Natural Discretization of Gradient Flows

Applications to Viscous Thin Films and to Willmore Flow

Martin Rumpf, Universität Bonn

EPSRC Symposium
New Directions in Computational PDE Warwick, January $12^{\text {th }}-16^{\text {th }}$

joint work with

- thin film flow: Orestis Vantzos
- Willmore flow: Nadine Olischläger

We consider a viscous incompressible fluid on a flat surface

We consider a viscous incompressible fluid on a flat surface, under the influence of

- viscous forces,

■ surface tension.

We consider a viscous incompressible fluid on a flat surface, under the influence of

- viscous forces,
- surface tension.

The evolution of the thin film is described by

- the height of the film h,

■ the velocity field of the fluid u.

We consider a viscous incompressible fluid on a flat surface, under the influence of

- viscous forces,
- surface tension.

The evolution of the thin film is described by

- the height of the film h,
- the velocity field of the fluid u.

The thickness of the film is small $\epsilon \ll 1$.

We consider a viscous incompressible fluid on a flat surface, under the influence of

- viscous forces,
- surface tension.

The evolution of the thin film is described by

- the height of the film h,
- the velocity field of the fluid u.

The thickness of the film is small $\epsilon \ll 1$.
governing PDE [Oron, Davis, Bankoff '97]:

$$
\partial_{t} h=-\operatorname{div}\left(\frac{h^{3}}{3 \mu} \nabla \operatorname{div}(\sigma \nabla h)\right)
$$

gradient flow perspective:
energy (surface tension):

$$
e[h]=\int_{\Omega} \sigma\left(1+\frac{|\nabla h|^{2}}{2}\right) \mathrm{d} x
$$

gradient flow perspective:
energy (surface tension):

$$
e[h]=\int_{\Omega} \sigma\left(1+\frac{|\nabla h|^{2}}{2}\right) \mathrm{d} x
$$

metric:

$$
\mathbf{g}_{h}(\delta h, \delta h)=g_{h}(u, u)=\int_{\Omega} \frac{3 \mu}{h}|u|^{2} \mathrm{~d} x
$$

derived as lubrication limit of dissipation based on friction:

$$
\int_{\mathrm{vol}} \mu\left|D_{y} \mathbf{u}+D_{y} \mathbf{u}^{T}\right|^{2} \mathrm{~d} y \quad, y=\left(x, x^{\perp}\right) \quad, u=\frac{1}{h} \int_{0}^{h} \mathbf{u} \mathrm{~d} x^{\perp}
$$

transport equation coupling δh and u :

$$
\delta h+\operatorname{div}(h u)=0
$$

Given energy and metric on the manifold (cf. [Giacomelli, Otto '03]):

$$
\mathcal{M}=\left\{h: \int_{\Omega} h \mathrm{~d} x=\text { const }\right\} \quad\left(T_{h} \mathcal{M}=\left\{\delta h: \int_{\Omega} \delta h \mathrm{~d} x=0\right\}\right)
$$

we consider the gradient flow [GF]:

$$
\partial_{t} h=-\operatorname{grad}_{\mathbf{g}} e[h]
$$

Given energy and metric on the manifold (cf. [Giacomelli, Otto '03]):

$$
\mathcal{M}=\left\{h: \int_{\Omega} h \mathrm{~d} x=\text { const }\right\} \quad\left(T_{h} \mathcal{M}=\left\{\delta h: \int_{\Omega} \delta h \mathrm{~d} x=0\right\}\right)
$$

we consider the gradient flow [GF]:

$$
\partial_{t} h=-\operatorname{grad}_{\mathbf{g}} e[h]
$$

$$
\Rightarrow \mathbf{g}_{h}\left(\partial_{t} h, \theta\right)=-e^{\prime}[h](\theta)
$$

$[\mathrm{GF}] \Rightarrow[\mathrm{PDE}]:$

$$
0=\mathbf{g}_{h}\left(\partial_{t} h, \delta h\right)+e^{\prime}[h](\delta h)
$$

$[\mathrm{GF}] \Rightarrow[\mathrm{PDE}]:$

$$
\begin{aligned}
0= & \mathbf{g}_{h}\left(\partial_{t} h, \delta h\right)+e^{\prime}[h](\delta h) \\
= & g_{h}(u, v)+e^{\prime}[h](\delta h) \\
& \text { where } \partial_{t} h+\operatorname{div}(h u)=0 \text { and } \delta h+\operatorname{div}(h v)=0
\end{aligned}
$$

$[\mathrm{GF}] \Rightarrow[\mathrm{PDE}]:$

$$
\begin{aligned}
0= & \mathbf{g}_{h}\left(\partial_{t} h, \delta h\right)+e^{\prime}[h](\delta h) \\
= & g_{h}(u, v)+e^{\prime}[h](\delta h) \\
& \text { where } \partial_{t} h+\operatorname{div}(h u)=0 \text { and } \delta h+\operatorname{div}(h v)=0 \\
= & \int_{\Omega} \frac{3 \mu}{h} u \cdot v+\sigma \nabla h \cdot \nabla \delta h \mathrm{~d} x
\end{aligned}
$$

$[\mathrm{GF}] \Rightarrow[\mathrm{PDE}]:$

$$
\begin{aligned}
0 & =\mathbf{g}_{h}\left(\partial_{t} h, \delta h\right)+e^{\prime}[h](\delta h) \\
= & g_{h}(u, v)+e^{\prime}[h](\delta h) \\
& \text { where } \partial_{t} h+\operatorname{div}(h u)=0 \text { and } \delta h+\operatorname{div}(h v)=0 \\
= & \int_{\Omega} \frac{3 \mu}{h} u \cdot v+\sigma \nabla h \cdot \nabla \delta h \mathrm{~d} x \\
= & \int_{\Omega} \frac{3 \mu}{h} u \cdot v-\sigma \nabla h \cdot \nabla \operatorname{div}(h v) \mathrm{d} x
\end{aligned}
$$

$[\mathrm{GF}] \Rightarrow[\mathrm{PDE}]:$

$$
\begin{aligned}
0= & \mathbf{g}_{h}\left(\partial_{t} h, \delta h\right)+e^{\prime}[h](\delta h) \\
= & g_{h}(u, v)+e^{\prime}[h](\delta h) \\
& \text { where } \partial_{t} h+\operatorname{div}(h u)=0 \text { and } \delta h+\operatorname{div}(h v)=0 \\
= & \int_{\Omega} \frac{3 \mu}{h} u \cdot v+\sigma \nabla h \cdot \nabla \delta h \mathrm{~d} x \\
= & \int_{\Omega} \frac{3 \mu}{h} u \cdot v-\sigma \nabla h \cdot \nabla \operatorname{div}(h v) \mathrm{d} x \\
= & \int_{\Omega} \frac{3 \mu}{h} u \cdot v-\nabla \operatorname{div}(\sigma \nabla h) h v \mathrm{~d} x \quad \text { (integration by parts) } \\
\Rightarrow u= & \frac{h^{2}}{3 \mu} \nabla \operatorname{div}(\sigma \nabla h)
\end{aligned}
$$

$[\mathrm{GF}] \Rightarrow[\mathrm{PDE}]:$

$$
\begin{aligned}
0 & =\mathbf{g}_{h}\left(\partial_{t} h, \delta h\right)+e^{\prime}[h](\delta h) \\
& =g_{h}(u, v)+e^{\prime}[h](\delta h) \\
& \quad \text { where } \partial_{t} h+\operatorname{div}(h u)=0 \text { and } \delta h+\operatorname{div}(h v)=0 \\
& =\int_{\Omega} \frac{3 \mu}{h} u \cdot v+\sigma \nabla h \cdot \nabla \delta h \mathrm{~d} x \\
& =\int_{\Omega} \frac{3 \mu}{h} u \cdot v-\sigma \nabla h \cdot \nabla \operatorname{div}(h v) \mathrm{d} x \\
& =\int_{\Omega} \frac{3 \mu}{h} u \cdot v-\nabla \operatorname{div}(\sigma \nabla h) h v \mathrm{~d} x \quad \text { (integration by parts) } \\
\Rightarrow \quad u= & \frac{h^{2}}{3 \mu} \nabla \operatorname{div}(\sigma \nabla h) \\
\Rightarrow \quad 0 & =\partial_{t} h+\operatorname{div}\left(\frac{h^{3}}{3 \mu} \nabla \operatorname{div}(\sigma \nabla h)\right)
\end{aligned}
$$

We consider a compact surface $\mathcal{S}=\mathcal{S}[x]$ embedded in \mathbb{R}^{n} ($n=2,3$) and the energy:

$$
w[x]=\frac{1}{2} \int_{\mathcal{S}} h^{2} \mathrm{~d} a
$$

Here h is the mean curvature on \mathcal{S}.

