Production of Aluminium: Modeling, Analysis and Numerics

Andreas Prohl (U Tübingen)

L. Banas (HW Edinburgh)

イロト イ押ト イヨト イヨト

2

Contents

PART I: Modeling of Production of Aluminium

PART II: The one-fluid MHD equations - Analysis and Numerics

PART III: The two-fluid MHD equations - Analysis and Numerics

ヘロト 人間 ト ヘヨト ヘヨト

2

PART IV: Simulation of Aluminium Electrolysis

PART V: Summary

... the industrial problem Modeling of the problem Continuum Model

Part I: Modeling of Production of Aluminium

Andreas Prohl (U Tübingen)

.. the industrial problem Modeling of the problem Continuum Model

Motivation: Production of Aluminium

- electrolysis: reduce aluminium oxid to aluminium
- two non-miscible, conducting, incompressible fluids
- high temperatures & high currents: no experimental data
- industrial challenge: reduce electric power waste

... the industrial problem Modeling of the problem Continuum Model

2

anod-metal distance: controlled movement of interface

... the industrial problem Modeling of the problem Continuum Model

... the industrial problem

• <u>chem. reaction A:</u> at surface of carbon anod $3 O^{2-} + \frac{3}{2} C \rightarrow \frac{3}{2} CO_2(gas) + 6 e^{-1}$

• <u>chem. reaction B:</u> at interface between the two fluids $AI_2O_3 + 6 e^- \rightarrow 2 AI^{3+} + 3 O^{2-} + 6 e^- \rightarrow 2 AI + 3 O^{2-}$

Global balance:

 $2 \text{ Al}_2 \text{ O}_3 + 3 \text{ C} \rightarrow 4 \text{ Al} + 3 \text{ CO}_2$

• needed: \approx 1000 C^0 , high intensity of current

"the higher intensity, the higher production"

Andreas Prohl (U Tübingen)

... the industrial problem Modeling of the problem Continuum Model

イロト イポト イヨト イヨト

Goals/Problem: reduce power waste

- reduce anod-metal distance: small distance between anod and surface of aluminium layer ('a few centimeters')
- strong Lorentz forces: motion of the interface; instabilities
- avoid short -circuits: no touching of fluid-fluid interface and anod
- Questions: how stabilize the position of the interface?
- Control parameter: height of anod, intensity of current, geometry
- experimental observations difficult to obtain

... the industrial problem Modeling of the problem Continuum Model

Modeling of the problem

- Physical phenomena and simplifying assumptions:
 - magnetohydrodynamics (MHD)
 - moving interface
 - electrochemistry (concentration of chemical species not homogeneous throughout liquids
 - three-phase flows (bubbles of carbon oxydes at surface of anods)

ヘロト ヘアト ヘビト ヘビト

- solidification process at boundaries
- temperature effects (influence of physical parameters)

... the industrial problem Modeling of the problem Continuum Model

Continuum Model

 Maxwell equations coupled to multi-fluid Navier-Stokes equations

$$\begin{split} \partial_t \rho + \operatorname{div}(\rho \mathbf{u}) &= \mathbf{0}, \\ \partial_t(\rho \mathbf{u}) + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) - \operatorname{div}\left(2\eta \varepsilon(\mathbf{u})\right) + \nabla \rho &= \rho \mathbf{f} + \frac{1}{\mu} \operatorname{\mathbf{curl}} \mathbf{B} \times \mathbf{B} \\ \operatorname{div} \mathbf{u} &= \mathbf{0} \qquad \operatorname{div} \mathbf{B} &= \mathbf{0} \\ \partial_t \mathbf{B} + \operatorname{\mathbf{curl}} \mathbf{E} &= \mathbf{0} \\ -\partial_t(\varepsilon \mathbf{E}) + \operatorname{\mathbf{curl}} \frac{\mathbf{B}}{\mu} &= \mathbf{j} \quad \text{for} \qquad \mathbf{j} = \sigma(\mathbf{E} + \mathbf{u} \times \mathbf{B}), \end{split}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

... the industrial problem Modeling of the problem Continuum Model

- ρ density of fluids $\boldsymbol{\epsilon}(\boldsymbol{u}) = \frac{1}{2}(\nabla \boldsymbol{u} + \nabla \boldsymbol{u}^T)$
- B magnetic field σ electric conductivity
 - electric current η viscosity
- Assumption: 'low frequency hypothesis': neglect $\partial_t(\varepsilon \mathbf{E})$.

