Björn Stinner

Mathematics Institute and Centre for Scientific Computing, University of Warwick

Elastic Biomembranes Involving Lipid Separation

In collaboration with C. Elliott (Warwick)

Introductory Example

Shape determined by elastic energy (bending energy).
Phase separation of lipids (red and blue domains)
→ phase interface carrying energy (line energy).

Goal: Compute equilibrium shapes of vesicles, define and study an appropriate relaxational dynamics.

[Baumgart, Hess, Webb 2005]

Example: Diffuse interface approach for phase separation, areas of the two phases and enclosed volume preserved. Budding?

Outline

1. Biomembranes with Lipid Decomposition

- elastic properties biomembranes
- phase field approach for the phase separation
- 2. Relaxational Dynamics
 - dynamics of the phase separation
 - dynamics of the surface
- 3. Numerical Approach
 - linear finite elements on triangulated surfaces
 - discretisation of evolution equations
- 4. Simulation Results
 - convergence (in interfacial thickness)
 - influence of physical parameters

Lipid Bilayers

- consist of lipid molecules
- constitute boundaries of cells and cell organs

Bending energy: [Canham, Evans, Helfrich 1970s]

Membrane modelled as two-dimensional hypersurface $\Gamma \subset \mathbb{R}^3$ with energy (to leading order)

$$F_b = \int_{\Gamma} \frac{k}{2} (\kappa - \bar{\kappa})^2 \left[+ \int_{\Gamma} k_G \kappa_G \right]$$

 κ mean curvature, κ_G Gauss curvature, k, k_G rigidities, $\bar{\kappa}$ spontaneous curvature.

Gauss-Bonnet: k_G constant, $\partial \Gamma$ empty $\Rightarrow \int_{\Gamma} k_G \kappa_G = k_G 2\pi \chi(\Gamma)$.

Warwick

January 2009

Lipid Decomposition

Ordered-disordered phase transition observed in giant unilamellar vesicles.

[Jülicher, Lipowsky 1996]:

 Γ is split into two domains (phases) Γ_1 , Γ_2 with a common boundary $\gamma = \partial \Gamma_1 = \partial \Gamma_2$. Assumption: Γ smooth across γ .

Line Energy:

$$F_l = \int_{\gamma} \sigma$$

 σ line energy coefficient (constant).

[Baumgart, Hess, Webb 2003]

Some Work of Relevance

[Jülicher, Lipowsky 1996], equilibrium shapes and budding, axisymmetric case only,
[Taniguchi, 1996, 1997], sphere-like membranes, diffuse interface model for phase separation,
[Jiang, Lookman, Saxena 1999], other symmetries, diffuse interface model for phase separation.
[Du, Wang 2004, 2006], diffuse interface model for representation of the membrane,
[Campelo, Saxena 2006], FD methods, no intermembrane domains,
[Lowengrub, Xu, Voigt 2007], IIM, phase separation on vesicles in 2D flow,
[Ma, Klug 2008], C¹ FE, direct minimisation, mesh regularisation.

Ideas and Methods

Goal: Computation of equilibrium shapes by gradient flow dynamics.

- Phase Separation: use a phase field model,
 → parabolic equation for an order parameter on an evolving surface.
 Overview article: [Chen 2002].
 Use [Dziuk, Elliott 2006] for solving pdes on evolving surfaces .
- Geometric Evolution: surface $\Gamma(t)$ evolves according to

normal velocity = force (space, orientation, curvature, \ldots).

Here: of Willmore flow type (L^2 gradient flow of bending energy). Overview article: [Deckelnick, Dziuk, Elliott 2005]. Relevant work (triangulated surfaces): [Mayer, Simonett 2002], [Clarenz, Diewald, Dziuk, Rumpf, Rusu 2004], [Bänsch, Morin, Nochetto 2005], [Barrett, Garcke, Nürnberg 2007], [Dziuk 2008].