We consider a compact surface $\mathcal{S}=\mathcal{S}[x]$ embedded in \mathbb{R}^{n} ($n=2,3$) and the energy:

$$
w[x]=\frac{1}{2} \int_{\mathcal{S}} h^{2} \mathrm{~d} a
$$

Here h is the mean curvature on \mathcal{S}. Furthermore, let

$$
g_{\mathcal{S}}(v, v)=\int_{\mathcal{S}} v^{2} \mathrm{~d} a
$$

be the L^{2}-metric on variations v of \mathcal{S} generated by normal motion:

$$
\dot{x}=\delta x=v n
$$

We consider a compact surface $\mathcal{S}=\mathcal{S}[x]$ embedded in \mathbb{R}^{n} ($n=2,3$) and the energy:

$$
w[x]=\frac{1}{2} \int_{\mathcal{S}} h^{2} \mathrm{~d} a
$$

Here h is the mean curvature on \mathcal{S}. Furthermore, let

$$
g_{\mathcal{S}}(v, v)=\int_{\mathcal{S}} v^{2} \mathrm{~d} a
$$

be the L^{2}-metric on variations v of \mathcal{S} generated by normal motion:

$$
\dot{x}=\delta x=v n \quad \leftrightarrow \text { (cf. transport equation) }
$$

We consider a compact surface $\mathcal{S}=\mathcal{S}[x]$ embedded in \mathbb{R}^{n} ($n=2,3$) and the energy:

$$
w[x]=\frac{1}{2} \int_{\mathcal{S}} h^{2} \mathrm{~d} a
$$

Here h is the mean curvature on \mathcal{S}. Furthermore, let

$$
g_{\mathcal{S}}(v, v)=\int_{\mathcal{S}} v^{2} \mathrm{~d} a
$$

be the L^{2}-metric on variations v of \mathcal{S} generated by normal motion:

$$
\dot{x}=\delta x=v n \quad \leftrightarrow \text { (cf. transport equation) }
$$

Then, Willmore flow is the corresponding gradient flow (GF):

$$
\partial_{t} x=-\operatorname{grad}_{g} w[x]
$$

governing PDE $(n=3)$:

$$
\partial_{t} x=\left(\Delta_{\mathcal{S}} h+h\left(\left|D_{\mathcal{S}} n\right|^{2}-\frac{h^{2}}{2}\right)\right) n
$$

governing PDE $(n=3)$:

$$
\partial_{t} x=\left(\Delta_{\mathcal{S}} h+h\left(\left|D_{\mathcal{S}} n\right|^{2}-\frac{h^{2}}{2}\right)\right) n
$$

Remark: There is an inner variational principle, i.e.

$$
h=\operatorname{grad}_{\mathcal{S}} a[x], \quad \text { where } a[x]=\int_{\mathcal{S}} \mathrm{d} a
$$

Numerical approaches:

[Rusu '01], [Meyer, Simonett '02], [Grzibovski, Heintz '03], [Droske, M. '04], [Bobenko, Schröder '05], [Dziuk, Deckelnick '06], [Barrett, Garcke, Nürnberg '08], [Dziuk '08] ...

For the gradient flow $\dot{x}=\operatorname{grad}_{g} e[x]$ on a manifold \mathcal{M} and given x^{0} define time discrete solutions $\left(x^{k}\right)_{k=0, \ldots}\left(x_{k} \approx x(k \tau)\right)$:

$$
x^{k+1}=\underset{x \in \mathcal{M}}{\arg \min } \frac{1}{2 \tau} \operatorname{dist}\left(x, x^{k}\right)^{2}+e[x]
$$

For the gradient flow $\dot{x}=\operatorname{grad}_{g} e[x]$ on a manifold \mathcal{M} and given x^{0} define time discrete solutions $\left(x^{k}\right)_{k=0, \ldots}\left(x_{k} \approx x(k \tau)\right)$:

$$
\begin{aligned}
x^{k+1}= & \underset{x \in \mathcal{M}}{\arg \min } \frac{1}{2 \tau} \operatorname{dist}\left(x, x^{k}\right)^{2}+e[x], \\
& \text { where } \operatorname{dist}\left(x, x^{k}\right)=\inf _{\substack{\text { curves } \\
\gamma(0)=x^{k}, \gamma(1)=x}} \int_{0}^{1} \sqrt{g_{\gamma(s)}(\dot{\gamma}(s), \dot{\gamma}(s))} \mathrm{d} s
\end{aligned}
$$

For the gradient flow $\dot{x}=\operatorname{grad}_{g} e[x]$ on a manifold \mathcal{M} and given x^{0} define time discrete solutions $\left(x^{k}\right)_{k=0, \ldots}\left(x_{k} \approx x(k \tau)\right)$:

$$
\begin{aligned}
x^{k+1}= & \underset{x \in \mathcal{M}}{\arg \min } \frac{1}{2 \tau} \operatorname{dist}\left(x, x^{k}\right)^{2}+e[x], \\
& \text { where } \operatorname{dist}\left(x, x^{k}\right)=\inf _{\substack{\text { cunfes } \\
\gamma(0)=x^{k}, \gamma(1)=x}} \int_{0}^{1} \sqrt{g_{\gamma(s)}(\dot{\gamma}(s), \dot{\gamma}(s))} \mathrm{d} s
\end{aligned}
$$

energy estimate as a direct consequence:

$$
e\left[x^{k+1}\right]+\frac{1}{2 \tau} \operatorname{dist}\left(x^{k+1}, x^{k}\right)^{2} \leq 0+e\left[x^{k}\right]
$$

Motivation (Euklidian case):

$$
x^{k+1}=\underset{x}{\arg \min } \frac{1}{2 \tau}\left|x-x^{k}\right|^{2}+e[x]
$$

Motivation (Euklidian case):

$$
\begin{aligned}
x^{k+1} & =\underset{x}{\arg \min } \frac{1}{2 \tau}\left|x-x^{k}\right|^{2}+e[x] \quad \Rightarrow \\
0 & =\frac{x^{k+1}-x^{k}}{\tau} \cdot v+e^{\prime}\left[x^{k+1}\right](v) \quad \forall v
\end{aligned}
$$

Motivation (Euklidian case):

$$
\begin{aligned}
x^{k+1} & =\underset{x}{\arg \min } \frac{1}{2 \tau}\left|x-x^{k}\right|^{2}+e[x] \quad \Rightarrow \\
0 & =\frac{x^{k+1}-x^{k}}{\tau} \cdot v+e^{\prime}\left[x^{k+1}\right](v) \quad \forall v \Rightarrow \\
\frac{x^{k+1}-x^{k}}{\tau} & =-\nabla_{x} e\left[x^{k+1}\right] \quad \text { (implicit Euler scheme) }
\end{aligned}
$$

Motivation (Euklidian case):

$$
\begin{aligned}
x^{k+1} & =\underset{x}{\arg \min } \frac{1}{2 \tau}\left|x-x^{k}\right|^{2}+e[x] \quad \Rightarrow \\
0 & =\frac{x^{k+1}-x^{k}}{\tau} \cdot v+e^{\prime}\left[x^{k+1}\right](v) \quad \forall v \Rightarrow \\
\frac{x^{k+1}-x^{k}}{\tau} & =-\nabla_{x} e\left[x^{k+1}\right] \quad \text { (implicit Euler scheme) }
\end{aligned}
$$

Generalization to the heat equation:

$$
u^{k+1}=\underset{u}{\arg \min } \frac{1}{2 \tau} \int_{\Omega}\left(u-u^{k}\right)^{2} \mathrm{~d} x+\frac{1}{2} \int_{\Omega}|\nabla u|^{2} \mathrm{~d} x
$$

Motivation (Euklidian case):

$$
\begin{aligned}
x^{k+1} & =\underset{x}{\arg \min } \frac{1}{2 \tau}\left|x-x^{k}\right|^{2}+e[x] \quad \Rightarrow \\
0 & =\frac{x^{k+1}-x^{k}}{\tau} \cdot v+e^{\prime}\left[x^{k+1}\right](v) \quad \forall v \quad \Rightarrow \\
\frac{x^{k+1}-x^{k}}{\tau} & =-\nabla_{x} e\left[x^{k+1}\right] \quad \text { (implicit Euler scheme) }
\end{aligned}
$$

Generalization to the heat equation:

$$
\begin{aligned}
u^{k+1} & =\underset{u}{\arg \min } \frac{1}{2 \tau} \int_{\Omega}\left(u-u^{k}\right)^{2} \mathrm{~d} x+\frac{1}{2} \int_{\Omega}|\nabla u|^{2} \mathrm{~d} x \quad \Rightarrow \\
0 & =\int_{\Omega} \frac{u^{k+1}-u^{k}}{\tau} \theta+\nabla u^{k+1} \cdot \nabla \theta \mathrm{~d} x \quad \forall \theta
\end{aligned}
$$

