3.23)
16 222 (14.8) 64 (4.74)
20 324 (21.2) 77 (5.57)



“Aggregation coarsening” is also energy minimising:

Scheichl, Vainikko, Computing, 2006

CG–iterations h = 2−8 and λ = 4h, clipped random fields.

maxτ,τ ′
ατ
ατ′

AGGREGATION DD CLASSICAL DD

1.5 ∗ 101 24 32
2.2 ∗ 102 27 89
3.3 ∗ 103 29 296
4.9 ∗ 104 26 498
7.4 ∗ 105 26 724



High contrast diffusion

Robust solvers and a posteriori error estimates

DD and multigrid: IGG and Hagger 99, Vuik et. al 00, Xu
and Zhu, 07, Aksoylu, IGG, Klie, Scheichl, 08,
Pechstein and Scheichl 08, Van lent, Scheichl & IGG,
08
Robustness of a posteriori error estimators: Bernardi
and Verfürth 00, Ainsworth 05, Vohralik 08.

A priori accuracy of underlying methods ??

[Plum & Wieners, 03]

Remark: The theory for MS DD coarsening does not require
any homogenisation structure.

Question: Can the same tools be used to analyse accuracy
for MSFE approximation?



Model Problem:

Find u ∈ H1
0 (Ω):∫

Ω
A(x)∇u(x).∇v(x)dx =

∫
Ω
F (x)v(x)dx , v ∈ H1

0 (Ω) ,

“High contrast” piecewise constant coefficient A:

Inclusions: Ω1, . . . ,Ωm Ω0 = Ω\ ∪mi=1 Ωi. Interface Γ.



Problem Scaling

Scale by Amin = minxA(x) : Find u ∈ H1
0 (Ω) such that

a(u, v) :=
∫

Ω
α(x)∇u(x).∇v(x)dx = (f, v)L2(Ω) , v ∈ H1

0 (Ω) ,

with
α(x) =

1
Amin

A(x) , f(x) =
1
Amin

F (x) .

Then α(x) ≥ 1 and the difficulty is characterised by the
contrast, a large parameter

α̂ :=
maxxA(x)
minxA(x)

≥ 1 .



Asymptotic cases

Case I: α̂ := min
i=1,...,m

αi →∞ , α0 = 1

Highly permeable inclusions in hardly permeable matrix

Case II: α̂ := α0 →∞ , maxi=1,...,m αi ≤ Const.
Hardly permeable inclusions in highly permeable matrix.

Regularity of solution:

Across an interface Γ separating Ω− and Ω+:

α−
∂u−
∂n

= α+
∂u+

∂n

Hence u ∈ H3/2−ε(Ω). For smooth problems u ∈ H2(Ω)



Naive meshing



Naive meshing

Accuracy of standard FEM suboptimal. Many methods: Barrett
and Elliott, 87 (UFEM), Composite FEM, XFEM, IIM, IFEM.....

Dependence on α̂?



“Multiscale” Finite Element Methods

Special finite element space: VMS = span{ΦMS
p }

Nodal basis: ΦMS
p (xq) = δp,q

ΦMS
p |τ is linear, τ ∩ Γ = ∅,

ΦMS
p |τ solves (*), τ ∩ Γ 6= ∅,

e.g. or

x
3

x
1

x
2

1

e
2

e

Local Homogeneous Problems for the basis functions:∫
τ
α∇ΦMS

p .∇v = 0 , for all v ∈ H1
0 (τ) (*)

Need Boundary conditions and subgrid approximation .

MSFEM: seek uMS
h ∈ VMS:

a(uMS
h , vMS

h ) = (f, vMS
h )L2(Ω) , vMS

h ∈ VMS .



The main result

Theorem Assume

Ω is a convex polygon or smooth.
the interface Γ is sufficiently smooth.
f ∈ H1/2(Ω).
mesh sequence is quasiuniform

Then there exists a choice of boundary condition for each
ΦMS
p such that

(i) |u− uMS
h |H1(Ω),α . h

[
h|f |2

H1/2(Ω)
+ ‖f‖2L2(Ω)

]1/2
,

(ii) ‖u− uMS
h ‖L2(Ω) . h2

[
h|f |2

H1/2(Ω)
+ ‖f‖2L2(Ω)

]1/2
.

Hidden constants are independent of h and α̂.

There are several technical assumptions! .



Analysis of MSFE: The Main Idea

Optimality: MS interpolant IMS
h

|u− uMS
h |H1(Ω),α ≤ |EMS

h |H1(Ω),α , EMS
h := u− IMS

h u .

By definition of basis functions, for any element τ ,

aτ (EMS
h , v) = aτ (u, v) = (f, v)L2(τ) , for all v ∈ H1

0 (τ) .

