Modeling, Analysis and Numerics in Electrohydrodynamics

Markus Schmuck

University Tübingen

Warwick, 2009

Outline

Continuous Model and Analytical Results

- Analytical Results in 3D
- Approximation Goal

Finite Element Discretization 2

- Van Roosbroeck part (u = 0)
- Results ($\mathbf{u} = 0$)
- The whole EHD system ($\mathbf{u} \neq \mathbf{0}$)
- Results ($\mathbf{u} \neq \mathbf{0}$)

Analytical Results in 3D Approximation Goal

Electrokinetics describes

Questions in Electrokinetics: (Modeling, Numerics)

- What happens at the solid/electrolyte interphase?
- Behavior of species in special geometries?

- separation devices, micro-/nano- mixers
- supercapacitors (electric vehicles)
- desalination devices

Questions in Electrokinetics: (Modeling, Numerics)

- What happens at the solid/electrolyte interphase?
- Behavior of species in special geometries?

- separation devices, micro-/nano- mixers
- supercapacitors (electric vehicles)
- desalination devices

Questions in Electrokinetics: (Modeling, Numerics)

- What happens at the solid/electrolyte interphase?
- Behavior of species in special geometries?

- separation devices, micro-/nano- mixers
- supercapacitors (electric vehicles)
- desalination devices

Questions in Electrokinetics: (Modeling, Numerics)

- What happens at the solid/electrolyte interphase?
- Behavior of species in special geometries?

- separation devices, micro-/nano- mixers
- supercapacitors (electric vehicles)
- desalination devices

Questions in Electrokinetics: (Modeling, Numerics)

- What happens at the solid/electrolyte interphase?
- Behavior of species in special geometries?

- separation devices, micro-/nano- mixers
- supercapacitors (electric vehicles)
- desalination devices

Analytical Results in 3D Approximation Goal

Basic Continuous Model

Navier-Stokes equations:

$$\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} - \Delta \mathbf{u} + \nabla p = -(n^+ - n^-) \nabla \psi$$
 in Ω_T
div $\mathbf{u} = 0$ in Ω_T

Nernst-Planck-Poisson equations:

 $\partial_t n^{\pm} \mp \operatorname{div} \left(n^{\pm} \nabla \psi \right) - \Delta n^{\pm} + \left(\mathbf{u} \cdot \nabla \right) n^{\pm} = \mathbf{0} \quad \operatorname{in} \Omega_T$

$$-\Delta \psi = \mathbf{n}^+ - \mathbf{n}^- \quad \text{in } \Omega_T$$

Analytical Results in 3D Approximation Goal

Basic Continuous Model

Navier-Stokes equations:

$$\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} - \Delta \mathbf{u} + \nabla p = -(n^+ - n^-) \nabla \psi$$
 in Ω_T
div $\mathbf{u} = 0$ in Ω_T

Nernst-Planck-Poisson equations:

 $\partial_t n^{\pm} \mp \operatorname{div} \left(n^{\pm} \nabla \psi \right) - \Delta n^{\pm} + \left(\mathbf{u} \cdot \nabla \right) n^{\pm} = \mathbf{0} \quad \text{in } \Omega_T$

$$-\Delta \psi = \mathbf{n}^+ - \mathbf{n}^- \quad \text{in } \Omega_T$$

Analytical Results in 3D Approximation Goal

Basic Continuous Model

Navier-Stokes equations:

$$\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} - \Delta \mathbf{u} + \nabla p = -(n^+ - n^-) \nabla \psi$$
 in Ω_T
div $\mathbf{u} = 0$ in Ω_T

Nernst-Planck-Poisson equations:

 $\partial_t n^{\pm} \mp \operatorname{div} \left(n^{\pm} \nabla \psi \right) - \Delta n^{\pm} + \left(\mathbf{u} \cdot \nabla \right) n^{\pm} = \mathbf{0} \quad \text{in } \Omega_T$

$$-\Delta \psi = \mathbf{n}^+ - \mathbf{n}^- \quad \text{in } \Omega_T$$

The role of the energy and the entropy:

Energy in

- Continous Setting: not required for (global) existence
- **Discrete Setting**: uniform bounds to study long-time asymptotics

- Continuous Setting: characterizes long-time asymptotics
- Discrete Setting: characterizes long-time asymptotics

The role of the energy and the entropy:

Energy in

- Continous Setting: not required for (global) existence
- **Discrete Setting**: uniform bounds to study long-time asymptotics

- Continuous Setting: characterizes long-time asymptotics
- Discrete Setting: characterizes long-time asymptotics

The role of the energy and the entropy:

Energy in

- Continous Setting: not required for (global) existence
- **Discrete Setting**: uniform bounds to study long-time asymptotics

- Continuous Setting: characterizes long-time asymptotics
- Discrete Setting: characterizes long-time asymptotics

The role of the energy and the entropy:

Energy in

- Continous Setting: not required for (global) existence
- **Discrete Setting**: uniform bounds to study long-time asymptotics

- Continuous Setting: characterizes long-time asymptotics
- Discrete Setting: characterizes long-time asymptotics

Analytical Results in 3D Approximation Goal

Results in 3D (Schmuck [07])

• Existence of weak solutions: Schauder's fixed point thm

Existence of local strong solutions

• Characterizations of weak solutions: (also for the pure van Roosbroeck equations)

- $L^{\infty}(\Omega_T)$ -bound (Moser iteration)
- (Lyapunov) entropy-law
- Energy law
- Non-negativity of n[±]

Based on :

Analytical Results in 3D Approximation Goal

Results in 3D (Schmuck [07])

- Existence of weak solutions: Schauder's fixed point thm
- Existence of local strong solutions
- Characterizations of weak solutions: (also for the pure van Roosbroeck equations)
 - $L^{\infty}(\Omega_T)$ -bound (Moser iteration)
 - (Lyapunov) entropy-law
 - Energy law
 - Non-negativity of n[±]

Based on :

Analytical Results in 3D Approximation Goal

Results in 3D (Schmuck [07])