Given h^{0} define time discrete solutions $\left(h^{k}\right)_{k=0, \ldots}$:

$$
h^{k+1}=\underset{h}{\arg \min } \frac{1}{2 \tau} \operatorname{dist}\left(h, h^{k}\right)^{2}+e[h]
$$

Given h^{0} define time discrete solutions $\left(h^{k}\right)_{k=0, \ldots}$:

$$
\begin{aligned}
& h^{k+1}= \underset{h}{\arg \min } \frac{1}{2 \tau} \operatorname{dist}\left(h\left[u, h^{k}\right], h^{k}\right)^{2}+e\left[h\left[u, h^{k}\right]\right] \\
& \text { with } h\left[u, h^{k}\right]=h\left(t_{k+1}\right), \\
& \text { where } \partial_{t} h+\operatorname{div}(h u)=0, \\
& \text { and } h\left(t_{k}\right)=h^{k}
\end{aligned}
$$

Given h^{0} define time discrete solutions $\left(h^{k}\right)_{k=0, \ldots}$:

$$
\begin{aligned}
& u^{k+1}= \underset{u}{\arg \min } \frac{1}{2 \tau} \operatorname{dist}\left(h\left[u, h^{k}\right], h^{k}\right)^{2}+e\left[h\left[u, h^{k}\right]\right] \\
& \text { with } h\left[u, h^{k}\right]=h\left(t_{k+1}\right), \\
& \text { where } \partial_{t} h+\operatorname{div}(h u)=0, \\
& \text { and } h\left(t_{k}\right)=h^{k}
\end{aligned}
$$

Given h^{0} define time discrete solutions $\left(h^{k}\right)_{k=0, \ldots}$:

$$
\begin{aligned}
& u^{k+1}= \underset{u}{\arg \min } \frac{1}{2 \tau} \operatorname{dist}\left(h\left[u, h^{k}\right], h^{k}\right)^{2}+e\left[h\left[u, h^{k}\right]\right] \\
& \text { with } h\left[u, h^{k}\right]=h\left(t_{k+1}\right), \\
& \text { where } \partial_{t} h+\operatorname{div}(h u)=0, \\
& \text { and } h\left(t_{k}\right)=h^{k}
\end{aligned}
$$

\longrightarrow PDE constraint optimization problem

Given h^{0} define time discrete solutions $\left(h^{k}\right)_{k=0, \ldots}$:

$$
\begin{aligned}
& u^{k+1}= \underset{u}{\arg \min } \frac{1}{2 \tau} \operatorname{dist}\left(h\left[u, h^{k}\right], h^{k}\right)^{2}+e\left[h\left[u, h^{k}\right]\right] \\
& \quad \text { with } h\left[u, h^{k}\right]=h\left(t_{k+1}\right), \\
& \text { where } \partial_{t} h+\operatorname{div}(h u)=0, \\
& \text { and } h\left(t_{k}\right)=h^{k}
\end{aligned}
$$

\longrightarrow PDE constraint optimization problem

$$
\begin{gathered}
u^{k+1}=\underset{u}{\arg \min } \frac{\tau}{2} \inf _{\gamma}\left(\int_{0}^{1} \sqrt{g_{h}\left(u\left(t_{k}+\tau s\right), u\left(t_{k}+\tau s\right)\right)} \mathrm{d} s\right)^{2}+e\left[h\left[u, h^{k}\right]\right] \\
\text { where } \left.\partial_{t} h+\operatorname{div}(h u)\right)=0 \\
\quad h\left(t_{k}\right)=h^{k}, h\left(t_{k+1}\right)=h^{k+1}
\end{gathered}
$$

Approximation by numerical quadrature in the general case:

$$
\operatorname{dist}\left(x, x^{k}\right)^{2}=\inf _{\gamma}\left(\int_{0}^{1} \sqrt{g_{\gamma(s)}(\dot{\gamma}(s), \dot{\gamma}(s))} \mathrm{d} s\right)^{2}
$$

Approximation by numerical quadrature in the general case:

$$
\begin{aligned}
& \operatorname{dist}\left(x, x^{k}\right)^{2}=\inf _{\gamma}\left(\int_{0}^{1} \sqrt{g_{\gamma(s)}(\dot{\gamma}(s), \dot{\gamma}(s))} \mathrm{d} s\right)^{2} \\
& \approx g_{\gamma(r)}(\dot{\gamma}(s), \dot{\gamma}(s)) \quad \\
& \quad \text { for some } r \in[0,1]
\end{aligned}
$$

numerical time discretization $(r=1)$

$$
u^{k+1}=\underset{u}{\arg \min } \frac{\tau}{2} g_{h^{k}}(u, u)+e\left[h\left[u, h^{k}\right]\right]
$$

space discretization:

- implicit Finite Volume scheme for the transport $\left(H^{k}, U^{k} \in \mathbb{R}^{\sharp d o f s}\right):$

$$
L(U) H\left(U, H^{k}\right)=H^{k}
$$

(constraint equation)
space discretization:

- implicit Finite Volume scheme for the transport $\left(H^{k}, U^{k} \in \mathbb{R}^{\sharp d o f s}\right):$

$$
L(U) H\left(U, H^{k}\right)=H^{k}
$$

(constraint equation)

- discrete constraint variational problem in each time step:

$$
U^{k+1}=\underset{U \in \mathbb{R}^{\sharp d o f s}}{\arg \min } \frac{\tau}{2} G_{H^{k}}(U, U)+E\left(H\left(U, H^{k}\right)\right),
$$

where $G(\cdot, \cdot), E(\cdot)$ are numerical quadrature evaluation corresponding to $g(\cdot, \cdot)$ and $e(\cdot)$.
[Dohmen, Grunewald, Otto, R. '06],
cf. also [Zhornitskaya, Bertozzi '00], [Grün, R. '00]

We can not use the transport PDE

$$
\partial_{t} h+\operatorname{div}_{\mathcal{S}}(h \mathbf{u})=0
$$

The height h is not even conserved anymore!

The correct transport PDE is

$$
\partial_{t} \eta+\operatorname{div} \mathcal{S}(\eta \mathbf{u})=0
$$

where η is the fluid mass per unit surface

$$
\begin{aligned}
\eta & =\int_{0}^{h}\left(1-\epsilon \xi \kappa_{1}\right)\left(1-\epsilon \xi \kappa_{2}\right) d \xi \\
& =h+\frac{1}{2} \mathbf{h} h^{2} \epsilon+\frac{1}{3} \mathbf{k} h^{3} \epsilon^{2}
\end{aligned}
$$

The correct transport PDE is

$$
\partial_{t} \eta+\operatorname{div}_{\mathcal{S}}(\eta \mathbf{u})=0
$$

where η is the fluid mass per unit surface

$$
\begin{aligned}
\eta & =\int_{0}^{h}\left(1-\epsilon \xi \kappa_{1}\right)\left(1-\epsilon \xi \kappa_{2}\right) d \xi \\
& =h+\frac{1}{2} \mathbf{h} h^{2} \epsilon+\frac{1}{3} \mathbf{k} h^{3} \epsilon^{2}
\end{aligned}
$$

and \mathbf{u} is the transport velocity

$$
u=\frac{1}{\eta} \int_{0}^{h}\left(1-\epsilon \xi \kappa_{2}\right) \mathbf{u}_{1}+\left(1-\epsilon \xi \kappa_{1}\right) \mathbf{u}_{2} d \xi
$$

[Roy, Roberts, Simpson '02], [Meyer, Charpin, Chapman '02]

Gradient flow perspective

transport equation (PDE constraint)

$$
\delta \eta+\operatorname{div}_{\mathcal{S}}(\eta \mathbf{u})=0
$$

Gradient flow perspective
transport equation (PDE constraint)

$$
\delta \eta+\operatorname{div} \mathcal{S}(\eta \mathbf{u})=0
$$

surface energy

$$
e(h)=\int_{\mathcal{S}} \sigma\left(\mathbf{h} h+\mathbf{k} h^{2} \epsilon+\frac{\epsilon}{2}\left|\nabla_{\mathcal{S}} h\right|^{2}\right)
$$

Gradient flow perspective
transport equation (PDE constraint)

$$
\delta \eta+\operatorname{div} \mathcal{S}(\eta \mathbf{u})=0
$$

surface and gravitational energy

$$
e(\eta)=\int_{\mathcal{S}}(\rho g z+\sigma \mathbf{h}) \eta+\frac{\epsilon}{2}\left(\left(\rho g \cos \theta-\sigma\left(\mathbf{h}^{2}-2 \mathbf{k}\right) \eta^{2}+\sigma\left|\nabla_{\mathcal{S}} \eta\right|^{2}\right)\right.
$$