Line Energy in the Phase Field Approach

Replace by a Ginzburg-Landau energy:

$$F_l^{arepsilon} = \int_{\Gamma} rac{arepsilon \sigma}{2} |
abla_{\Gamma} c|^2 + rac{\sigma}{arepsilon} \psi(c),$$

with a double-well potential $\psi \sim (1-c^2)^2$ and the surface gradient

 \boldsymbol{n} unit normal on Γ .

Flat case, in the sense of a Γ -limit:

$$F_l^{\varepsilon} \xrightarrow{\varepsilon \to 0} F_l = \int_{\gamma} \sigma.$$

Membrane Energy

Total membrane energy:

$$F(\Gamma, c: \Gamma \to \mathbb{R}) = \int_{\Gamma} \underbrace{\frac{k(c)}{2} (\kappa - \bar{\kappa}(c))^2}_{\text{bending energy}} + \underbrace{\sigma \left(\frac{\varepsilon}{2} |\nabla_{\Gamma} c|^2 + \frac{1}{\varepsilon} \psi(c)\right)}_{\text{line energy}}$$

Evolution:

- Evolving hypersurface $\{\Gamma(t)\}_t$ with velocity $\boldsymbol{v} = V\boldsymbol{n}$ (geometric evolution),
- Law for the order parameter $c(t) : \Gamma(t) \to \mathbb{R}$ will involve the **material derivative** (= normal time derivative)

$$\partial_t^{\bullet} c = \partial_t c + \boldsymbol{v} \cdot \nabla c,$$

• Constraints: $|\Gamma|$ and $\int_{\Gamma} c$ are preserved ($\rightsquigarrow |\Gamma_1|$ and $|\Gamma_2|$ are preserved), enclosed volume is preserved.

Phase Separation

Postulate a law for the order parameter c such that the energy decreases if Γ is stationary.

• **Cahn-Hilliard** equation, c conserved quantity ($\int_{\Gamma} c$ preserved):

$$\partial_t^{\bullet} c + \underbrace{c \nabla_{\Gamma} \cdot \boldsymbol{v}}_{=-c\kappa V} = \nabla_{\Gamma} \cdot \left(D_c \nabla_{\Gamma} \mu \right).$$

• Allen-Cahn equation:

$$\partial_t^{\bullet} c = -\mu - \lambda_c$$

with Lagrange multiplier λ_c to preserve $\int_{\Gamma} c$.

(chemical) potential:

$$\mu = \frac{\delta F}{\delta c} = \frac{k'(c)}{2} (\kappa - \bar{\kappa}(c))^2 - k(c)(\kappa - \bar{\kappa}(c))\bar{\kappa}'(c) - \sigma\varepsilon\Delta_{\Gamma}c + \frac{\sigma}{\varepsilon}\psi'(c)$$

Warwick

Evolution of the Surface

Deduced by computing the time derivative of the energy and using the law for c.

Exemplary for the case k constant, $\bar{\kappa}=0$:

$$\begin{split} \frac{d}{dt}F &= \int_{\Gamma} k\kappa \partial_{t}^{\bullet}\kappa + \sigma\varepsilon \underbrace{\partial_{t}^{\bullet}|\nabla_{\Gamma}c|^{2}}_{=\nabla_{\Gamma}c\cdot\nabla_{\Gamma}\partial_{t}^{\bullet}c-\nabla_{\Gamma}c\otimes\nabla_{\Gamma}c:\nabla\boldsymbol{v}} + \frac{\sigma}{\varepsilon}\psi'(c)\partial_{t}^{\bullet}c \\ &+ \int_{\Gamma} \left(\frac{k}{2}\kappa^{2} + \sigma\varepsilon|\nabla_{\Gamma}c|^{2} + \frac{\sigma}{\varepsilon}\psi(c)\right)\nabla_{\Gamma}\cdot\boldsymbol{v} \\ &= -\int_{\Gamma} D_{c}|\nabla_{\Gamma}\mu|^{2} \\ &+ \int_{\Gamma} V\left(-\sigma\varepsilon\nabla_{\Gamma}c\otimes\nabla_{\Gamma}c:\nabla_{\Gamma}\boldsymbol{n} + (\mu c - f)\kappa + k\Delta_{\Gamma}\kappa + k|\nabla_{\Gamma}\boldsymbol{n}|^{2}\kappa\right) \end{split}$$