Simple energy argument:

|EMS
h |H1(τ),α . |ẼMS

h |H1(τ),α + hτ‖f‖L2(τ) ,

for any ẼMS
h with ẼMS

h = EMS
h on ∂τ . Then

|EMS
h |2H1(Ω),α . h2

[
h−2

∑
τ

|ẼMS
h |2H1(τ),α + ‖f‖2L2(Ω)

]
.

Seek BC on each ∂τ s.t. there exists ẼMS
h with

h−2
∑
τ

|ẼMS
h |2H1(τ),α . h|f |2

H1/2(Ω)
+ ‖f‖2L2(Ω) .



A simple application: Inclusion inside element

Example: α̂ in interior
1 in exterior (Ω0)

Linear BC’s and define ẼMS
h =

{
EMS
h on ∂τ

0 on inclusion
.

Inverse Trace (Extension) theorem :

|ẼMS
h |2H1(τ),α . h−1‖EMS

h ‖2L2(∂τ) + h |EMS
h |2H1(∂τ)

. h3 ‖D2
t u‖2L2(∂τ) tangential derivative

Forward Trace theorem :

|ẼMS
h |2H1(τ),α . h3

{
|u|2

H5/2(τ∩Ω0)
+ h−1|u|2H2(τ∩Ω0)

}
h−2

∑
τ

|ẼMS
h |2H1(τ),α . h|u|2

H5/2(Ω0)
+ |u|2H2(Ω0)

“ α̂-Explicit” Regularity . h |f |2
H1/2(Ω)

+ ‖f‖2L2(Ω)



A simple application: Inclusion inside element

Example: α̂ in exterior (Ω0)
1 in interior

Linear BC’s and define ẼMS
h =

{
EMS
h on ∂τ

0 on inclusion
.

Inverse Trace (Extension) theorem :

|ẼMS
h |2H1(τ),α . h−1α̂‖EMS

h ‖2L2(∂τ) + h α̂|EMS
h |2H1(∂τ)

. h3 α̂ ‖D2
t u‖2L2(∂τ) tangential derivative

Forward Trace theorem :

|ẼMS
h |2H1(τ),α . h3

{
α̂ |u|2

H5/2(τ∩Ω0)
+ h−1α̂|u|2H2(τ∩Ω0)

}
h−2

∑
τ

|ẼMS
h |2H1(τ),α . h α̂ |u|2

H5/2(Ω0)
+ α̂ |u|2H2(Ω0)

“ α̂-Explicit” Regularity . h α̂−1 |f |2
H1/2(Ω)

+ α̂−1 ‖f‖2L2(Ω)

Bad parameter dist{∂τ,Γ} !



Much more complicated: “cutting through”

Generic case:

x
3 x

1

2

e
2

e
1

x

y

y

2

1

Look for piecewise linear boundary condition for basis
functions.

Taylor expansion of true solution u on edges ei, i = 1, 2

Continuity of u across interface

r−i (Deiu
−)(yi) + r+

i (Deiu
+)(yi) = u(x1)− u(x3) +O(h2) .

Two equations in four unknowns



Extended system

True solution u satisfies

Mbα,θ1,θ2,β d(u) = c(u) + “small”

where c(u) depends only on nodal values of u,

d(u) : = [(De1u
−)(y1), (De1u

+)(y1), (De2u
−)(y2), (De2u

+)(y2), . . .
(Dn1u

−)(y1), (Dt1u
−)(y1)]T ,

and

Mbα,θ1,θ2,β :=

 −I 0 Abα,θ1
0 −I Abα,θ2Rθ2−θ1−β
R1 R2 0

 ,

R1 =
[
r−1 r+

1

0 0

]
and R2 =

[
0 0
r−2 r+

2

]
.

Neglecting “small”: Get BC for each basis function.



interface cutting through

If Γ orthogonal to edges, system reduces to two
independent conditions cf. Hou and Wu 1997.
The recipe leads to non-conforming elements, but
averaging returns conformity without loss of convergence.
In conforming case supp(ΦMS

p ) can grow with one extra
layer of triangles
Convergence theorem as before:

(i) |u− uMS
h |H1(Ω),α . h

[
h|f |2

H1/2(Ω)
+ ‖f‖2L2(Ω)

]1/2
,

(ii) ‖u− uMS
h ‖L2(Ω) . h2

[
h|f |2

H1/2(Ω)
+ ‖f‖2L2(Ω)

]1/2
.

Subject to technical assumptions...



Regularity theory

Particular case, Ω0 exterior, Ω1 interior:

−∇.α∇u = f on Ω
u = 0 on ∂Ω

Theorem

|u|H2+s(Ω0) .
1
α̂
‖f‖Hs(Ω) s ≥ 0 (1)

|u|H2+s(Ω1) . ‖f‖Hs(Ω) s ≥ 0 (2)

Thanks: N. Babych, I.V. Kamotski and V.P. Smyshlyaev

Idea of proof: Introduce û solution of

−∇.αi∇û = fi , on Ωi, i = 0, 1 , û = 0 on ∂Ω,Γ

decoupled problems, û satisfies estimates!