Gradient flow perspective
transport equation (PDE constraint)

$$
\delta \eta+\operatorname{div} \mathcal{S}(\eta \mathbf{u})=0
$$

surface and gravitational energy

$$
e(\eta)=\int_{\mathcal{S}}(\rho g z+\sigma \mathbf{h}) \eta+\frac{\epsilon}{2}\left(\left(\rho g \cos \theta-\sigma\left(\mathbf{h}^{2}-2 \mathbf{k}\right) \eta^{2}+\sigma\left|\nabla_{\mathcal{S}} \eta\right|^{2}\right)\right.
$$

metric (dissipation rate)

$$
g_{\eta}(\mathbf{u}, \mathbf{u})=\int_{\mathcal{S}} \frac{3 \mu}{\eta} \mathbf{u} \cdot\left(\mathbb{I}+\epsilon \frac{\eta}{2}\left(\mathbf{h} \mathbb{I}+D_{\mathcal{S}} n\right)\right) \mathbf{u}
$$

Minimizing the Rayleigh functional, like in the planar case, yields the PDE:

$$
\begin{aligned}
\partial_{t} \eta-\operatorname{div}_{\mathcal{S}}\left\{\frac{\eta^{3}}{3 \mu}\left(\mathbb{I}-\epsilon \frac{\eta}{2}\left(\mathbf{h} \mathbb{I}+D_{\mathcal{S}} n\right)\right)\right. \\
\left.\quad \nabla_{\mathcal{S}}\left(\rho g z+\sigma \mathbf{h}+\epsilon\left(\left(\rho g \cos \theta-\sigma\left(\mathbf{h}^{2}-2 \mathbf{k}\right)\right) \eta-\sigma \Delta_{\mathcal{S}} \eta\right)\right)\right\}=0
\end{aligned}
$$

Minimizing the Rayleigh functional, like in the planar case, yields the PDE:

$$
\begin{aligned}
& \partial_{t} \eta-\operatorname{div}_{\mathcal{S}}\left\{\frac{\eta^{3}}{3 \mu}\left(\mathbb{I}-\epsilon \frac{\eta}{2}\left(\mathbf{h} \mathbb{I}+D_{\mathcal{S}} n\right)\right)\right. \\
& \left.\nabla_{\mathcal{S}}\left(\rho g z+\sigma \mathbf{h}+\epsilon\left(\left(\rho g \cos \theta-\sigma\left(\mathbf{h}^{2}-2 \mathbf{k}\right)\right) \eta-\sigma \Delta_{\mathcal{S}} \eta\right)\right)\right\}=0
\end{aligned}
$$

■ 4th order non linear PDE

Minimizing the Rayleigh functional, like in the planar case, yields the PDE:

$$
\begin{aligned}
\partial_{t} \eta-\operatorname{div}_{\mathcal{S}}\left\{\frac{\eta^{3}}{3 \mu}\left(\mathbb{I}-\epsilon \frac{\eta}{2}\left(\mathbf{h} \mathbb{I}+D_{\mathcal{S}} n\right)\right)\right. \\
\left.\quad \nabla_{\mathcal{S}}\left(\rho g z+\sigma \mathbf{h}+\epsilon\left(\left(\rho g \cos \theta-\sigma\left(\mathbf{h}^{2}-2 \mathbf{k}\right)\right) \eta-\sigma \Delta_{\mathcal{S}} \eta\right)\right)\right\}=0
\end{aligned}
$$

■ 4th order non linear PDE

- Leading order term is hyperbolic, the correction is parabolic

Minimizing the Rayleigh functional, like in the planar case, yields the PDE:

$$
\begin{aligned}
\partial_{t} \eta-\operatorname{div}_{\mathcal{S}}\left\{\frac{\eta^{3}}{3 \mu}\left(\mathbb{I}-\epsilon \frac{\eta}{2}\left(\mathbf{h} \mathbb{I}+D_{\mathcal{S}} n\right)\right)\right. \\
\left.\quad \nabla_{\mathcal{S}}\left(\rho g z+\sigma \mathbf{h}+\epsilon\left(\left(\rho g \cos \theta-\sigma\left(\mathbf{h}^{2}-2 \mathbf{k}\right)\right) \eta-\sigma \Delta_{\mathcal{S}} \eta\right)\right)\right\}=0
\end{aligned}
$$

■ 4th order non linear PDE

- Leading order term is hyperbolic, the correction is parabolic

Minimizing the Rayleigh functional, like in the planar case, yields the PDE:

$$
\begin{aligned}
& \partial_{t} \eta-\operatorname{div}_{\mathcal{S}}\left\{\frac{\eta^{3}}{3 \mu}\left(\mathbb{I I}-\epsilon \frac{\eta}{2}\left(\mathbf{h} \mathbb{I}+D_{\mathcal{S}} n\right)\right)\right. \\
& \left.\nabla_{\mathcal{S}}\left(\rho g z+\sigma \mathbf{h}+\epsilon\left(\left(\rho g \cos \theta-\sigma\left(\mathbf{h}^{2}-2 \mathbf{k}\right)\right) \eta-\sigma \Delta_{\mathcal{S}} \eta\right)\right)\right\}=0
\end{aligned}
$$

■ 4th order non linear PDE

- Leading order term is hyperbolic, the correction is parabolic

■ Mixture of transport, 2nd and 4th order diffusion terms

Minimizing the Rayleigh functional, like in the planar case, yields the PDE:

$$
\begin{aligned}
\partial_{t} \eta-\operatorname{div}_{\mathcal{S}}\left\{\frac{\eta^{3}}{3 \mu}\left(\mathbb{I}-\epsilon \frac{\eta}{2}\left(\mathbf{h} \mathbb{I}+D_{\mathcal{S}} n\right)\right)\right. \\
\left.\nabla_{\mathcal{S}}\left(\rho g z+\sigma \mathbf{h}+\epsilon\left(\left(\rho g \cos \theta-\sigma\left(\mathbf{h}^{2}-2 \mathbf{k}\right)\right) \eta-\sigma \Delta_{\mathcal{S}} \eta\right)\right)\right\}=0
\end{aligned}
$$

■ 4th order non linear PDE

- Leading order term is hyperbolic, the correction is parabolic

■ Mixture of transport, 2nd and 4th order diffusion terms

- It is in agreement, up to $\mathrm{O}\left(\epsilon^{2}\right)$, to the thin film equation in [Roy, Roberts, Simpson '02]

image by Patrick J. Lynch, medical illustrator; C. Carl Jaffe, MD, cardiologist
liquid lining $(\epsilon=.03)$ of alveolus-like shape with a bump on the upper left

$$
t=0
$$

liquid lining $(\epsilon=.03)$ of alveolus-like shape with a bump on the upper left

$$
t=25 \tau
$$

liquid lining $(\epsilon=.03)$ of alveolus-like shape with a bump on the upper left

$$
t=50 \tau
$$

liquid lining $(\epsilon=.03)$ of alveolus-like shape with a bump on the upper left

$$
t=100 \tau
$$

liquid lining $(\epsilon=.03)$ of alveolus-like shape with a bump on the upper left

$$
t=250 \tau
$$

liquid lining $(\epsilon=.03)$ of alveolus-like shape with a bump on the upper left

$$
t=500 \tau
$$

liquid lining $(\epsilon=.03)$ of alveolus-like shape with a bump on the upper left

$$
t=1000 \tau
$$

liquid lining $(\epsilon=.03)$ of alveolus-like shape with a bump on the upper left

$$
t=2500 \tau
$$

liquid lining $(\epsilon=.03)$ of alveolus-like shape with a bump on the upper left

$$
t=5000 \tau
$$

liquid lining $(\epsilon=.03)$ of alveolus-like shape with a bump on the upper left

$$
t=10000 \tau
$$

liquid lining $(\epsilon=.03)$ of alveolus-like shape with a bump on the upper left

$$
t=25000 \tau
$$

liquid lining $(\epsilon=.03)$ of alveolus-like shape with a rupture on the top left

$$
t=0
$$

liquid lining $(\epsilon=.03)$ of alveolus-like shape with a rupture on the top left

$$
t=25 \tau
$$

liquid lining $(\epsilon=.03)$ of alveolus-like shape with a rupture on the top left

$$
t=50 \tau
$$

liquid lining $(\epsilon=.03)$ of alveolus-like shape with a rupture on the top left

$$
t=100 \tau
$$

liquid lining $(\epsilon=.03)$ of alveolus-like shape with a rupture on the top left

$$
t=250 \tau
$$

liquid lining $(\epsilon=.03)$ of alveolus-like shape with a rupture on the top left

$$
t=350 \tau
$$

liquid lining $(\epsilon=.03)$ of alveolus-like shape with a rupture on the top left

$$
t=500 \tau
$$

liquid lining $(\epsilon=.03)$ of alveolus-like shape with a rupture on the top left

$$
t=7500 \tau
$$

liquid lining $(\epsilon=.03)$ of alveolus-like shape with a rupture on the top left

$$
t=1000 \tau
$$

liquid lining $(\epsilon=.03)$ of alveolus-like shape with a rupture on the top left

$$
t=2500 \tau
$$

liquid lining $(\epsilon=.03)$ of alveolus-like shape with a rupture on the top left

$$
t=5000 \tau
$$

liquid lining $(\epsilon=.03)$ of alveolus-like shape with a rupture on the top left

$$
t=10000 \tau
$$

liquid lining $(\epsilon=.03)$ of alveolus-like shape with a rupture on the top left

$$
t=25000 \tau
$$

Four-fold symmetry perturbed droplet sliding down a sphere:

cf. [Bertozzi, Greer, Sapiro '06]