- Existence of weak solutions: Schauder's fixed point thm
- Existence of local strong solutions
- Characterizations of weak solutions: (also for the pure van Roosbroeck equations)
 - $L^{\infty}(\Omega_T)$ -bound (Moser iteration)
 - (Lyapunov) entropy-law
 - Energy law
 - Non-negativity of n[±]

Based on :

Analytical Results in 3D Approximation Goal

Results in 3D (Schmuck [07])

- Existence of weak solutions: Schauder's fixed point thm
- Existence of local strong solutions
- Characterizations of weak solutions: (also for the pure van Roosbroeck equations)
 - L[∞](Ω_T)-bound (Moser iteration)
 - (Lyapunov) entropy-law
 - Energy law
 - Non-negativity of n[±]

Based on :

Analytical Results in 3D Approximation Goal

Results in 3D (Schmuck [07])

- Existence of weak solutions: Schauder's fixed point thm
- Existence of local strong solutions
- Characterizations of weak solutions: (also for the pure van Roosbroeck equations)
 - L[∞](Ω_T)-bound (Moser iteration)
 - (Lyapunov) entropy-law
 - Energy law
 - Non-negativity of n[±]

Based on :

```
Gajewski/Gröger [86]; Bihler/Nadziedja [94]; Temam (book) [01]
```

Analytical Results in 3D Approximation Goal

Results in 3D (Schmuck [07])

- Existence of weak solutions: Schauder's fixed point thm
- Existence of local strong solutions
- Characterizations of weak solutions: (also for the pure van Roosbroeck equations)
 - L[∞](Ω_T)-bound (Moser iteration)
 - (Lyapunov) entropy-law
 - Energy law
 - Non-negativity of n[±]

Based on :

```
Gajewski/Gröger [86]; Bihler/Nadziedja [94]; Temam (book) [01]
```

Analytical Results in 3D Approximation Goal

Results in 3D (Schmuck [07])

- Existence of weak solutions: Schauder's fixed point thm
- Existence of local strong solutions
- Characterizations of weak solutions: (also for the pure van Roosbroeck equations)
 - $L^{\infty}(\Omega_T)$ -bound (Moser iteration)
 - (Lyapunov) entropy-law
 - Energy law
 - Non-negativity of n[±]

Based on

Analytical Results in 3D Approximation Goal

Results in 3D (Schmuck [07])

- Existence of weak solutions: Schauder's fixed point thm
- Existence of local strong solutions
- Characterizations of weak solutions: (also for the pure van Roosbroeck equations)
 - $L^{\infty}(\Omega_T)$ -bound (Moser iteration)
 - (Lyapunov) entropy-law
 - Energy law
 - Non-negativity of n[±]

Based on

Analytical Results in 3D Approximation Goal

Results in 3D (Schmuck [07])

- Existence of weak solutions: Schauder's fixed point thm
- Existence of local strong solutions
- Characterizations of weak solutions: (also for the pure van Roosbroeck equations)
 - $L^{\infty}(\Omega_T)$ -bound (Moser iteration)
 - (Lyapunov) entropy-law
 - Energy law
 - Non-negativity of n[±]

Based on :

Analytical Results in 3D Approximation Goal

Discretization by affine finite elements:

Recover results from the continuous setting to the discrete world

 $\begin{array}{l} \mbox{Van Roosbroeck part} (u=0) \\ \mbox{Results} (u=0) \\ \mbox{The whole EHD system} (u\neq 0) \\ \mbox{Results} (u\neq 0) \end{array}$

Part II

 $\begin{array}{l} \mbox{Van Roosbroeck part} (u=0) \\ \mbox{Results} (u=0) \\ \mbox{The whole EHD system} (u\neq 0) \\ \mbox{Results} (u\neq 0) \end{array}$

Outline

- Analytical Results in 3D
- Approximation Goal

2 Finite Element Discretization

- Van Roosbroeck part (u = 0)
- Results (**u** = 0)
- The whole EHD system ($\mathbf{u} \neq \mathbf{0}$)
- Results ($\mathbf{u} \neq \mathbf{0}$)

 $\begin{array}{l} \mbox{Van Roosbroeck part} (u=0) \\ \mbox{Results} (u=0) \\ \mbox{The whole EHD system} (u\neq 0) \\ \mbox{Results} (u\neq 0) \end{array}$

Energies and Characterizations not immediate:

2) entropy based

2) bases on : Grün/Rumpf [00]; Barrett/Nürnberg [04];

 $\begin{array}{l} \mbox{Van Roosbroeck part} (u=0) \\ \mbox{Results} (u=0) \\ \mbox{The whole EHD system} (u\neq 0) \\ \mbox{Results} (u\neq 0) \end{array}$

Problems			Tools		
• div $\mathbf{u}_h \neq 0$	\Rightarrow	skew symr	netricity of $\left(\mathbf{u} \cdot \right)$	$ abla \mathbf{u}, \mathbf{v}$	
No Moser-ite	ration	⇒ 1)	M-matrix ⇒ 2) entropy	d.m.p provider <i>S</i> _e	
log not linear		1) perturbe	d entropy , 2) entropy	provider S_{ϵ}	
Approach:1) energy based, 2) entropy based					
2) bases on :	Grün/	Rumpf [00];	Barrett/Nürnbe	erg [04];	

 $\begin{array}{l} \mbox{Van Roosbroeck part} (u=0) \\ \mbox{Results} (u=0) \\ \mbox{The whole EHD system} (u\neq 0) \\ \mbox{Results} (u\neq 0) \end{array}$

Problems				Tools	
• div $\mathbf{u}_h \neq 0$	\Rightarrow	skew	symn	netricity of $\left(\mathbf{u} \cdot \nabla \mathbf{u}, \mathbf{v}\right)$	
 No Moser-ite 	ration	\Rightarrow	1)	M-matrix ⇒ d.m.µ 2) entropy provide	o er <mark>S</mark> ∈
log not linear	\Rightarrow	1) pert	urbec	d entropy, 2) entropy provide	∋r <mark>S</mark> ∈
Approach:1) energy based, 2) entropy based					
2) bases on :	Grün/l	Rumpf [00];	Barrett/Nürnberg [04];