$$\partial_t \mathbf{B} + \mathbf{curl}(\frac{1}{\mu_0 \sigma} \mathbf{curl} \mathbf{B}) = \mathbf{curl}(\mathbf{u} \times \mathbf{B}),$$

div $\mathbf{B} = 0$

- $\Rightarrow \quad \partial_t \mathbf{B} + \mathbf{curl}(\frac{1}{\mu_0 \sigma} \mathbf{curl} \mathbf{B}) = \mathbf{curl}(\mathbf{u} \times \mathbf{B}), \\ \text{div } \mathbf{B} = \mathbf{0}$
- magnetic boundary conditions on $\partial \Omega$:

 $\mathbf{B} \cdot \mathbf{n}$, curl $\mathbf{B} \times \mathbf{n}$

イロト イポト イヨト イヨト 一座

Analytical results/Numerical Strategies Numerical Strategies to solve one-fluid MHD equation

イロト イポト イヨト イヨト

PART II: The one-fluid MHD equations – Analysis and Numerics

Analytical results/Numerical Strategies Numerical Strategies to solve one-fluid MHD equation

くロト (過) (目) (日)

Analytical results/Numerical Strategies

- M. Sermange & R. Temam [1983]:
 - global weak solutions for $\Omega \subset \mathbb{R}^3$
 - local strong solutions for $\Omega \subset \mathbb{R}^3$
- Goal: Develop schemes that approximate weak solutions
- for simplicity here: only temporal discretization

Analytical results/Numerical Strategies Numerical Strategies to solve one-fluid MHD equation

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

• Scheme A: Let $n \ge 1$. Find $(\mathbf{u}^n, \mathbf{p}^n, \mathbf{b}^n, \mathbf{r}^n)$ such that

 $d_{t}\mathbf{u}^{n} - \Delta \mathbf{u}^{n} + (\mathbf{u}^{n-1} \cdot \nabla)\mathbf{u}^{n} + \frac{1}{2}(\operatorname{div} \mathbf{u}^{n-1})\mathbf{u}^{n}$ $+ \mathbf{b}^{n-1} \times \operatorname{curl} \mathbf{b}^{n} + \nabla p^{n} = \mathbf{g}^{n}$ $\operatorname{div} \mathbf{u}^{n} = 0 \qquad \operatorname{div} \mathbf{b}^{n} = 0$ $d_{t}\mathbf{b}^{n} + \operatorname{curl}(\operatorname{curl} \mathbf{b}^{n}) - \operatorname{curl}(\mathbf{u}^{n} \times \mathbf{b}^{n-1}) - \nabla r^{n} = 0$

Analytical results/Numerical Strategies Numerical Strategies to solve one-fluid MHD equation

イロト イポト イヨト イヨト 一座

Numerical Strategies to solve one-fluid MHD equation

discrete energy law: "multiply 1st eqn. by uⁿ, and 3rd eqn. by bⁿ"

$$\frac{1}{2}d_t \left[||\mathbf{u}^n||^2 + ||\mathbf{b}^n||^2 \right] + \frac{k}{2} \left[||d_t\mathbf{u}^n||^2 + ||d_t\mathbf{b}^n||^2 \right] \\ + ||\nabla \mathbf{u}^n||^2 + ||\mathbf{curl} |\mathbf{b}^n||^2 = (\mathbf{g}^n, \mathbf{u}^n)$$

Analytical results/Numerical Strategies Numerical Strategies to solve one-fluid MHD equation

ヘロト ヘアト ヘビト ヘビト

- ► Result [P.'08]: Subconvergence (k, h → 0) to weak solution of one-fluid MHD system
- drawback of scheme: system coupled
- +/- iterative decoupling strategy: restrictive mesh-constraint $k \le Ch^4$ needed for convergence

Analytical results/Numerical Strategies Numerical Strategies to solve one-fluid MHD equation