Summary, Evolution Laws

Surface:

$$egin{aligned} V &= - \left(\Delta_{\Gamma} + \left|
abla_{\Gamma} oldsymbol{n}
ight|^2
ight) ig(k(c)(\kappa - ar\kappa(c)) ig) \ &+ (f - \mu c) \kappa + \sigma \epsilon
abla_{\Gamma} c \otimes
abla_{\Gamma} c:
abla_{\Gamma} oldsymbol{n} \ &+ \lambda_v - \lambda_a \kappa \end{aligned}$$

with Lagrange multipliers λ_v and λ_a for preserving the enclosed volume and the membrane area.

Phase Separation:

$$\partial_t^{\bullet} c - c\kappa V = \nabla_{\Gamma} \cdot \left(D_c \nabla_{\Gamma} \mu \right)$$
$$\mu = \frac{k'(c)}{2} (\kappa - \bar{\kappa}(c))^2 - k(c)(\kappa - \bar{\kappa}(c))\bar{\kappa}'(c) - \sigma \varepsilon \Delta_{\Gamma} c + \frac{\sigma}{\varepsilon} \psi'(c)$$

Warwick

Linear Surface Finite Elements

Approximation of Γ by a polyhedral surface Γ_h (admissible triangulation)

$$\Gamma_h = \bigcup_{T_h \in \mathcal{T}_h} T_h$$

given in terms of vertex positions $\{\boldsymbol{x}_i\}_i$ and topology.

Finite element space (isoparametric, linear):

$$S_{h} = \left\{ \phi_{h} \in C^{0}(\Gamma_{h}) \left| \phi_{h} \right|_{T_{h}} \text{ linear for all } T_{h} \in \mathcal{T}_{h} \right\}$$

Identity $\boldsymbol{x}_h \in S_h^3$, given by $\boldsymbol{x}_h(\boldsymbol{x}_i) = \boldsymbol{x}_i$ for all i.

Weak Formulation, Surface Evolution

Based on $\kappa \boldsymbol{n} = \Delta_{\Gamma} \boldsymbol{x}$.

Discretisation as in [Barrett, Garcke, Nürnberg 2007]: Vertices move in normal direction according to geometric evolution law, in tangential direction to maintain a good grid quality (equidistribution in 1D).

$$\int_{\Gamma} \partial_t \boldsymbol{x} \cdot \boldsymbol{n} \chi - f \kappa \chi - k(c) \nabla_{\Gamma} \kappa \cdot \nabla_{\Gamma} \chi = \int_{\Gamma} \cdots + \lambda_v \int_{\Gamma} \chi + \lambda_a \int_{\Gamma} \kappa \chi,$$

 $\int_{\Gamma} \kappa \boldsymbol{n} \cdot \boldsymbol{\xi} + \nabla_{\Gamma} \boldsymbol{x} : \nabla_{\Gamma} \boldsymbol{\xi} = 0.$

Discrete Surface Evolution

Given the vertices and fields at time $t = m\Delta t$:

$$\int_{\Gamma_h^m} \frac{\boldsymbol{x}_h^{m+1} - \boldsymbol{x}_h^m}{\Delta t} \cdot \boldsymbol{n} \chi_h - f_h^m \kappa_h^{m+1} \chi_h - k(c_h^m) \nabla_{\Gamma_h^m} \kappa_h^{m+1} \cdot \nabla_{\Gamma_h^m} \chi_h = \dots$$
$$\int_{\Gamma_h^m} \kappa_h^{m+1} \boldsymbol{n} \cdot \boldsymbol{\xi}_h + \nabla_{\Gamma_h^m} \boldsymbol{x}_h^{m+1} : \nabla_{\Gamma_h^m} \boldsymbol{\xi}_h = 0.$$

Tangential motion of the vertices determined by second equation.