 $\begin{array}{l} \mbox{Van Roosbroeck part} (u=0) \\ \mbox{Results} (u=0) \\ \mbox{The whole EHD system} (u\neq 0) \\ \mbox{Results} (u\neq 0) \end{array}$

Problems				Tools	
• div $\mathbf{u}_h \neq 0$	\Rightarrow	skew	symn	netricity of $\left(\mathbf{u} \cdot \nabla \mathbf{u}, \mathbf{v}\right)$	
 No Moser-ite 	ration	\Rightarrow	1)	M-matrix ⇒ d.m.µ 2) entropy provide	o er <mark>S</mark> ∈
log not linear	\Rightarrow	1) pert	urbec	d entropy, 2) entropy provide	∋r <mark>S</mark> ∈
Approach:1) energy based, 2) entropy based					
2) bases on :	Grün/l	Rumpf [00];	Barrett/Nürnberg [04];

 $\begin{array}{l} \mbox{Van Roosbroeck part} (u=0) \\ \mbox{Results} (u=0) \\ \mbox{The whole EHD system} (u\neq 0) \\ \mbox{Results} (u\neq 0) \end{array}$

Problems				Tools
• div $\mathbf{u}_h \neq 0$	\Rightarrow	skew	symn	metricity of $\left(\mathbf{u} \cdot \nabla \mathbf{u}, \mathbf{v}\right)$
No Moser-ite	ration	\Rightarrow	1)) M-matrix \Rightarrow d.m.p 2) entropy provider S_{ϵ}
log not linear	⇒ 1) pert	urbed	d entropy, 2) entropy provider S_{ϵ}
Approach:	 energy based, entropy based 			
2) bases on :	Grün/R	umpf	[00];	Barrett/Nürnberg [04];

 $\label{eq:var} \begin{array}{l} \mbox{Van Roosbroeck part } (u = 0) \\ \mbox{Results } (u = 0) \\ \mbox{The whole EHD system } (u \neq 0) \\ \mbox{Results } (u \neq 0) \end{array}$

Two Discretization Strategies

Schemes:

 $\left(\mathrm{d}_{t}(\mathcal{N}^{\pm})^{j},\Phi\right)_{h}+\left(\nabla(\mathcal{N}^{\pm})^{j},\nabla\Phi\right)\pm\left(\boldsymbol{R}_{\epsilon}[(\mathcal{N}^{\pm})^{j}]\nabla\Psi^{j},\nabla\Phi\right)=0$

$$(\nabla \Psi^j, \nabla \Phi) = (P^j - N^j, \Phi)_{h_i}$$

where

 $R_{\epsilon}[X] = egin{cases} X & ext{energy based} \ S_{\epsilon}(X) & ext{entropy based} \end{cases}$

 $\label{eq:var} \begin{array}{l} \mbox{Van Roosbroeck part } (u = 0) \\ \mbox{Results } (u = 0) \\ \mbox{The whole EHD system } (u \neq 0) \\ \mbox{Results } (u \neq 0) \end{array}$

Two Discretization Strategies

Schemes:

 $(\mathbf{d}_{t}(\mathcal{N}^{\pm})^{j}, \Phi)_{h} + (\nabla(\mathcal{N}^{\pm})^{j}, \nabla\Phi) \pm (\mathbf{R}_{\epsilon}[(\mathcal{N}^{\pm})^{j}]\nabla\Psi^{j}, \nabla\Phi) = \mathbf{0}$

$$(\nabla \Psi^j, \nabla \Phi) = (P^j - N^j, \Phi)_{h_j}$$

where

 $R_{\epsilon}[X] = egin{cases} X & ext{energy based} \ S_{\epsilon}(X) & ext{entropy based} \end{cases}$

 $\begin{array}{l} \mbox{Van Roosbroeck part } (u = 0) \\ \mbox{Results } (u = 0) \\ \mbox{The whole EHD system } (u \neq 0) \\ \mbox{Results } (u \neq 0) \end{array}$

Two Discretization Strategies

Schemes:

 $(\mathbf{d}_{t}(\mathcal{N}^{\pm})^{j}, \Phi)_{h} + (\nabla(\mathcal{N}^{\pm})^{j}, \nabla\Phi) \pm (\mathbf{R}_{\epsilon}[(\mathcal{N}^{\pm})^{j}]\nabla\Psi^{j}, \nabla\Phi) = \mathbf{0}$

$$(\nabla \Psi^j, \nabla \Phi) = (P^j - N^j, \Phi)_h,$$

where

 $m{R}_{\epsilon}[X] = egin{cases} X & ext{energy based} \ S_{\epsilon}(X) & ext{entropy based} \end{cases}$

 $\begin{array}{l} \mbox{Van Roosbroeck part } (u = 0) \\ \mbox{Results } (u = 0) \\ \mbox{The whole EHD system } (u \neq 0) \\ \mbox{Results } (u \neq 0) \end{array}$

Two Discretization Strategies

Schemes:

 $\left(\mathbf{d}_{t}(\mathcal{N}^{\pm})^{j}, \Phi\right)_{h} + \left(\nabla(\mathcal{N}^{\pm})^{j}, \nabla\Phi\right) \pm \left(\boldsymbol{R}_{\epsilon}[(\mathcal{N}^{\pm})^{j}]\nabla\Psi^{j}, \nabla\Phi\right) = \mathbf{0}$

$$(\nabla \Psi^j, \nabla \Phi) = (P^j - N^j, \Phi)_h,$$

where

$$R_{\epsilon}[X] = \begin{cases} X & ext{energy based} \\ S_{\epsilon}(X) & ext{entropy based} \end{cases}$$

 $\label{eq:var} \begin{array}{l} \mbox{Van Roosbroeck part } (u = 0) \\ \mbox{Results } (u = 0) \\ \mbox{The whole EHD system } (u \neq 0) \\ \mbox{Results } (u \neq 0) \end{array}$

Two Discretization Strategies

Schemes:

 $\left(\mathbf{d}_{t}(\mathcal{N}^{\pm})^{j}, \Phi\right)_{h} + \left(\nabla(\mathcal{N}^{\pm})^{j}, \nabla\Phi\right) \pm \left(\boldsymbol{R}_{\epsilon}[(\mathcal{N}^{\pm})^{j}]\nabla\Psi^{j}, \nabla\Phi\right) = \mathbf{0}$

$$(\nabla \Psi^{j}, \nabla \Phi) = (P^{j} - N^{j}, \Phi)_{h}$$

where

 $R_{\epsilon}[X] = \begin{cases} X & \text{energy based} \\ S_{\epsilon}(X) & \text{entropy based} \end{cases}$

 $\label{eq:var} \begin{array}{l} \mbox{Van Roosbroeck part} (u=0) \\ \mbox{Results} (u=0) \\ \mbox{The whole EHD system} (u\neq 0) \\ \mbox{Results} (u\neq 0) \end{array}$

Explanations to the Schemes:

Fully implicit Scheme:

 \Rightarrow Necessary for energy and entropy properties

Consequence:

 \Rightarrow In practice a linearization required

- ⇒ Banach's fixed point theorem (constructive proof for the energy based strategy)
- \Rightarrow fully practical algorithm

 $\label{eq:var} \begin{array}{l} \mbox{Van Roosbroeck part} (u=0) \\ \mbox{Results} (u=0) \\ \mbox{The whole EHD system} (u\neq 0) \\ \mbox{Results} (u\neq 0) \end{array}$

Explanations to the Schemes:

Fully implicit Scheme:

 \Rightarrow Necessary for energy and entropy properties

Consequence:

 \Rightarrow In practice a linearization required

- ⇒ Banach's fixed point theorem (constructive proof for the energy based strategy)
- \Rightarrow fully practical algorithm

 $\label{eq:var} \begin{array}{l} \mbox{Van Roosbroeck part} (u=0) \\ \mbox{Results} (u=0) \\ \mbox{The whole EHD system} (u\neq 0) \\ \mbox{Results} (u\neq 0) \end{array}$

Explanations to the Schemes:

Fully implicit Scheme:

 \Rightarrow Necessary for energy and entropy properties

Consequence:

 \Rightarrow In practice a linearization required

- ⇒ Banach's fixed point theorem (constructive proof for the energy based strategy)
- \Rightarrow fully practical algorithm

 $\label{eq:var} \begin{array}{l} \mbox{Van Roosbroeck part} (u=0) \\ \mbox{Results} (u=0) \\ \mbox{The whole EHD system} (u\neq 0) \\ \mbox{Results} (u\neq 0) \end{array}$

Explanations to the Schemes:

Fully implicit Scheme:

 \Rightarrow Necessary for energy and entropy properties

Consequence:

 \Rightarrow In practice a linearization required

- ⇒ Banach's fixed point theorem (constructive proof for the energy based strategy)
- \Rightarrow fully practical algorithm

 $\label{eq:var} \begin{array}{l} \mbox{Van Roosbroeck part} (u=0) \\ \mbox{Results} (u=0) \\ \mbox{The whole EHD system} (u\neq 0) \\ \mbox{Results} (u\neq 0) \end{array}$

Energy based approach \Rightarrow perturbed Entropy

Problems:

- $\ln \mathcal{N}^{\pm}$ not allowed test fct. \Rightarrow linear interpolation $\mathcal{I}_{h}[\ln(\mathcal{N}^{\pm} + \delta)]$
- $\left(\mathcal{N}^{\pm}\nabla\Psi, \nabla\mathcal{I}_{h}\left[\ln(\mathcal{N}^{\pm}+\delta)\right]\right) \neq \left(\nabla\Psi, \nabla\mathcal{N}^{\pm}\right)$ "=" is desired, since $\left(\nabla\Psi, \nabla(\mathcal{N}^{+}-\mathcal{N}^{-})\right) = \|\mathcal{N}^{+}-\mathcal{N}^{-}\|^{2}$ **Idea:** Use the interpolation error $\mathcal{T}_{L}\left[\ln(\mathcal{N}^{\pm}+\delta)\right] = \left(\mathcal{T}_{L}\left[\ln(\mathcal{N}^{\pm}+\delta)\right] - \ln(\mathcal{N}^{\pm}+\delta)\right) + \ln(\mathcal{N}^{\pm}+\delta)$

⇒ perturbation term depending on δ , more regular initial data and the mesh coupling $k < Ch^2$

 $\label{eq:var} \begin{array}{l} \mbox{Van Roosbroeck part} (u=0) \\ \mbox{Results} (u=0) \\ \mbox{The whole EHD system} (u\neq 0) \\ \mbox{Results} (u\neq 0) \end{array}$

Energy based approach \Rightarrow perturbed Entropy

Problems:

- $\ln N^{\pm}$ not allowed test fct. \Rightarrow linear interpolation $\mathcal{I}_h[\ln(N^{\pm} + \delta)]$
- $\left(\mathcal{N}^{\pm}\nabla\Psi, \nabla\mathcal{I}_{h}[\ln(\mathcal{N}^{\pm}+\delta)]\right) \neq \left(\nabla\Psi, \nabla\mathcal{N}^{\pm}\right)$ "=" is desired, since $\left(\nabla\Psi, \nabla(\mathcal{N}^{+}-\mathcal{N}^{-})\right) = \|\mathcal{N}^{+}-\mathcal{N}^{-}\|^{2}$ Idea: Use the interpolation error $\mathcal{I}_{h}[\ln(\mathcal{N}^{\pm}+\delta)] = \left(\mathcal{I}_{h}[\ln(\mathcal{N}^{\pm}+\delta)] - \ln(\mathcal{N}^{\pm}+\delta)\right) + \ln(\mathcal{N}^{\pm}+\delta)$

⇒ perturbation term depending on δ , more regular initial data and the mesh coupling $k < Ch^2$

 $\label{eq:var} \begin{array}{l} \mbox{Van Roosbroeck part} (u=0) \\ \mbox{Results} (u=0) \\ \mbox{The whole EHD system} (u\neq 0) \\ \mbox{Results} (u\neq 0) \end{array}$