Recall mean curvature motion:

$$
\begin{aligned}
y[x]= & x^{k+1}, \quad x=x^{k} \\
y[x]= & \underset{y}{\arg \min } \frac{1}{2 \tau} \operatorname{dist}(\mathcal{S}[y], \mathcal{S}[x])^{2}+\int_{\mathcal{S}[y]} \mathrm{d} a \\
& \text { (natural gradient descent scheme) }
\end{aligned}
$$

Recall mean curvature motion:

$$
\begin{aligned}
y[x]= & x^{k+1}, \quad x=x^{k} \\
y[x]= & \underset{y}{\arg \min } \frac{1}{2 \tau} \operatorname{dist}(\mathcal{S}[y], \mathcal{S}[x])^{2}+\int_{\mathcal{S}[y]} \mathrm{d} a \\
& \text { (natural gradient descent scheme) }
\end{aligned}
$$

approximation

$$
y[x]=\underset{y}{\arg \min } \int_{\mathcal{S}[x]} \frac{1}{2 \tau}|y-x|^{2}+\frac{1}{2}\left|\nabla_{\mathcal{S}[x]} y\right|^{2} \mathrm{~d} a
$$

cf. [Dziuk '89]

Recall mean curvature motion:

$$
\begin{aligned}
y[x]= & x^{k+1}, \quad x=x^{k} \\
y[x]= & \underset{y}{\arg \min } \frac{1}{2 \tau} \operatorname{dist}(\mathcal{S}[y], \mathcal{S}[x])^{2}+\int_{\mathcal{S}[y]} \mathrm{d} a \\
& \text { (natural gradient descent scheme) }
\end{aligned}
$$

approximation

$$
y[x]=\underset{y}{\arg \min } \int_{\mathcal{S}[x]} \frac{1}{2 \tau}|y-x|^{2}+\frac{1}{2}\left|\nabla_{\mathcal{S}[x]} y\right|^{2} \mathrm{~d} a
$$

approximation of curvature vector and Willmore energy

$$
h[x] n[x] \approx \frac{y[x]-x}{\tau}
$$

Recall mean curvature motion:

$$
\begin{aligned}
y[x]= & x^{k+1}, \quad x=x^{k} \\
y[x]= & \underset{y}{\arg \min } \frac{1}{2 \tau} \operatorname{dist}(\mathcal{S}[y], \mathcal{S}[x])^{2}+\int_{\mathcal{S}[y]} \mathrm{d} a \\
& \text { (natural gradient descent scheme) }
\end{aligned}
$$

approximation

$$
y[x]=\underset{y}{\arg \min } \int_{\mathcal{S}[x]} \frac{1}{2 \tau}|y-x|^{2}+\frac{1}{2}\left|\nabla_{\mathcal{S}[x]} y\right|^{2} \mathrm{~d} a
$$

approximation of curvature vector and Willmore energy

$$
h[x] n[x] \approx \frac{y[x]-x}{\tau}, \quad w[x] \approx \frac{1}{2} \int_{\mathcal{S}[x]} \frac{|y[x]-x|^{2}}{\tau^{2}} \mathrm{~d} a
$$

Abstract Willmore flow time step:

$$
x^{k+1}=\underset{x}{\arg \min } \frac{1}{2 \tau} \operatorname{dist}\left(\mathcal{S}[x], \mathcal{S}\left[x^{k}\right]\right)^{2}+w[x]
$$

Abstract Willmore flow time step:

$$
x^{k+1}=\underset{x}{\arg \min } \frac{1}{2 \tau} \operatorname{dist}\left(\mathcal{S}[x], \mathcal{S}\left[x^{k}\right]\right)^{2}+w[x]
$$

Based on the approximation $w[x] \approx \frac{1}{2} \int_{\mathcal{S}[x]} \frac{|y[x]-x|^{2}}{\tau^{2}} \mathrm{~d} a$ we obtain:
two step time discretization

$$
x^{k+1}=\underset{x}{\arg \min } \int_{\mathcal{S}\left[x^{k}\right]}\left|x-x^{k}\right|^{2} \mathrm{~d} a+\frac{1}{\tau} \int_{\mathcal{S}[x]}|y[x]-x|^{2} \mathrm{~d} a
$$

Abstract Willmore flow time step:

$$
x^{k+1}=\underset{x}{\arg \min } \frac{1}{2 \tau} \operatorname{dist}\left(\mathcal{S}[x], \mathcal{S}\left[x^{k}\right]\right)^{2}+w[x]
$$

Based on the approximation $w[x] \approx \frac{1}{2} \int_{\mathcal{S}[x]} \frac{|y[x]-x|^{2}}{\tau^{2}} \mathrm{~d} a$ we obtain:
two step time discretization

$$
\begin{aligned}
x^{k+1} & =\underset{x}{\arg \min } \int_{\mathcal{S}\left[x^{k}\right]}\left|x-x^{k}\right|^{2} \mathrm{~d} a+\frac{1}{\tau} \int_{\mathcal{S}[x]}|y[x]-x|^{2} \mathrm{~d} a \\
\text { where } y[x] & =\underset{y}{\arg \min } \int_{\mathcal{S}[x]} \frac{1}{2 \tau}|y-x|^{2}+\frac{1}{2}\left|\nabla_{\mathcal{S}[x]} y\right|^{2} \mathrm{~d} a
\end{aligned}
$$

$$
x^{k+1}=\arg \min _{x} \int_{\mathcal{S}\left[x^{k}\right]}\left|x-x^{k}\right|^{2} \mathrm{~d} a+\frac{1}{\tau} \int_{\mathcal{S}[x]}|y[x]-x|^{2} \mathrm{~d} a
$$

$$
x^{k+1}=\arg \min _{x} \int_{\mathcal{S}\left[x^{k}\right]}\left|x-x^{k}\right|^{2} \mathrm{~d} a+\frac{1}{\tau} \int_{\mathcal{S}[x]}|y[x]-x|^{2} \mathrm{~d} a
$$

finite element space discretization:
X nodal vector
$\mathbf{M}[X] \quad$ mass matrix $\quad \mathbf{M}[X] \Phi \cdot \Psi=\int_{\mathcal{S}[X]} \Phi \Psi \mathrm{d} a$
$\mathbf{L}[X] \quad$ stiffness matrix $\quad \mathbf{L}[X] \Phi \cdot \Psi=\int_{\mathcal{S}[X]} \nabla_{\mathcal{S}[x]} \Phi \nabla_{\mathcal{S}[x]} \Psi \mathrm{d} a$

$$
x^{k+1}=\arg \min _{x} \int_{\mathcal{S}\left[x^{k}\right]}\left|x-x^{k}\right|^{2} \mathrm{~d} a+\frac{1}{\tau} \int_{\mathcal{S}[x]}|y[x]-x|^{2} \mathrm{~d} a
$$

finite element space discretization:
X nodal vector
$\mathbf{M}[X]$ mass matrix
$\mathbf{M}[X] \Phi \cdot \Psi=\int_{\mathcal{S}[X]} \Phi \Psi \mathrm{d} a$
$\mathbf{L}[X] \quad$ stiffness matrix $\quad \mathbf{L}[X] \Phi \cdot \Psi=\int_{\mathcal{S}[X]} \nabla_{\mathcal{S}[x]} \Phi \nabla_{\mathcal{S}[x]} \Psi \mathrm{d} a$
inner problem (time discrete mean curvature)
$Y[X]$ solves $(\mathbf{M}[X]+\tau \mathbf{L}[X]) Y=\mathbf{M}[X] X$ (constraint)

$$
x^{k+1}=\arg \min _{x} \int_{\mathcal{S}\left[x^{k}\right]}\left|x-x^{k}\right|^{2} \mathrm{~d} a+\frac{1}{\tau} \int_{\mathcal{S}[x]}|y[x]-x|^{2} \mathrm{~d} a
$$

finite element space discretization:
X nodal vector
$\mathbf{M}[X] \quad$ mass matrix $\quad \mathbf{M}[X] \Phi \cdot \Psi=\int_{\mathcal{S}[X]} \Phi \Psi \mathrm{d} a$
$\mathbf{L}[X] \quad$ stiffness matrix $\quad \mathbf{L}[X] \Phi \cdot \Psi=\int_{\mathcal{S}[X]} \nabla_{\mathcal{S}[x]} \Phi \nabla_{\mathcal{S}[x]} \Psi \mathrm{d} a$
inner problem (time discrete mean curvature)
$Y[X]$ solves $(\mathbf{M}[X]+\tau \mathbf{L}[X]) Y=\mathbf{M}[X] X$ (constraint)
outer problem (time discrete Willmore flow)

$$
\begin{aligned}
X^{k+1}= & \underset{X}{\arg \min }\left(\mathbf{M}\left[X^{k}\right]\left(X-X^{k}\right) \cdot\left(X-X^{k}\right)+\right. \\
& \left.\tau^{-1} \mathbf{M}[X](Y[X]-X) \cdot(Y[X]-X)\right)
\end{aligned}
$$

- Circles expand according the ODE

$$
\dot{R}(t)=\frac{1}{2} R(t)^{-3}
$$

for the radius $R(t)$.

