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Vectorial Mumford-Shah Functional
(sphere valued functions)

For Ω⊆ Rd , d ≥ 2, find

(v,Γ) := argmin
K⊂Ω closed,

u∈H1(Ω\K ,S2)

E(u,K ),

E(u,K ) :=
α

2

∫
Ω\K
|∇u|2dx +

γ

2

∫
Ω
|u−g|2dx + βH d−1(K ) ,

g ∈ L∞(Ω,S2): original image, K : edge set (closed).

3 Terms: smoothing, fidelity, edge length.
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Weak Formulation
(sphere valued functions)

For g ∈ L∞(Ω;S2), u ∈ SBV (Ω,S2), minimise

E(u) :=
α

2

∫
Ω
|∇u|2dx +

γ

2

∫
Ω
|u−g|2dx + βH d−1(Su∩Ω) .

Thm: (Carriero-Leaci, 91): ∃ solution u, and
(u,Su) solves original problem.
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Vectorial Ambrosio-Tortorelli Functional
(sphere valued functions)

For u,g ∈ H1(Ω;S2), s ∈ H1(Ω, [0,1]), minimise

ATε (u,s) :=
α

2

∫
Ω

(s2 + kε )|∇u|2dx +
γ

2

∫
Ω
|u−g|2dx

+β

∫
Ω

ε|∇s|2 +
1
4ε

(1−s)2dx.

s : “phase function”, i.e. K ≈ {s ≈ 0}, Ω\K ≈ {s ≈ 1}.

Thm (Ambrosio-Tortorelli, 90/92):
0 < kε = o(ε) =⇒ ATε (u,s)

Γ→ E(u,K ).
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Prototype Problem

I Non-convex Functional (Mumford-Shah).

I Non-convex constraint (u ∈ S2).
I With AT: Strong nonlinear coupling between u and s.
I Extending work on harmonic maps to S2

(convex functional, non-convex constraint):
Alouges (97), Bartels (05), Bartels-Prohl (07).
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Colour Image Segmentation

I Chromaticity & Brightness (CB) Colour Model:

RGB image g : Ω→ [0,255]3 ⊂ N3:
I B := |g|, and
I C := g/|g|= g/B : Ω→ S2.

I Sources: Mumford-Shah (89)
Chan-Kang-Shen (01): TV, CB
Tang-Sapiro-Caselles (01): Harmonic flow, CB
Osher-Vese (04): p-harmonic flow, CB
Bartels-Prohl (06): PM, CB
Bellettini-Coscia (94), Bourdin (99): MS, grayscale
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Nematic Liquid Crystals

I Simplified Ericksen’s energy∫
Ω

1
2

s2|∇n|2 + |∇s|2 + W0(s)dx,

I s ∈ [−1/2,1]: degree of orientation (often s ≥ 0),
n ∈ S2: director.

I Sources: Lin (89), Lin-Luskin (89)
Virga (94), Alouges (97), Bartels-Prohl (07)
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Algorithm 1: Splitting & Projection

FE Discr. −→
h→0

Alouges-Splitting ?−→
n→∞

AT on S2 Γ−→
ε→0

MS on S2

Easy to solve numerically.
Exact sphere constraint.
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Penalisation without Splitting

Algorithm 1: Splitting & Projection

I Splitting: In every iteration, minimise first for u, then for s.

I 1st step, based on Alouges (97):
Look for update w s.t. ATε (u−w,s)≤ ATε (u,s).

I Only take w s.t. w⊥ u a.e. =⇒
I projecting u−w never increases energy
I existence (u ·w = 0 is linear constraint)

I 2nd step: ∃ by convexity & coercivity, 0≤ s ≤ 1 by
max-principle (or testing with cutoff functions).
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Splitting & Projection
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Penalisation without Splitting

Properties

I Energy decreasing.

I (un,sn) ⇀ (u,s) in H1 (up to subseq).
I un→ u in L2, and wn→ 0 in H1.
I Limit fulfils constraints.
I Problem: Cannot identify limit

lim
n→∞

(
|∇un+1|2sn,ϕ

)
,

so cannot show (u,s) stationary point of ATε (·, ·).
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Discretisation

I Polygonal Lipschitz domain, uniform triangulation,
continuous, piecewise affine FE.