Energy based approach \Rightarrow perturbed Entropy

Problems:

- $\ln \mathcal{N}^{\pm}$ not allowed test fct. \Rightarrow linear interpolation $\mathcal{I}_{h}[\ln(\mathcal{N}^{\pm} + \delta)]$
- $\left(\mathcal{N}^{\pm}\nabla\Psi, \nabla\mathcal{I}_{h}[\ln(\mathcal{N}^{\pm}+\delta)]\right) \neq \left(\nabla\Psi, \nabla\mathcal{N}^{\pm}\right)$ "=" is desired, since $\left(\nabla\Psi, \nabla(\mathcal{N}^{+}-\mathcal{N}^{-})\right) = \|\mathcal{N}^{+}-\mathcal{N}^{-}\|^{2}$ Idea: Use the interpolation error $\mathcal{I}_{h}[\ln(\mathcal{N}^{\pm}+\delta)] = \left(\mathcal{I}_{h}[\ln(\mathcal{N}^{\pm}+\delta)] - \ln(\mathcal{N}^{\pm}+\delta)\right) + \ln(\mathcal{N}^{\pm}+\delta)$

⇒ perturbation term depending on δ , more regular initial data and the mesh coupling $k < Ch^2$

 $\begin{array}{l} \mbox{Van Roosbroeck part } (u = 0) \\ \mbox{Results } (u = 0) \\ \mbox{The whole EHD system } (u \neq 0) \\ \mbox{Results } (u \neq 0) \end{array}$

Energy based approach \Rightarrow perturbed Entropy

Problems:

- $\ln \mathcal{N}^{\pm}$ not allowed test fct. \Rightarrow linear interpolation $\mathcal{I}_h[\ln(\mathcal{N}^{\pm} + \delta)]$
- $\left(\mathcal{N}^{\pm}\nabla\Psi, \nabla\mathcal{I}_{h}[\ln(\mathcal{N}^{\pm}+\delta)]\right) \neq \left(\nabla\Psi, \nabla\mathcal{N}^{\pm}\right)$ "=" is desired, since $\left(\nabla\Psi, \nabla(\mathcal{N}^{+}-\mathcal{N}^{-})\right) = \|\mathcal{N}^{+}-\mathcal{N}^{-}\|^{2}$ **Idea:** Use the interpolation error

 $\mathcal{I}_{h}[\ln(\mathcal{N}^{\pm}+\delta)] = \left(\mathcal{I}_{h}[\ln(\mathcal{N}^{\pm}+\delta)] - \ln(\mathcal{N}^{\pm}+\delta)\right) + \ln(\mathcal{N}^{\pm}+\delta)$

⇒ perturbation term depending on δ , more regular initial data and the mesh coupling $k < Ch^2$

 $\label{eq:var} \begin{array}{l} \mbox{Van Roosbroeck part} (u=0) \\ \mbox{Results} (u=0) \\ \mbox{The whole EHD system} (u\neq 0) \\ \mbox{Results} (u\neq 0) \end{array}$

Entropy based approach

unperturbed Entropy

• Idea: Imitate the continuous situation :

$$\left(\mathbf{n}^{\pm}\nabla\psi,\nabla\ln\mathbf{n}^{\pm}\right) = \left(\nabla\psi,\nabla\mathbf{n}^{\pm}\right)$$

 \Rightarrow

• **Tool:** Define $S_{\epsilon}(\mathcal{N}^{\pm})$ such that

 $S_{\epsilon}(\mathcal{N}^{\pm})
abla \mathcal{I}_{h}[\ln\mathcal{N}^{\pm}] =
abla \mathcal{N}^{\pm}$

 $\implies \left(\nabla\Psi S_{\epsilon}(\mathcal{N}^{\pm}), \nabla\mathcal{I}_{h}[\ln\mathcal{N}^{\pm}]\right) = \left(\nabla\Psi, \nabla\mathcal{N}^{\pm}\right)$

 $\label{eq:var} \begin{array}{l} \mbox{Van Roosbroeck part} (u=0) \\ \mbox{Results} (u=0) \\ \mbox{The whole EHD system} (u\neq 0) \\ \mbox{Results} (u\neq 0) \end{array}$

Entropy based approach

unperturbed Entropy

• Idea: Imitate the continuous situation :

$$\left(\mathbf{n}^{\pm}\nabla\psi,\nabla\ln\mathbf{n}^{\pm}\right)=\left(\nabla\psi,\nabla\mathbf{n}^{\pm}
ight)$$

 \Rightarrow

• **Tool:** Define $S_{\epsilon}(\mathcal{N}^{\pm})$ such that

 $\mathcal{S}_{\epsilon}(\mathcal{N}^{\pm})
abla \mathcal{I}_{h}igl[\ln\mathcal{N}^{\pm}igr] =
abla \mathcal{N}^{\pm} \;.$

 $\implies \left(\nabla \Psi S_{\epsilon}(\mathcal{N}^{\pm}), \nabla \mathcal{I}_{h}[\ln \mathcal{N}^{\pm}]\right) = \left(\nabla \Psi, \nabla \mathcal{N}^{\pm}\right)$ $\Rightarrow \text{ no perturbation}$

 $\label{eq:var} \begin{array}{l} \mbox{Van Roosbroeck part} (u=0) \\ \mbox{Results} (u=0) \\ \mbox{The whole EHD system} (u\neq 0) \\ \mbox{Results} (u\neq 0) \end{array}$

Entropy based approach

unperturbed Entropy

• Idea: Imitate the continuous situation :

$$\left(\mathbf{n}^{\pm}\nabla\psi,\nabla\ln\mathbf{n}^{\pm}\right)=\left(\nabla\psi,\nabla\mathbf{n}^{\pm}
ight)$$

 \Rightarrow

• **Tool:** Define $S_{\epsilon}(\mathcal{N}^{\pm})$ such that

 $\mathcal{S}_{\epsilon}(\mathcal{N}^{\pm})
abla \mathcal{I}_{h}igl[\ln\mathcal{N}^{\pm}igr] =
abla \mathcal{N}^{\pm} \;.$