- Discrete two step radii $R^{k+1} \approx R((k+1) \tau)$ are solutions of

$$
\frac{R-R_{k}}{\tau}=\frac{1}{2} \frac{R^{4}-3 R^{2} \tau}{\left(R^{2}+\tau\right)^{3} R_{k}}
$$

Fully discrete numerical simulation $(\tau=\Delta x)$:

$$
x_{0}(s)=(\cos (s), 4 \sin (s)) \text { for } s \in[0,2 \pi] \text { as initial parametrization. }
$$ modified functional: $w[x]+\lambda a[x]$

$$
x_{0}(s)=\left(-\frac{5}{2} \cos (s)+4 \cos (5 s),-\frac{5}{2} \sin (s)+4 \sin (5 s), \delta \sin (3 s)\right), \delta=0.0
$$

$t=4850.1$

$t=7965.8$

[$n=3, N=200, \tau=\Delta x=0.5493, \lambda=0.025$]
cf. [Dziuk et al. '06]

cf. [Dziuk et al. '06]

$t=0$

$t=0$
$t=\tau(\tau=h)$
$t=2 \tau$

$$
t=0
$$

$$
t=\tau(\tau=h)
$$

$$
t=2 \tau
$$

$$
t=8 \tau
$$

$$
t=30 \tau
$$

$$
t=0
$$

$$
t=\tau(\tau=h)
$$

$$
t=6 \tau
$$

$$
t=30 \tau
$$

$$
t=430 \tau
$$

Time discrete Willmore flow

$$
t=0
$$

$t=0$

$$
t=\tau\left(\tau=h^{2}\right)
$$

$t=0$

$t=\tau\left(\tau=h^{2}\right)$

$t=2 \tau$

$t=0$

$t=\tau\left(\tau=h^{2}\right)$
$t=2 \tau$

$t=3 \tau$

$t=0$

$$
t=0
$$

$t=\tau\left(\tau=h^{2}\right)$
$t=2 \tau$

$t=3 \tau$

$t=10 \tau$

$t=0$

$$
t=0
$$

$t=\tau\left(\tau=h^{2}\right)$
$t=2 \tau$

$t=3 \tau$

$t=10 \tau$

$t=54 \tau$

$$
t=2197 \tau \approx 0.04
$$

$$
\tau=h^{4}
$$

$t=2197 \tau \approx 0.04$

$$
\tau=h^{4}
$$

$t=13 \tau \approx 0.04$
$\tau=h^{2}$

$t=2197 \tau \approx 0.04$
$\tau=h^{4}$

$t=13 \tau \approx 0.04$
$t=\tau=0.04$ $\tau=h$

The natural time discretization of gradient flows leads to PDE constrained optimization problem.

The natural time discretization of gradient flows leads to PDE constrained optimization problem.
\checkmark The building blocks of the discretization have a direct physical or geometric meaning.

The natural time discretization of gradient flows leads to PDE constrained optimization problem.
\checkmark The building blocks of the discretization have a direct physical or geometric meaning.
\checkmark The resulting methods are robust and allow for large time steps.

The natural time discretization of gradient flows leads to PDE constrained optimization problem.
\checkmark The building blocks of the discretization have a direct physical or geometric meaning.
\checkmark The resulting methods are robust and allow for large time steps.
\rightarrow SQP method under development

The natural time discretization of gradient flows leads to PDE constrained optimization problem.
\checkmark The building blocks of the discretization have a direct physical or geometric meaning.
\checkmark The resulting methods are robust and allow for large time steps.
\rightarrow SQP method under development
\rightarrow coupling surface evolution and evolution on the surface

The natural time discretization of gradient flows leads to PDE constrained optimization problem.
\checkmark The building blocks of the discretization have a direct physical or geometric meaning.
\checkmark The resulting methods are robust and allow for large time steps.
\rightarrow SQP method under development
\rightarrow coupling surface evolution and evolution on the surface
\rightarrow anisotropic Willmore flow

In each time step a nonlinear variational problem has to be solved.

In each time step a nonlinear variational problem has to be solved.

How to compute the descent direction?

In each time step a nonlinear variational problem has to be solved.

How to compute the descent direction?

$$
\frac{\partial}{\partial U} E\left(H\left(U, H^{k}\right)\right)(W)=\partial_{H} E\left(\partial_{U} H(W)\right)
$$

In each time step a nonlinear variational problem has to be solved.

How to compute the descent direction?

$$
\begin{aligned}
& \frac{\partial}{\partial U} E\left(H\left(U, H^{k}\right)\right)(W)=\partial_{H} E\left(\partial_{U} H(W)\right) \\
& H\left(U, H^{k}\right)=L^{-1}(U) H^{k}
\end{aligned}
$$

In each time step a nonlinear variational problem has to be solved.

How to compute the descent direction?

$$
\begin{aligned}
& \frac{\partial}{\partial U} E\left(H\left(U, H^{k}\right)\right)(W)=\partial_{H} E\left(\partial_{U} H(W)\right) \\
& H\left(U, H^{k}\right)=L^{-1}(U) H^{k} \\
& \Rightarrow \partial_{U} H=-L^{-1}\left(\partial_{U} L(W)\right) L^{-1} H^{k} \quad \text { expensive to compute! }
\end{aligned}
$$

In each time step a nonlinear variational problem has to be solved.

How to compute the descent direction?

$$
\begin{aligned}
& \frac{\partial}{\partial U} E\left(H\left(U, H^{k}\right)\right)(W)=\partial_{H} E\left(\partial_{U} H(W)\right) \\
& H\left(U, H^{k}\right)=L^{-1}(U) H^{k} \\
& \Rightarrow \partial_{U} H=-L^{-1}\left(\partial_{U} L(W)\right) L^{-1} H^{k} \quad \text { expensive to compute! }
\end{aligned}
$$

dual problem: $L(U)^{T} P=-\partial_{H} E$

In each time step a nonlinear variational problem has to be solved.

How to compute the descent direction?

$$
\begin{aligned}
& \frac{\partial}{\partial U} E\left(H\left(U, H^{k}\right)\right)(W)=\partial_{H} E\left(\partial_{U} H(W)\right) \\
& H\left(U, H^{k}\right)=L^{-1}(U) H^{k} \\
& \Rightarrow \partial_{U} H=-L^{-1}\left(\partial_{U} L(W)\right) L^{-1} H^{k} \quad \text { expensive to compute! }
\end{aligned}
$$

dual problem: $L(U)^{T} P=-\partial_{H} E$

$$
H^{k}=L(U) H\left(U, H^{k}\right)
$$

In each time step a nonlinear variational problem has to be solved.

How to compute the descent direction?

$$
\begin{aligned}
& \frac{\partial}{\partial U} E\left(H\left(U, H^{k}\right)\right)(W)=\partial_{H} E\left(\partial_{U} H(W)\right) \\
& H\left(U, H^{k}\right)=L^{-1}(U) H^{k} \\
& \Rightarrow \partial_{U} H=-L^{-1}\left(\partial_{U} L(W)\right) L^{-1} H^{k} \quad \text { expensive to compute! }
\end{aligned}
$$

dual problem: $L(U)^{T} P=-\partial_{H} E$

$$
H^{k}=L(U) H\left(U, H^{k}\right) \Rightarrow 0=\left(\partial_{U} L\right)(W) H+L\left(\partial_{U} H\right)(W)
$$

In each time step a nonlinear variational problem has to be solved.

How to compute the descent direction?

$$
\begin{aligned}
& \frac{\partial}{\partial U} E\left(H\left(U, H^{k}\right)\right)(W)=\partial_{H} E\left(\partial_{U} H(W)\right) \\
& H\left(U, H^{k}\right)=L^{-1}(U) H^{k} \\
& \Rightarrow \partial_{U} H=-L^{-1}\left(\partial_{U} L(W)\right) L^{-1} H^{k} \quad \text { expensive to compute! }
\end{aligned}
$$

dual problem: $L(U)^{T} P=-\partial_{H} E$

$$
\begin{aligned}
& H^{k}=L(U) H\left(U, H^{k}\right) \Rightarrow 0=\left(\partial_{U} L\right)(W) H+L\left(\partial_{U} H\right)(W) \\
& \Rightarrow \frac{\partial}{\partial U} E(W)
\end{aligned}
$$

In each time step a nonlinear variational problem has to be solved.