イロト イポト イヨト イヨト 三連

Scheme B: decoupled scheme

$$d_t \mathbf{u}^n - \Delta \mathbf{u}^n + (\mathbf{u}^{n-1} \cdot \nabla) \mathbf{u}^n + \frac{1}{2} (\operatorname{div} \mathbf{u}^{n-1}) \mathbf{u}^n \\ + \mathbf{b}^{n-1} \times \operatorname{curl} \mathbf{b}^{n-1} - \nabla p^n = \mathbf{g}^n \\ d_t \mathbf{b}^n + \operatorname{curl}(\operatorname{curl} \mathbf{b}^n) - \operatorname{curl}(\mathbf{u}^{n-1} \times \mathbf{b}^{n-1}) - \nabla r^n = 0$$

- ▶ Property: A perturbed energy law holds in a fully discrete setting, for $k \leq Ch^3$.
- ► Result [P. '08]: Subsequence convergence (k, h→ 0) to weak solution of one-fluid MHD-system.

The Model

PART III: The two-fluid MHD equations – Analysis and Numerics

イロト イポト イヨト イヨト

2

The Model

The Model

Navier-Stokes with variable density and viscosity with Maxwell's equation

$$\begin{aligned} (\rho \mathbf{u})_t + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) - \operatorname{div}(\eta(\rho) \mathbf{D}(\mathbf{u})) &= -\nabla \rho + \mathbf{g} + \frac{1}{\bar{\mu}} \operatorname{\mathbf{curl}} \mathbf{b} \times \mathbf{b}, \\ \operatorname{div} \mathbf{u} &= 0, \\ \rho_t + \operatorname{div}(\rho \mathbf{u}) &= 0, \\ \mathbf{b}_t + \frac{1}{\bar{\mu}} \operatorname{\mathbf{curl}} \left(\frac{1}{\xi(\rho)} \operatorname{\mathbf{curl}} \mathbf{b} \right) &= \operatorname{\mathbf{curl}}(\mathbf{u} \times \mathbf{b}), \\ \operatorname{div} \mathbf{b} &= 0, \end{aligned}$$
(1)

イロン イボン イヨン イヨン

together with IC's & BC's

 $\rho_0 = \left\{ \begin{array}{ll} \overline{\rho}_1 > 0, & \text{constant on } \Omega_1, \\ \overline{\rho}_2 > 0, & \text{constant on } \Omega_2, \end{array} \right. \text{ with } \overline{\Omega}_1 \cup \overline{\Omega}_2 = \overline{\Omega}, \quad \text{meas } (\Omega_i) > 0$

- Properties:
 - 1. non-negativity, boundedness of ρ

 $\overline{\rho}_1 \leq \rho \leq \overline{\rho}_2 \qquad \text{in } \Omega_T$

2. energy law:

$$\frac{1}{2}\frac{d}{dt}\int_{\Omega}\left[\frac{\rho|\mathbf{u}|^{2}}{2}+\frac{|\mathbf{b}|^{2}}{\mu}\right]dx+\int_{\Omega}\left[\eta(\rho)|\boldsymbol{\varepsilon}(\mathbf{u})|^{2}+\frac{1}{\mu^{2}\xi(\rho)}|\mathbf{curl}|\mathbf{b}|^{2}\right]dx$$
$$=\int_{\Omega}\rho\mathbf{g}\cdot\mathbf{u}dx$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

The Model

Analytical results

- weak formulation: For
 - $\Omega \subset \mathbb{R}^3$ polyhedral domain
 - ► $\mathbf{u}_0, \mathbf{b}_0 \in \mathbf{H} := \left\{ \boldsymbol{\xi} \in L^2(\Omega) : \operatorname{div} \boldsymbol{\xi} = \text{ weakly in } \Omega, \boldsymbol{\xi} \cdot \mathbf{n} = 0 \text{ on } \partial \Omega \right\}$

ヘロン 人間 とくほ とくほ とう

ρ₀ as above

► $\mathbf{f} \in L^2(0, T; L^2)$ exists a weak solution $\mathbf{u} \in L^{\infty}(0, T; \mathbf{H}) \cap L^2(0, T; \mathbf{J})$ $\mathbf{b} \in L^{\infty}(0, T; \mathbf{H}) \cap L^2(0, T; \mathbf{X})$ $\rho \in L^{\infty}(\Omega_T) \cap C([0, T]; L^p)$ for all $p \ge 1$

which satisfies an energy inequality.