 $\implies \left(\nabla \Psi S_{\epsilon}(\mathcal{N}^{\pm}), \nabla \mathcal{I}_{h}[\ln \mathcal{N}^{\pm}]\right) = \left(\nabla \Psi, \nabla \mathcal{N}^{\pm}\right)$ $\Rightarrow \text{ no perturbation}$

 $\label{eq:var} \begin{array}{l} \mbox{Van Roosbroeck part} \left(u = 0 \right) \\ \mbox{Results} \left(u = 0 \right) \\ \mbox{The whole EHD system} \left(u \neq 0 \right) \\ \mbox{Results} \left(u \neq 0 \right) \end{array}$

Entropy based approach

unperturbed Entropy

• Idea: Imitate the continuous situation :

$$\left(\mathbf{n}^{\pm}\nabla\psi,\nabla\ln\mathbf{n}^{\pm}\right)=\left(\nabla\psi,\nabla\mathbf{n}^{\pm}
ight)$$

 \Rightarrow

• **Tool:** Define $S_{\epsilon}(\mathcal{N}^{\pm})$ such that

 $\mathcal{S}_{\epsilon}(\mathcal{N}^{\pm})
abla \mathcal{I}_{h}[\ln\mathcal{N}^{\pm}] =
abla \mathcal{N}^{\pm} \; .$

 $\implies \left(\nabla \Psi S_{\epsilon}(\mathcal{N}^{\pm}), \nabla \mathcal{I}_{h}[\ln \mathcal{N}^{\pm}]\right) = \left(\nabla \Psi, \nabla \mathcal{N}^{\pm}\right)$ no perturbation

 $\begin{array}{l} \mbox{Van Roosbroeck part} (u=0) \\ \mbox{Results} (u=0) \\ \mbox{The whole EHD system} (u\neq 0) \\ \mbox{Results} (u\neq 0) \end{array}$

Summary of Results (Prohl/Schmuck [07])

Existence and convergence

- Mass conservation for \mathcal{N}^{\pm}
- Energy law
- 1) perturbed versus
 2) unperturbed entropy law
- 1) Maximum principle versus 2) nothing
- 1) Non-negativity versus 2) quasi-non-negativity

 $\begin{array}{l} \mbox{Van Roosbroeck part} (u=0) \\ \mbox{Results} (u=0) \\ \mbox{The whole EHD system} (u\neq 0) \\ \mbox{Results} (u\neq 0) \end{array}$

- Existence and convergence
- Mass conservation for \mathcal{N}^{\pm}
- Energy law
- 1) perturbed versus
 2) unperturbed entropy law
- 1) Maximum principle versus 2) nothing
- 1) Non-negativity versus
 2) quasi-non-negativity

 $\begin{array}{l} \mbox{Van Roosbroeck part} (u=0) \\ \mbox{Results} (u=0) \\ \mbox{The whole EHD system} (u\neq 0) \\ \mbox{Results} (u\neq 0) \end{array}$

- Existence and convergence
- Mass conservation for \mathcal{N}^{\pm}
- Energy law
- 1) perturbed versus
 2) unperturbed entropy law
- 1) Maximum principle versus 2) nothing
- 1) Non-negativity versus
 2) quasi-non-negativity

 $\begin{array}{l} \mbox{Van Roosbroeck part} (u=0) \\ \mbox{Results} (u=0) \\ \mbox{The whole EHD system} (u\neq 0) \\ \mbox{Results} (u\neq 0) \end{array}$

- Existence and convergence
- Mass conservation for \mathcal{N}^{\pm}
- Energy law
- 1) perturbed versus 2) unperturbed entropy law
- 1) Maximum principle
 versus
 2) nothing
- 1) Non-negativity versus
 2) quasi-non-negativity

 $\begin{array}{l} \mbox{Van Roosbroeck part} (u=0) \\ \mbox{Results} (u=0) \\ \mbox{The whole EHD system} (u\neq 0) \\ \mbox{Results} (u\neq 0) \end{array}$

- Existence and convergence
- Mass conservation for \mathcal{N}^{\pm}
- Energy law
- 1) perturbed versus 2) unperturbed entropy law
- 1) Maximum principle versus 2) nothing
- 1) Non-negativity versus
 2) quasi-non-negativity

 $\begin{array}{l} \mbox{Van Roosbroeck part} (u=0) \\ \mbox{Results} (u=0) \\ \mbox{The whole EHD system} (u\neq 0) \\ \mbox{Results} (u\neq 0) \end{array}$

- Existence and convergence
- Mass conservation for \mathcal{N}^{\pm}
- Energy law
- 1) perturbed versus 2) unperturbed entropy law
- 1) Maximum principle versus 2) nothing
- 1) Non-negativity versus 2) quasi-non-negativity

 $\begin{array}{l} \mbox{Van Roosbroeck part} (u=0) \\ \mbox{Results} (u=0) \\ \mbox{The whole EHD system} (u\neq 0) \\ \mbox{Results} (u\neq 0) \end{array}$

Topic of the remaining part:

Extend the energy based strategy to the whole electrohydrodynamic system

Van Roosbroeck part ($\mathbf{u} = 0$) Results ($\mathbf{u} = 0$) **The whole EHD system (\mathbf{u} \neq 0)** Results ($\mathbf{u} \neq 0$)

Energy based Scheme:

Let $\mathbf{F}_{\mathcal{C}}^{j} := ((\mathcal{N}^{+})^{j} - (\mathcal{N}^{-})^{j}) \nabla \Psi^{j}$, and $(\mathbf{V}, \Phi, \mathbf{Q}) \in \mathbf{X}_{h} \times Y_{h} \times M_{h}$

$$(\mathbf{d}_{t}\mathbf{U}^{j},\mathbf{V}) + (\nabla\mathbf{U}^{j},\nabla\mathbf{V}) + \sigma(\nabla\mathbf{d}_{t}\mathbf{U}^{j},\nabla\mathbf{V}) + ((\mathbf{U}^{j-1}\cdot\nabla)\mathbf{U}^{j},\mathbf{V}) + \frac{1}{2}((\operatorname{div}\mathbf{U}^{j-1})\mathbf{U}^{j},\mathbf{V}) - (\Pi^{j},\operatorname{div}\mathbf{V}) = (-\mathbf{F}_{C}^{j},\mathbf{V})$$
$$(\operatorname{div}\mathbf{U}^{j}, Q) = 0$$

