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Motivation

Motivation: Boundary observation and control of the wave
equation

The Cauchy problem for the 1− d wave equation:{
utt(x, t)− uxx(x, t) = 0, x ∈ R, t > 0
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ R.

(1)

(1) is well posed in the energy space Ḣ1 × L2(R).
The energy is constant in time:

E(u0, u1) =
1
2

∫
R

(
|ux(x, t)|2 + |ut(x, t)|2

)
dx. (2)
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Motivation

The energy concentrated in R \ (−1, 1),

ER\(−1,1)(u
0, u1, t) =

1
2

∫
|x|>1

(
|ux(x, t)|2 + |ut(x, t)|2

)
dx (3)

suffices to “observe” the total energy if T > 2 (characteristic time).
More precisely, for all T > 2 there exists C(T ) > 0 such that

E(u0, u1) 6 C(T )

T∫
0

ER\(−1,1)(u
0, u1, t) dt, (4)

for all initial data (u0, u1) of finite energy.
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Motivation

Aplications: boundary control, stabilization, inverse problems...

Figure: The energy of solutions propagates along characteristics that enter the
observation zone in a time at most T = 2
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Motivation

Objective

Analyze this property under numerical discretizations. Actually, it is by
now well known that, for classical finite-difference and finite-element
discretizations, the observation constant diverges because of the
presence of high frequency spurious numerical solutions for which the
group velocity vanishes.
In this work:

We perform the Fourier analysis of the Discontinuous Galerkin
Methods for the wave equation.

We show that the same negative results have to be expected.

We perform a gaussian beam construction showing the existence of
exponentially concentrated waves, yielding, effectively, negative
results.

Our analysis indicates how filtering techniques should be designed
to avoid these unstabilities.

See [ E. Z., SIAM Review, 2005] for basic results in this field.
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Finite-differences

Finite-difference space semi-discretization:{
u′′j (t)− uj+1(t)−2uj(t)+uj−1(t)

h2 = 0, j ∈ Z, t > 0
uj(0) = u0

j , u
′
j(0) = u1

j , j ∈ Z.
(5)

For (u0
j , u

1
j ) ∈ ~̇1 × `2, the discrete energy

Eh(u0, u1) =
h

2

∑
j∈Z

(
|D1

huj(t)|2 + |u′j(t)|2
)
, (6)

is constant in time.
But

inf
Eh(u0,u1)=1

T∫
0

Eh,R\(−1,1)(u
0, u1, t) dt→ 0, when h→ 0.
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Finite-differences

Figure: Dispertion relation (left) and group velocity (right).
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Finite-differences

Figure: Localized waves travelling at velocity = 1 for the continuous wave
equation (left) and wave packet travelling at very low group velocity for the FD
scheme (right).
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DG methods

Extensive literature: Reed, W.H. & Hill, 1973; Arnold, D.N., 1979;
Cockburn B., Shu C-W, 90’s ; Arnold D.N., Brezzi F., Cockburn B.,
Marini D. 2000 - 2002,...
We consider the simplest version for the 1D wave equation in a uniform
grid of size h > 0: xi = hi.
Deformations are now piecewise linear but not necessarily continuous on
the mesh points:

Figure: Basis funtions: φi (left) and φ̃i (right)
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DG methods

Figure: Decomposition of a DG defomration into its continuous and jump
components.
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DG methods

Variational formulation

Relevant notation:

Average: {f}(xi) = f(xi+)+f(xi−)
2

Jump: [f ](xi) = f(xi−)− f(xi+)
Vh = {v ∈ L2(R)

∣∣v|(xj ,xj+1) ∈ P1, ‖v‖h <∞},

‖v‖2h =
∑
j∈Z

xj+1∫
xj

|vx|2 dx+ 1
h

∑
j∈Z

[v]2(xj)

The bilinear form and the DG Cauchy problem:

as
h(u, v) =

∑
j∈Z

xj+1∫
xj

uxvx dx−
∑
j∈Z

([u](xj){vx}(xj) + [v](xj){ux}(xj))

+ s
h

∑
j∈Z

[u](xj)[v](xj), s > 0 is a penalty parameter.


us

h(x, t) ∈ Vh, t > 0
d2

dt2

∫
R

us
h(x, t)v(x) dx+ as

h(us
h(·, t), v) = 0,∀v ∈ Vh,

us
h(x, 0) = u0

h(x), us
h,t(x, 0) = u1

h(x) ∈ Vh.

(7)
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DG methods

DG as a system of ODE’s

Decompose solutions into the classical FE+jump components:

us
h(x, t) =

∑
j∈Z

uj(t)φj(x) +
∑
j∈Z

ũj(t)φ̃j(x).

Then U s
h(t) = (uj(t), ũj(t))′j∈Z solves the system of ODE’s:

MhÜ
s
h(t) = Rs

hU
s
h.

Mh - mass matrix → stencil

(
h
6 − h

12
2h
3 0 h

6
h
12

h
12 − h

24 0 h
6 − h

12 − h
24

)

Rs
h - stiffness matrix → stencil

(
− 1

h 0 2
h 0 − 1

h 0
0 − 1

4h 0 2s−1
2h 0 − 1

4h

)
(symmetric, bloc tri-diagonal)

Applying the Fourier transform(
ûh

tt(ξ, t)̂̃uh

tt(ξ, t)

)
= −As

h(ξ)

(
ûh(ξ, t)̂̃uh

(ξ, t)

)
. (8)
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DG methods

The eigenvalues of As
h(ξ) constitute two branches{

Λs
ph,h(ξ) =

(
λs

ph,h(ξ)
)2

(physical dispersion)

Λs
sp,h(ξ) =

(
λs

sp,h(ξ)
)2

(spurious dispersion)

The corresponding eigenvectors have the energy polarized either in the
classical FE subspace (physical solutions) or in the jump subspace
(spurious solutions).
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DG methods

Figure: Dispersion relations for the physical (left) and the spurious (right)
components for various values of the penalty parameter s.
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DG methods

Figure: group velocity of the physical component (left) and the spurious one
(right)
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DG methods
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DG methods
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DG methods

Filtering techniques

initial data related in the Fourier variable - one can eliminate one of
exponentials exp(±itλs

ph,h(ξ)) or exp(±itλs
sp,h(ξ)) + bigrid or

filtering to eliminate the bad high or low frequency components.

the initial data corresponding to the jump part to be zero + filtering
or bigrid to eliminate the high frequency components. The bad low
frequency component removed by the weight accompanying
exp(±it exp(itλs

sp,h(ξ))).
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Conclusions

Conclusions

DG provides a rich class of schemes allowing to regulate the physical
components of the system, using the penalty parameter s, to fit
better the behavior of the continuous wave equation.

Despite of this, these schemes generate high frequency spurious
oscillations which behave badly, generating possibly wave paquets
travelling in the wrong sense.

Further work is needed to investigate if preconditioning and/or
posprocessing can remove the spurious components.

GD in higher dimensions, other equations (Schrödinger)
semi-discretized using DG, etc.
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Conclusions

Other schemes providing more dispersion relations

P2 classical FEM scheme
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Conclusions

¡Thank you!
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