The Model

... Tools employed

- general Galerkin method
- Aubin-Lions compactness result
- Compactness result by J. Di Perna & P.L. Lions ['89]: Solvability of

 $\rho_t + \operatorname{div}(\mathbf{u}\rho) = f \quad \text{in } \Omega_T, \quad \rho(0, \cdot) = \rho_0 \in L^{\infty}(\Omega) \quad (2)$

Let $\{\rho_k\}_{k\geq 0} \subset L^{\infty}(0,T;L^{\infty}(\Omega))$ solve

 $\begin{aligned} (\rho_k)_t + \operatorname{div}(\mathbf{u}_k \rho_k) + [\operatorname{div} \mathbf{u}_k] \rho_k &= f_k \quad \text{ in } \Omega_T \\ (\rho_k)(\mathbf{0}, \cdot) &= (\rho_k) \quad \text{ in } \Omega \end{aligned}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

The Model

イロト イポト イヨト イヨト

Assume:

(i)
$$\{\mathbf{u}_k\}_k \subset L^1(0, T; \mathbf{W}_0^{1,2})$$
, and $\mathbf{u} \in L^1(0, T; \mathbf{W}_0^{1,2})$, such that
 $\mathbf{u}_k \to \mathbf{u} \text{ in } L^1(0, T; \mathbf{L}^2)$
 $\operatorname{div} \mathbf{u}_k \to \operatorname{div} \mathbf{u} \text{ in } L^1(0, T; L^2)$
(ii) $f_k \to f \text{ in } L^1(0, T; L^2)$
 $(\rho_k)_0 \to \rho_0 \text{ in } L^2(\Omega)$

Then

 $ho_k
ightarrow
ho$ in $L^2(0,T;L^2)$

where $\rho : \Omega \to \mathbb{R}$ is unique solution of (2).

The Model

Problems to construct a convergent Finite Element Discretization

Discrete Energy Law: In continuous setting: multiply (1) with u

$$(1_1)$$
 WITH **U**
 (1_2) with $\frac{1}{100}$

$$(1_3)$$
 with $\frac{1}{2}|\mathbf{u}|^2$

Observation: $\frac{1}{2}|\mathbf{u}|^2$ no admissible test function in

Idea (N. Walkington ['07]): reformulation

$$(\rho \mathbf{u})_t + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) = \frac{1}{2} \Big\{ \rho \mathbf{u}_t + [\rho \mathbf{u} \cdot \nabla] \mathbf{u} + (\rho \mathbf{u})_t + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) \Big\}$$

イロト イポト イヨト イヨト 一座

The Model

► (uniform) positivity and L[∞]- boundedness of discrete densities:

Idea: M-matrix property of stiffness matrix related to

$$(d_t \rho^n, \chi)_h + (\mathbf{U}^n \cdot \nabla \rho^n, \chi) + \frac{1}{2} ([\operatorname{div} \mathbf{U}^n] \rho^n, \chi) + \alpha h^{\alpha} (\nabla \rho^n, \nabla \chi) = 0$$

Tools:

- $\alpha > 0$: M-matrix properly gives $0 < \rho_1 \le \rho^n \le \rho_2 < \infty$
- numerical integration
- ► regularization term to NSE $\beta_2 h^{\beta_2} (\nabla d_t \mathbf{U}^n, \nabla \mathbf{W}^n)$ $\beta_2 \ge 0$

<ロ> <同> <同> <同> <同> <同> <同> <同> <

 discrete version of compactness result by R. DiPerna & P.L. Lions: Idea (N. Walkington ['07])

The Model

<u>Tool</u>: to validate $\operatorname{div} \mathscr{U} \to \operatorname{div} \mathbf{u}$ in $L^1(0, T; L^2)$ we add the regularization term to NSE

 $\beta_1 k^{\beta_1} (\operatorname{div} \mathbf{U}^n, \operatorname{div} \mathbf{W}^n) \quad , \quad \beta_1 > 0$

 a compactness result of J.L. Lions to control temporal changes of iterates: There exists κ > 0

$$\int_0^T \left[\boldsymbol{\rho}_1 || \boldsymbol{\mathscr{U}}^+ - \boldsymbol{\mathscr{U}}^- ||^2 + || \boldsymbol{\mathscr{B}}^+ - \boldsymbol{\mathscr{B}}^- ||^2 \right] d\boldsymbol{s} \leq C k^{\kappa}$$