How to compute the descent direction?

$$
\begin{aligned}
& \frac{\partial}{\partial U} E\left(H\left(U, H^{k}\right)\right)(W)=\partial_{H} E\left(\partial_{U} H(W)\right) \\
& H\left(U, H^{k}\right)=L^{-1}(U) H^{k} \\
& \Rightarrow \partial_{U} H=-L^{-1}\left(\partial_{U} L(W)\right) L^{-1} H^{k} \quad \text { expensive to compute! }
\end{aligned}
$$

dual problem: $L(U)^{T} P=-\partial_{H} E$

$$
\begin{aligned}
H^{k} & =L(U) H\left(U, H^{k}\right) \Rightarrow 0=\left(\partial_{U} L\right)(W) H+L\left(\partial_{U} H\right)(W) \\
\Rightarrow \frac{\partial}{\partial U} E(W) & =\partial_{H} E\left(\partial_{U} H\right)(W)
\end{aligned}
$$

In each time step a nonlinear variational problem has to be solved.

How to compute the descent direction?

$$
\begin{aligned}
& \frac{\partial}{\partial U} E\left(H\left(U, H^{k}\right)\right)(W)=\partial_{H} E\left(\partial_{U} H(W)\right) \\
& H\left(U, H^{k}\right)=L^{-1}(U) H^{k} \\
& \Rightarrow \partial_{U} H=-L^{-1}\left(\partial_{U} L(W)\right) L^{-1} H^{k} \quad \text { expensive to compute! }
\end{aligned}
$$

dual problem: $L(U)^{T} P=-\partial_{H} E$

$$
\begin{aligned}
H^{k} & =L(U) H\left(U, H^{k}\right) \Rightarrow 0=\left(\partial_{U} L\right)(W) H+L\left(\partial_{U} H\right)(W) \\
\Rightarrow \frac{\partial}{\partial U} E(W) & =\partial_{H} E\left(\partial_{U} H\right)(W)=-L^{T} P \cdot\left(\partial_{U} H\right)(W)
\end{aligned}
$$

In each time step a nonlinear variational problem has to be solved.

How to compute the descent direction?

$$
\begin{aligned}
& \frac{\partial}{\partial U} E\left(H\left(U, H^{k}\right)\right)(W)=\partial_{H} E\left(\partial_{U} H(W)\right) \\
& H\left(U, H^{k}\right)=L^{-1}(U) H^{k} \\
& \Rightarrow \partial_{U} H=-L^{-1}\left(\partial_{U} L(W)\right) L^{-1} H^{k} \quad \text { expensive to compute! }
\end{aligned}
$$

dual problem: $L(U)^{T} P=-\partial_{H} E$

$$
\begin{aligned}
H^{k} & =L(U) H\left(U, H^{k}\right) \Rightarrow 0=\left(\partial_{U} L\right)(W) H+L\left(\partial_{U} H\right)(W) \\
\Rightarrow \frac{\partial}{\partial U} E(W) & =\partial_{H} E\left(\partial_{U} H\right)(W)=-L^{T} P \cdot\left(\partial_{U} H\right)(W) \\
& =-P \cdot L\left(\partial_{U} H\right)(W)
\end{aligned}
$$

In each time step a nonlinear variational problem has to be solved.

How to compute the descent direction?

$$
\begin{aligned}
& \frac{\partial}{\partial U} E\left(H\left(U, H^{k}\right)\right)(W)=\partial_{H} E\left(\partial_{U} H(W)\right) \\
& H\left(U, H^{k}\right)=L^{-1}(U) H^{k} \\
& \Rightarrow \partial_{U} H=-L^{-1}\left(\partial_{U} L(W)\right) L^{-1} H^{k} \quad \text { expensive to compute! }
\end{aligned}
$$

dual problem: $L(U)^{T} P=-\partial_{H} E$

$$
\begin{aligned}
H^{k} & =L(U) H\left(U, H^{k}\right) \Rightarrow 0=\left(\partial_{U} L\right)(W) H+L\left(\partial_{U} H\right)(W) \\
\Rightarrow \frac{\partial}{\partial U} E(W) & =\partial_{H} E\left(\partial_{U} H\right)(W)=-L^{T} P \cdot\left(\partial_{U} H\right)(W) \\
& =-P \cdot L\left(\partial_{U} H\right)(W)=P \cdot\left(\partial_{U} L\right)(W) H
\end{aligned}
$$

Four-fold symmetry perturbed droplet sliding down a sphere:

In each time step a nonlinear variational problem has to be solved.

In each time step a nonlinear variational problem has to be solved.

How to compute the descent direction?

$$
W(X, Y)=\frac{1}{\tau} \int_{\mathcal{S}[X]}|Y-X|^{2} \mathrm{~d} a \Rightarrow
$$

In each time step a nonlinear variational problem has to be solved.

How to compute the descent direction?

$$
\begin{aligned}
& W(X, Y)=\frac{1}{\tau} \int_{\mathcal{S}[X]}|Y-X|^{2} \mathrm{~d} a \Rightarrow \\
& \frac{\partial}{\partial X} W(X, Y(X))(\Theta)=\partial_{X} W(\Theta)+\partial_{Y} W\left(\partial_{X} Y(\Theta)\right)
\end{aligned}
$$

In each time step a nonlinear variational problem has to be solved.

How to compute the descent direction?

$$
\begin{aligned}
& W(X, Y)=\frac{1}{\tau} \int_{\mathcal{S}[X]}|Y-X|^{2} \mathrm{~d} a \Rightarrow \\
& \frac{\partial}{\partial X} W(X, Y(X))(\Theta)=\partial_{X} W(\Theta)+\partial_{Y} W\left(\partial_{X} Y(\Theta)\right) \\
& \text { where } Y(X)=(\mathbf{M}[X]+\tau \mathbf{L}[X])^{-1} \mathbf{M}[X] X \text { expensive to compute! }
\end{aligned}
$$

In each time step a nonlinear variational problem has to be solved.

How to compute the descent direction?

$$
\begin{aligned}
& W(X, Y)=\frac{1}{\tau} \int_{\mathcal{S}[X]}|Y-X|^{2} \mathrm{~d} a \Rightarrow \\
& \frac{\partial}{\partial X} W(X, Y(X))(\Theta)=\partial_{X} W(\Theta)+\partial_{Y} W\left(\partial_{X} Y(\Theta)\right) \\
& \text { where } Y(X)=(\mathbf{M}[X]+\tau \mathbf{L}[X])^{-1} \mathbf{M}[X] X \text { expensive to compute! }
\end{aligned}
$$

$$
\text { dual problem: }(\mathbf{M}[X]+\tau \mathbf{L}[X]) P=-\partial_{Y} W
$$

In each time step a nonlinear variational problem has to be solved.

How to compute the descent direction?

$$
\begin{aligned}
& W(X, Y)=\frac{1}{\tau} \int_{\mathcal{S}[X]}|Y-X|^{2} \mathrm{~d} a \Rightarrow \\
& \frac{\partial}{\partial X} W(X, Y(X))(\Theta)=\partial_{X} W(\Theta)+\partial_{Y} W\left(\partial_{X} Y(\Theta)\right) \\
& \text { where } Y(X)=(\mathbf{M}[X]+\tau \mathbf{L}[X])^{-1} \mathbf{M}[X] X \text { expensive to compute! }
\end{aligned}
$$

dual problem: $(\mathbf{M}[X]+\tau \mathbf{L}[X]) P=-\partial_{Y} W$

$$
\begin{aligned}
\frac{\partial}{\partial X} W(X, Y(X))(\Theta)= & \frac{1}{\tau} \partial_{X} \mathbf{M}(\Theta)(Y-X) \cdot(Y-X) \\
& +\frac{2}{\tau} \mathbf{M}(X-Y) \cdot \Theta-\left(\partial_{X} \mathbf{M}(\Theta)\right) X \cdot P \\
& +\left(\left(\partial_{X} \mathbf{M}+\tau \partial_{X} \mathbf{L}\right)(\Theta)\right) Y \cdot P
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial}{\partial X} W(X, Y(X))(\Theta)= & \frac{1}{\tau} \partial_{X} \mathbf{M}(\Theta)(Y-X) \cdot(Y-X)+\frac{2}{\tau} \mathbf{M}(X-Y) \cdot \Theta \\
& +\left(\left(\partial_{X} \mathbf{M}+\tau \partial_{X} \mathbf{L}\right)(\Theta)\right) Y \cdot P \\
(\mathbf{M}[X]+\tau \mathbf{L}[X]) P= & \left.-\partial_{Y} W \quad \text { (dual problem }\right)
\end{aligned}
$$