 $\begin{aligned} (\mathrm{d}_t(\mathcal{N}^{\pm})^j, \Phi)_h + (\nabla(\mathcal{N}^{\pm})^j, \nabla\Phi) \\ \pm ((\mathcal{N}^{\pm})^j \nabla\Psi^j, \nabla\Phi) + (\mathbf{U}^j(\mathcal{N}^{\pm})^j, \nabla\Phi) = \mathbf{0} \end{aligned}$

$$(\nabla \Psi^j, \nabla \Phi) = \left((\mathcal{N}^+)^j - (\mathcal{N}^-)^j, \Phi \right)_h.$$

Van Roosbroeck part ($\mathbf{u} = 0$) Results ($\mathbf{u} = 0$) **The whole EHD system (\mathbf{u} \neq 0)** Results ($\mathbf{u} \neq 0$)

Energy based Scheme:

Let $\mathbf{F}_{\mathcal{C}}^{j} := ((\mathcal{N}^{+})^{j} - (\mathcal{N}^{-})^{j}) \nabla \Psi^{j}$, and $(\mathbf{V}, \Phi, \mathbf{Q}) \in \mathbf{X}_{h} \times Y_{h} \times M_{h}$

$$(\mathbf{d}_{t}\mathbf{U}^{j},\mathbf{V}) + (\nabla\mathbf{U}^{j},\nabla\mathbf{V}) + \sigma(\nabla\mathbf{d}_{t}\mathbf{U}^{j},\nabla\mathbf{V}) + ((\mathbf{U}^{j-1}\cdot\nabla)\mathbf{U}^{j},\mathbf{V}) + \frac{1}{2}((\operatorname{div}\mathbf{U}^{j-1})\mathbf{U}^{j},\mathbf{V}) - (\Pi^{j},\operatorname{div}\mathbf{V}) = (-\mathbf{F}_{C}^{j},\mathbf{V})$$
$$(\operatorname{div}\mathbf{U}^{j}, Q) = 0$$

 $\begin{aligned} (\mathrm{d}_t(\mathcal{N}^{\pm})^j, \Phi)_h + (\nabla(\mathcal{N}^{\pm})^j, \nabla\Phi) \\ \pm ((\mathcal{N}^{\pm})^j \nabla \Psi^j, \nabla\Phi) + (\mathbf{U}^j(\mathcal{N}^{\pm})^j, \nabla\Phi) = \mathbf{0} \end{aligned}$

$$(\nabla \Psi^j, \nabla \Phi) = ((\mathcal{N}^+)^j - (\mathcal{N}^-)^j, \Phi)_h.$$

 $\begin{array}{l} \mbox{Van Roosbroeck part} \left(u = 0 \right) \\ \mbox{Results} \left(u = 0 \right) \\ \mbox{The whole EHD system} \left(u \neq 0 \right) \\ \mbox{Results} \left(u \neq 0 \right) \end{array}$

Energy based Scheme:

Let $\mathbf{F}_{\mathcal{C}}^{j} := ((\mathcal{N}^{+})^{j} - (\mathcal{N}^{-})^{j}) \nabla \Psi^{j}$, and $(\mathbf{V}, \Phi, \mathbf{Q}) \in \mathbf{X}_{h} \times Y_{h} \times M_{h}$

$$(\mathbf{d}_{t}\mathbf{U}^{j},\mathbf{V}) + (\nabla\mathbf{U}^{j},\nabla\mathbf{V}) + \sigma(\nabla\mathbf{d}_{t}\mathbf{U}^{j},\nabla\mathbf{V}) + ((\mathbf{U}^{j-1}\cdot\nabla)\mathbf{U}^{j},\mathbf{V}) + \frac{1}{2}((\operatorname{div}\mathbf{U}^{j-1})\mathbf{U}^{j},\mathbf{V}) - (\Pi^{j},\operatorname{div}\mathbf{V}) = (-\mathbf{F}_{C}^{j},\mathbf{V})$$
$$(\operatorname{div}\mathbf{U}^{j}, Q) = 0$$

$$\begin{aligned} & (\mathbf{d}_t(\mathcal{N}^{\pm})^j, \Phi)_h + (\nabla(\mathcal{N}^{\pm})^j, \nabla\Phi) \\ & \pm ((\mathcal{N}^{\pm})^j \nabla \Psi^j, \nabla\Phi) + (\mathbf{U}^j (\mathcal{N}^{\pm})^j, \nabla\Phi) = \mathbf{0} \end{aligned}$$

$$(\nabla \Psi^j, \nabla \Phi) = ((\mathcal{N}^+)^j - (\mathcal{N}^-)^j, \Phi)_h$$

Van Roosbroeck part ($\mathbf{u} = 0$) Results ($\mathbf{u} = 0$) **The whole EHD system (\mathbf{u} \neq 0)** Results ($\mathbf{u} \neq 0$)

New Difficulties:

M-matrix property of the Nernst-Planck-Poisson part:

• Problem: lack of regularity for U

Tool: σ -regularization: $\sigma(\nabla d_t \mathbf{U}^j, \nabla \mathbf{V})$

 Dimensional argument in the Nernst-Planck-Poisson part (requires h, k small)

 $\Rightarrow \quad \sigma := h^{\alpha} \quad \text{with} \quad 0 < \alpha < \frac{6-1}{3}$

Convergence:

 \implies

σ(∇d_tU^j, ∇V) complicates the application of Aubin-Lions' compactness result

 $\begin{array}{l} \mbox{Van Roosbroeck part} (u=0) \\ \mbox{Results} (u=0) \\ \mbox{The whole EHD system} (u\neq 0) \\ \mbox{Results} (u\neq 0) \end{array}$