Tool:

- inverse estimates
- mesh-constraints: $F(k, h) \ge 0$
- Problems already experienced for one-fluid MHD equation: H(curl), H(div),

Tool: discrete compactness result by F. Kikuchi ['89]

The Model

Result: A stable, convergent FE–based discretization

- Let {(ρⁿ, Uⁿ, Bⁿ)} be solution of FE −based fully discrete scheme
- L. Banas, A.P. ['08]: Let
 - *I* be strongly acute
 - $F(k,h;\alpha,\beta_1,\beta_2,d) \ge 0$ be valid
 - ► $\rho^0 \rightarrow \rho_0$ in L^2 , $(\mathbf{U}^0, \mathbf{B}^0) \rightarrow (\mathbf{u}_0, \mathbf{b}_0)$ in $[\mathbf{L}^2]^2$

For $(k, h) \rightarrow 0$ exist a convergent subsequence, and $(\rho, \mathbf{u}, \mathbf{b})$, s.t.

 $\mathbf{U} \rightarrow \mathbf{u} \text{ in } L^{\infty}(0,T;\mathbf{L}^2), \mathscr{B} \rightarrow \mathbf{b} \text{ in } L^{\infty}(0,T;\mathbf{L}^2), \sigma \stackrel{*}{\rightarrow} \rho \text{ in } L^{\infty}(0,T;\mathbf{L}^{\infty})$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Where $(\mathbf{u}, \mathbf{b}, \boldsymbol{\rho})$ is weak solution to (1).

The Model

From Discretization to a fully practical Scheme

- Status:
 - + a convergent discretization of (1)
 - a nonlinear algebraic problem
- <u>Tool</u>: A fixed point strategy for every $n \ge 1$
 - + linear, decoupled problems for $\{(\rho^{n,l}, \mathbf{u}^{n,l}, \mathbf{b}^{n,l})\}_{n,l}$
 - + a thresholding criterion
 - + contraction property for restrictive $F(k, h) \ge 0$
 - + perturbed discrete energy law, and
 - + uniform upper and lower l^{∞} -bounds for $\{\rho^{n,l}\}_{n,l}$

ヘロト ヘアト ヘビト ヘビト

PART IV: Simulation of Aluminium Electrolysis

イロン イボン イヨン

Andreas Prohl (U Tübingen)

Aluminium Electrolysis – Two-Fluid MHD

- evolution of interface between two conducting fluids
 - top: lighter cryolite, bottom: heavier liquid aluminium

magnitude of magnetic field

2D Velocity profile

2D Magnetic field profile

1	٠.		-	-	-	-	•		× .	1	-		-	-	-	-	~	/	-	-	-		-			12-		 -	-		-
1	1		÷ .		-		-	~	1	1	1	-				4	5.1	t	1	~				-	111	117	-	 		10	17.
1	1		<i>.</i> .					Λ.	ì	1	t	/				~	1	- 1	1	1				ς.	14	11	/			1	1
1	1							1	÷	1	1						1 i		1						11	1.1				1.1	1
1	t							÷	1	1	t.						11	1	t						11	11				i i	
1	1	1						i	1	1	1						1	1	1						11	1.1				1 1	1
t	N	8						÷	1	١.	۸.	ς.					1	t	A.	ς				/	1	1.1	ς			1	1
١	1	~	-	-	-	-	~	1	1	1	ς.,					-	24	1	8		-	-	-	-	24	$V \propto 0$				- 7	11
1	~		+	-		- ,	-	~	2	١.		-					- 1	× -							-1	1		 			23 -

э

3

PART V: Summary

- Aluminium production: Two Fluid–MHD problem
- Goal/Problem: Develop convergent FE-based discretization such that computed iterates satisfy relevant properties
- Problems: Discrete energy law, upper and lower bounds for density, compactness result by R. DiPena & P.L. Lions

<ロト <回 > < 注 > < 注 > 、

 Tools: reformulation, M-matrix property, numerical integration, regularization terms, mesh constraints

Thank you for your attention!

イロト イポト イヨト イヨト

Andreas Prohl (U Tübingen)