Pf.:
$(\mathbf{M}+\tau \mathbf{L}) Y=\mathbf{M} X$

$$
\begin{aligned}
\frac{\partial}{\partial X} W(X, Y(X))(\Theta)= & \frac{1}{\tau} \partial_{X} \mathbf{M}(\Theta)(Y-X) \cdot(Y-X)+\frac{2}{\tau} \mathbf{M}(X-Y) \cdot \Theta \\
& +\left(\left(\partial_{X} \mathbf{M}+\tau \partial_{X} \mathbf{L}\right)(\Theta)\right) Y \cdot P \\
(\mathbf{M}[X]+\tau \mathbf{L}[X]) P= & \left.-\partial_{Y} W \quad \text { (dual problem }\right)
\end{aligned}
$$

Pf.:

$$
\begin{aligned}
& (\mathbf{M}+\tau \mathbf{L}) Y=\mathbf{M} X \Rightarrow \\
& \left(\partial_{X} \mathbf{M}(\Theta)\right) X=\left(\left(\partial_{X} \mathbf{M}+\tau \partial_{X} \mathbf{L}\right)(\Theta)\right) Y+(\mathbf{M}+\tau \mathbf{L})\left(\partial_{X} Y(\Theta)\right) \Rightarrow
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial}{\partial X} W(X, Y(X))(\Theta)= & \frac{1}{\tau} \partial_{X} \mathbf{M}(\Theta)(Y-X) \cdot(Y-X)+\frac{2}{\tau} \mathbf{M}(X-Y) \cdot \Theta \\
& +\left(\left(\partial_{X} \mathbf{M}+\tau \partial_{X} \mathbf{L}\right)(\Theta)\right) Y \cdot P \\
(\mathbf{M}[X]+\tau \mathbf{L}[X]) P= & \left.-\partial_{Y} W \quad \text { (dual problem }\right)
\end{aligned}
$$

Pf.:

$$
\begin{aligned}
& (\mathbf{M}+\tau \mathbf{L}) Y=\mathbf{M} X \Rightarrow \\
& \left(\partial_{X} \mathbf{M}(\Theta)\right) X=\left(\left(\partial_{X} \mathbf{M}+\tau \partial_{X} \mathbf{L}\right)(\Theta)\right) Y+(\mathbf{M}+\tau \mathbf{L})\left(\partial_{X} Y(\Theta)\right) \Rightarrow \\
& \frac{\partial}{\partial X} W(X, Y(X))(\Theta)=\partial_{X} W(\Theta)+\partial_{Y} W\left(\partial_{X} Y(\Theta)\right)
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial}{\partial X} W(X, Y(X))(\Theta)= & \frac{1}{\tau} \partial_{X} \mathbf{M}(\Theta)(Y-X) \cdot(Y-X)+\frac{2}{\tau} \mathbf{M}(X-Y) \cdot \Theta \\
& +\left(\left(\partial_{X} \mathbf{M}+\tau \partial_{X} \mathbf{L}\right)(\Theta)\right) Y \cdot P \\
(\mathbf{M}[X]+\tau \mathbf{L}[X]) P= & \left.-\partial_{Y} W \quad \text { (dual problem }\right)
\end{aligned}
$$

Pf.:

$$
\begin{aligned}
& (\mathbf{M}+\tau \mathbf{L}) Y=\mathbf{M} X \Rightarrow \\
& \left(\partial_{X} \mathbf{M}(\Theta)\right) X=\left(\left(\partial_{X} \mathbf{M}+\tau \partial_{X} \mathbf{L}\right)(\Theta)\right) Y+(\mathbf{M}+\tau \mathbf{L})\left(\partial_{X} Y(\Theta)\right) \Rightarrow \\
& \frac{\partial}{\partial X} W(X, Y(X))(\Theta)=\partial_{X} W(\Theta)+\partial_{Y} W\left(\partial_{X} Y(\Theta)\right) \\
& \quad=\partial_{X} W(\Theta)-(\mathbf{M}+\tau \mathbf{L}) P \cdot \partial_{X} Y(\Theta)
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial}{\partial X} W(X, Y(X))(\Theta)= & \frac{1}{\tau} \partial_{X} \mathbf{M}(\Theta)(Y-X) \cdot(Y-X)+\frac{2}{\tau} \mathbf{M}(X-Y) \cdot \Theta \\
& +\left(\left(\partial_{X} \mathbf{M}+\tau \partial_{X} \mathbf{L}\right)(\Theta)\right) Y \cdot P \\
(\mathbf{M}[X]+\tau \mathbf{L}[X]) P= & \left.-\partial_{Y} W \quad \text { (dual problem }\right)
\end{aligned}
$$

Pf.:

$$
\begin{aligned}
& (\mathbf{M}+\tau \mathbf{L}) Y=\mathbf{M} X \Rightarrow \\
& \left(\partial_{X} \mathbf{M}(\Theta)\right) X=\left(\left(\partial_{X} \mathbf{M}+\tau \partial_{X} \mathbf{L}\right)(\Theta)\right) Y+(\mathbf{M}+\tau \mathbf{L})\left(\partial_{X} Y(\Theta)\right) \Rightarrow \\
& \frac{\partial}{\partial X} W(X, Y(X))(\Theta)=\partial_{X} W(\Theta)+\partial_{Y} W\left(\partial_{X} Y(\Theta)\right) \\
& \quad=\partial_{X} W(\Theta)-(\mathbf{M}+\tau \mathbf{L}) P \cdot \partial_{X} Y(\Theta) \\
& \quad=\frac{1}{\tau} \partial_{X} \mathbf{M}(\Theta)(Y-X) \cdot(Y-X)+\frac{2}{\tau} \mathbf{M}(X-Y) \cdot \Theta \\
& \quad \quad-(\mathbf{M}+\tau \mathbf{L}) \partial_{X} Y(\Theta) \cdot P
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial}{\partial X} W(X, Y(X))(\Theta)= & \frac{1}{\tau} \partial_{X} \mathbf{M}(\Theta)(Y-X) \cdot(Y-X)+\frac{2}{\tau} \mathbf{M}(X-Y) \cdot \Theta \\
& +\left(\left(\partial_{X} \mathbf{M}+\tau \partial_{X} \mathbf{L}\right)(\Theta)\right) Y \cdot P \\
(\mathbf{M}[X]+\tau \mathbf{L}[X]) P= & \left.-\partial_{Y} W \quad \text { (dual problem }\right)
\end{aligned}
$$

Pf.:

$$
\begin{aligned}
& (\mathbf{M}+\tau \mathbf{L}) Y=\mathbf{M} X \Rightarrow \\
& \left(\partial_{X} \mathbf{M}(\Theta)\right) X=\left(\left(\partial_{X} \mathbf{M}+\tau \partial_{X} \mathbf{L}\right)(\Theta)\right) Y+(\mathbf{M}+\tau \mathbf{L})\left(\partial_{X} Y(\Theta)\right) \Rightarrow \\
& \frac{\partial}{\partial X} W(X, Y(X))(\Theta)=\partial_{X} W(\Theta)+\partial_{Y} W\left(\partial_{X} Y(\Theta)\right) \\
& \quad=\partial_{X} W(\Theta)-(\mathbf{M}+\tau \mathbf{L}) P \cdot \partial_{X} Y(\Theta) \\
& \quad=\frac{1}{\tau} \partial_{X} \mathbf{M}(\Theta)(Y-X) \cdot(Y-X)+\frac{2}{\tau} \mathbf{M}(X-Y) \cdot \Theta \\
& \quad \quad-(\mathbf{M}+\tau \mathbf{L}) \partial_{X} Y(\Theta) \cdot P \\
& \quad=\frac{1}{\tau} \partial_{X} \mathbf{M}(\Theta)(Y-X) \cdot(Y-X)+\frac{2}{\tau} \mathbf{M}(X-Y) \cdot \Theta \\
& \quad+\left(\left(\left(\partial_{X} \mathbf{M}+\tau \partial_{X} \mathbf{L}\right)(\Theta)\right) Y-\left(\partial_{X} \mathbf{M}(\Theta)\right) X\right) \cdot P
\end{aligned}
$$

$$
x_{0}(s)=\left(-\frac{5}{2} \cos (s)+4 \cos (5 s),-\frac{5}{2} \sin (s)+4 \sin (5 s), \delta \sin (3 s)\right), \delta=0.1
$$

$$
t=0.0
$$

$$
t=1348.9
$$

$$
t=4264.1
$$

$$
t=4670.2
$$

$$
t=6555.7
$$

$t=9108.4 .9$

$t=9297.0$

$$
t=9489.1
$$

cf. [Dziuk et al. '06]