I Only linear eqns in every iteration.
I Energy decreasing, if all int. angles ≤ π/2 (AC).
I Sphere constraint exactly fulfilled on nodal points.
I Limit fulfils constraints.
I Problem: As before.
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Algorithm 2: Splitting & Penalisation

FE Discr. −→
h→0

Splitting −→
n→∞

Reg. GL-AT Γ−→
ε→0

MS on S2

Harder to solve numerically.
Approx. sphere constraint.
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Algorithm 2: Splitting & Penalisation

I Splitting again.

I No projection, but Ginzburg-Landau penalisation: add

1
δε

∫
Ω

(
|u|2−1

)2
dx.

I Identifying limits needs higher regularity of s, so add

ηε

p

∫
Ω
|4s|pdx.
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Penalisation without Splitting

Properties

I Γ-convergence for proper scalings of δε and ηε

(δε slower than ε, ηε much faster).

I Solutions exist in each step.
I Energy decreasing.
I (un,sn) ⇀ (u,s) in H2×W 2,p (up to subseq).
I For p > d , un→ u in H1, and sn→ s in L∞,

so identifying limits works.
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Discretisation/Disadvantages

I sn now needs hermite elements (but...).

I Nonlinear eqns need to be solved.
I Sphere constraint only approximated.
I Two additional parameters.
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Algorithm 3: Penalisation without Splitting

FE Discr. Γ−→
h→0

MS on S2

Hard to solve numerically.
Approx. sphere constraint.



Introduction
Algorithms
Examples

Splitting & Projection
Splitting & Penalisation
Penalisation without Splitting

Algorithm 3: Penalisation without Splitting

FE Discr. Γ−→
h→0

MS on S2

Hard to solve numerically.
Approx. sphere constraint.



Introduction
Algorithms
Examples

Splitting & Projection
Splitting & Penalisation
Penalisation without Splitting

Penalisation without Splitting

I No splitting.

I No projection, but Ginzburg-Landau penalisation.
I Direct Γ-convergence of 1st -order FE-functional (as in

Bellettini-Coscia, 94).
I Advantage: No additional regularisation term needed.
I Disadvantage: No convergent algorithm known.
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Projection

Figure: U0 ≡ g (left) and U10 (right).
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Projection

Figure: Section at x = 0.5 through U0 ≡ g and U10.
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Figure: Section at x = 0.5 through U0 ≡ g and U10.
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Projection vs. Penalisation

Figure: S10, projection (left) and penalisation (right).



Introduction
Algorithms
Examples

Comparison: Projection vs. Penalisation
Comparison: CB vs. RGB

Projection vs. Penalisation

Figure: S10, projection (left) and penalisation (right).
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Projection vs. Penalisation

Figure: Section at y = 0.375 through S10, projection (left) and
penalisation (right).
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Figure: Section at y = 0.375 through S10, projection (left) and
penalisation (right).
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Penalisation
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Figure: Min and max of ‖U‖.
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CB Model

ATε (u,v ,s) :=
α

2

∫
Ω

(s2 + kε )|∇u|2dx +
γ

2

∫
Ω
|u−g|2dx

+
α1

2

∫
Ω

(s2 + kε )|∇v |2dx +
γ1

2

∫
Ω
|v −b|2dx

+β

∫
Ω

ε|∇s|2 +
1
4ε

(1−s)2dx,

I g,u: Original and iterate chromaticity,
I b,v : Original and iterate brightness,
I s: Joint edge-indicator.
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CB

Figure: U0 ≡G (left) and U10 (right).
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Figure: U0 ≡G (left) and U10 (right).
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CB vs. RGB

Figure: Crop of U10, CB (left) and RGB (right).
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Figure: Crop of U10, CB (left) and RGB (right).
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CB vs. RGB

Figure: S10, CB (left) and RGB (right).
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CB vs. RGB

Figure: S10, CB (left) and RGB (right).
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Thank You
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