New Difficulties:

M-matrix property of the Nernst-Planck-Poisson part:

• Problem: lack of regularity for U

Tool: σ -regularization: $\sigma(\nabla d_t \mathbf{U}^j, \nabla \mathbf{V})$

 Dimensional argument in the Nernst-Planck-Poisson part (requires h, k small)

 $\implies \sigma := h^{\alpha} \quad \text{with} \quad 0 < \alpha < \frac{6-N}{3}$

Convergence:

 \implies

σ(∇d_tU^j, ∇V) complicates the application of Aubin-Lions' compactness result

 $\begin{array}{l} \mbox{Van Roosbroeck part} (u=0) \\ \mbox{Results} (u=0) \\ \mbox{The whole EHD system} (u\neq 0) \\ \mbox{Results} (u\neq 0) \end{array}$

New Difficulties:

M-matrix property of the Nernst-Planck-Poisson part:

• Problem: lack of regularity for U

Tool: σ -regularization: $\sigma(\nabla d_t \mathbf{U}^j, \nabla \mathbf{V})$

 Dimensional argument in the Nernst-Planck-Poisson part (requires h, k small)

 $\implies \sigma := h^{\alpha}$ with $0 < \alpha < \frac{6-N}{3}$

Convergence:

 \implies

σ(∇d_tUⁱ, ∇V) complicates the application of Aubin-Lions' compactness result

 $\label{eq:constraint} \begin{array}{l} \mbox{Van Roosbroeck part} (u=0) \\ \mbox{Results} (u=0) \\ \mbox{The whole EHD system} (u\neq 0) \\ \mbox{Results} (u\neq 0) \end{array}$

Summary of Results (Prohl/Schmuck [08])

• Existence ($k < Ch^{\frac{N}{3}+\epsilon}, \epsilon > 0$) and convergence

- Mass conservation for \mathcal{N}^\pm
- Energy law (fully implicit scheme)
- Perturbed entropy law
- Maximum principle for \mathcal{N}^\pm
- Non-negativity for \mathcal{N}^{\pm}

 $\label{eq:constraint} \begin{array}{l} \mbox{Van Roosbroeck part} \left(u = 0 \right) \\ \mbox{Results} \left(u = 0 \right) \\ \mbox{The whole EHD system} \left(u \neq 0 \right) \\ \mbox{Results} \left(u \neq 0 \right) \end{array}$

Summary of Results (Prohl/Schmuck [08])

- Existence ($k < Ch^{\frac{N}{3}+\epsilon}, \epsilon > 0$) and convergence
- Mass conservation for \mathcal{N}^{\pm}
- Energy law (fully implicit scheme)
- Perturbed entropy law
- Maximum principle for \mathcal{N}^{\pm}
- Non-negativity for \mathcal{N}^{\pm}

 $\begin{array}{l} \mbox{Van Roosbroeck part} (u=0) \\ \mbox{Results} (u=0) \\ \mbox{The whole EHD system} (u\neq 0) \\ \mbox{Results} (u\neq 0) \end{array}$

Summary of Results (Prohl/Schmuck [08])

- Existence ($k < Ch^{\frac{N}{3}+\epsilon}, \epsilon > 0$) and convergence
- Mass conservation for \mathcal{N}^{\pm}
- Energy law (fully implicit scheme)
- Perturbed entropy law
- Maximum principle for \mathcal{N}^\pm
- Non-negativity for \mathcal{N}^{\pm}

 $\begin{array}{l} \mbox{Van Roosbroeck part} (u=0) \\ \mbox{Results} (u=0) \\ \mbox{The whole EHD system} (u\neq 0) \\ \mbox{Results} (u\neq 0) \end{array}$

Summary of Results (Prohl/Schmuck [08])

- Existence ($k < Ch^{\frac{N}{3}+\epsilon}, \epsilon > 0$) and convergence
- Mass conservation for \mathcal{N}^{\pm}
- Energy law (fully implicit scheme)
- Perturbed entropy law
- Maximum principle for \mathcal{N}^\pm
- Non-negativity for \mathcal{N}^{\pm}

 $\label{eq:constraint} \begin{array}{l} \mbox{Van Roosbroeck part} \left(u = 0 \right) \\ \mbox{Results} \left(u = 0 \right) \\ \mbox{The whole EHD system} \left(u \neq 0 \right) \\ \mbox{Results} \left(u \neq 0 \right) \end{array}$

Summary of Results (Prohl/Schmuck [08])

- Existence ($k < Ch^{\frac{N}{3}+\epsilon}, \epsilon > 0$) and convergence
- Mass conservation for \mathcal{N}^{\pm}
- Energy law (fully implicit scheme)
- Perturbed entropy law
- Maximum principle for \mathcal{N}^{\pm}
- Non-negativity for \mathcal{N}^{\pm}

 $\begin{array}{l} \mbox{Van Roosbroeck part} (u=0) \\ \mbox{Results} (u=0) \\ \mbox{The whole EHD system} (u\neq 0) \\ \mbox{Results} (u\neq 0) \end{array}$

Summary of Results (Prohl/Schmuck [08])

- Existence ($k < Ch^{\frac{N}{3}+\epsilon}, \epsilon > 0$) and convergence
- Mass conservation for \mathcal{N}^{\pm}
- Energy law (fully implicit scheme)
- Perturbed entropy law
- Maximum principle for \mathcal{N}^{\pm}
- Non-negativity for \mathcal{N}^{\pm}

Van Roosbroeck part ($\mathbf{u} = 0$) Results ($\mathbf{u} = 0$) The whole EHD system ($\mathbf{u} \neq 0$) **Results (\mathbf{u} \neq 0)**

Conclusion:

All results from the continuous setting can be recovered to the FE setting.

Thank You for Your Attention!

Van Roosbroeck part ($\mathbf{u} = 0$) Results ($\mathbf{u} = 0$) The whole EHD system ($\mathbf{u} \neq 0$) **Results (\mathbf{u} \neq 0)**

Conclusion:

All results from the continuous setting can be recovered to the FE setting.

Thank You for Your Attention!