Consider remainder: ũ := u− û:

−∆ũi = 0 on Ω1 and Ω0 and ũ = 0 on ∂Ω

Jump condition on interface Γ = ∂Ω1:

α̂
∂ũ0

∂n
− ∂ũ1

∂n
= F :=

∂û1

∂n
− α̂∂û0

∂n
(†)

Let ṽ := ũ|Γ and introduce Dirichlet to Neumann maps Ni
(†) ⇐⇒ (α̂N0 −N1)ṽ = F

⇐⇒ (I − α̂−1N−1
0 N1)ṽ = α̂−1N−1

0 F

Contraction mapping (α̂−1 → 0):

‖ṽ‖Hs+3/2(Γ) . α̂−1‖N−1
0 F‖Hs+3/2(Γ) . α̂−1‖F‖Hs+1/2(Γ)

. α̂−1‖û1‖Hs+2(Ω1) + ‖û0‖Hs+2(Ω0) . α̂−1‖f‖Hs(Ω)

(In this case ‖ũ‖H2+s(Ω0) = O(α̂−1) )



Slightly harder case:

Dirichlet to Neumann maps not invertible on “floating” domains.
Seminorm decays but not norm as α̂→∞.



Numerical Results

−∇.α∇u = f on Ω := [0, 1]2,
u = g on ∂Ω

Interface is a circle of radius r0,

α(x) =
{
α1, r < r0

α0, r ≥ r0

Exact solution:

u(x) = u(r, θ) =

{
r3

α1
r < r0

r3

α0
+
(

1
α1
− 1

α0

)
r3

0 r ≥ r0







α1 = 1, α0 = α̂→∞

(Impermeable inclusion in high permeable matrix)

H1 seminorm errors:

h α̂ = 10 α̂ = 103 α̂ = 105

1/8 2.55e-1 2.51e-1 2.54e-1
1/16 1.33e-1 1.24e-1 1.24e-1
1/32 6.22e-2 6.15-2 6.14e-2
1/64 3.26e-2 3.15e-2 3.07e-2
rate 1.0 1.0 1.0

L2 errors:

h α̂ = 10 α̂ = 103 α̂ = 105

1/8 2.27e-2 2.27e-2 2.29e-2
1/16 5.75e-3 5.76e-3 5.78e-3
1/32 1.45e-3 1.45e-3 1.45e-3
1/64 3.73e-4 3.67e-4 3.63e-4
rate 1.98 1.98 1.99



α0 = 1, α1 = α̂→∞
(Highly permeable inclusion in impermeable matrix)

H1 seminorm errors:

h α̂ = 10 α̂ = 103 α̂ = 105

1/8 1.09e-1 5.81e-2 5.90e-2
1/16 4.57e-2 2.75e-2 2.77e-2
1/32 1.43e-2 1.30e-2 1.27e-2
1/64 1.01e-2 6.52e-3 6.10e-3
rate 1.11 1.00 1.09

L2 errors:

h α̂ = 10 α̂ = 103 α̂ = 105

1/8 4.83e-3 3.89-3 3.89e-3
1/16 1.32e-3 1.10e-3 1.10e-3
1/32 3.32e-4 2.91e-4 2.91e-4
1/64 8.73e-5 7.56e-5 7.53e-5
rate 1.92 1.88 1.88



Solution of subgrid problems

Subgrid problems solved by Immersed finite element method
(Li, Lin, Wu (2003)).

L2 errors, α̂ = 104, M = # of subgrid elements

h M = 16 M = 64 M= 256 M= 1024
1/4 9.8226e-2 9.1744e-2 8.9859e-2 8.9489e-2
1/8 3.1606e-2 2.2946e-2 2.2903e-2 2.2891e-2

1/16 5.9537e-3 5.8252e-3 5.7816e-3 5.7824e-3
1/32 1.4916e-3 1.4511e-3 1.4512e-3 1.4517e-3
1/64 3.6856e-4 3.6374e-4 3.6359e-4 3.6369e-4



Extensions under construction

Distance between inclusions and distance of inclusions from
the boundary are “bad parameters” in general.

With I. Kamotski and V.P. Smyshlyaev (Bath): inclusions
separated by O(ε) and diameter O(ε). Working conjecture:
same regularity estimate independent of ε.



Conclusion: Summary of results

Elliptic interface problems with complicated interfaces have
irregular solutions depending on contrast and interface
Application of standard FE technoology will require
complicated mesh adaptivity to resolve difficulties
MSFE can resolve these difficulties on “naive” meshes.
The extra cost is the solution of subgrid problems on
some elements
Analysis helps explain success of MSFE outside the
homogenization framework.
Regularity theory also helps with analysis of standard
methods.
Possibility to use H-matrix techniques to approximate
optimal basis functions without artificial boundary
conditions. Work in Progress with W. Hackbusch and
S.A. Sauter