System:

$$\begin{pmatrix} (\mathbf{N}^m)^T & -B^m \\ \mathbf{A}^m & \mathbf{N}^m \end{pmatrix} \begin{pmatrix} \underline{\mathbf{x}}^{m+1} \\ \underline{\kappa}^{m+1} \end{pmatrix} = \begin{pmatrix} \underline{a}^m + \lambda_v \underline{l}^m + \lambda_a M^m \underline{\kappa}^m \\ 0 \end{pmatrix}$$

Resolving first equation w.r.t. $\underline{\kappa}^{m+1}$ yields

$$I^m \underline{x}^{m+1} = \underline{r}^m + \lambda_v \underline{\nu}^m + \lambda_a \underline{k}^m.$$

Constraints

Formula for new vertices:

$$I^m \underline{x}^{m+1} = \underline{r}^m + \lambda_v \underline{\nu}^m + \lambda_a \underline{k}^m.$$

Goal: λ_v and λ_a such that

$$\int_{\Gamma_h^{m+1}} oldsymbol{n}^{m+1} \cdot oldsymbol{x}_h^{m+1} = \int_{\Gamma_h^0} oldsymbol{n}^0 \cdot oldsymbol{x}_h^0, \quad |\Gamma_h^{m+1}| = |\Gamma_h^0|.$$

[Barrett, Garcke, Nürnberg 2007] employ explicit formulae $\rightsquigarrow \lambda_v^m$, λ_a^m .

Here implicitely (similar to ideas of [Bonito, Nochetto])

- 1. solve $(\boldsymbol{I}^m)^{-1} \underline{\boldsymbol{r}}^m$, $(\boldsymbol{I}^m)^{-1} \underline{\boldsymbol{\nu}}^m$, $(\boldsymbol{I}^m)^{-1} \underline{\boldsymbol{k}}^m$ with CG,
- 2. compute λ_v^{m+1} and λ_a^{m+1} with a Newton method (involves computing \underline{x}^{m+1}),
- 3. find the new curvature values $\underline{\kappa}^{m+1}$.

Price: three linear systems instead of one \sim switch when the surface has 'almost relaxed'.

Warwick

Weak Formulation, Phase Separation

Discretisation based on [Dziuk, Elliott 2006] for surface pdes, requires motion of the grid points according to material velocity, here v = Vn.

But: grid points involve tangential motion, $\partial_t x = V n + T$, which must be taken into account.

$$\partial_t^{\bullet} c - cV\kappa = \partial_t c + V\boldsymbol{n} \cdot \nabla c + c\nabla_{\Gamma} \cdot (V\boldsymbol{n})$$
$$= \partial_t c + (\partial_t \boldsymbol{x}) \cdot \nabla c + c\nabla_{\Gamma} \cdot (\partial_t \boldsymbol{x}) - \nabla_{\Gamma} \cdot (c\boldsymbol{T})$$

Cahn-Hilliard system:

$$\int_{\Gamma} \left(\partial_t c + \partial_t \boldsymbol{x} \cdot \nabla c + c \nabla_{\Gamma} \cdot (\partial_t \boldsymbol{x}) \right) \chi + D_c \nabla_{\Gamma} \mu \cdot \nabla_{\Gamma} \chi = \int_{\Gamma} -c \partial_t \boldsymbol{x} \cdot \nabla_{\Gamma} \chi,$$
$$\int_{\Gamma} \mu \phi - \sigma \varepsilon \nabla_{\Gamma} c \cdot \nabla_{\Gamma} \phi = \int_{\Gamma} \left(\frac{k'(c)}{2} (\kappa - \bar{\kappa}(c))^2 - k(c)(\kappa - \bar{\kappa}(c)) \bar{\kappa}'(c) + \frac{\sigma}{\varepsilon} \psi'(c) \right) \phi.$$

Warwick

Discrete Phase Separation

Semi-discrete Cahn-Hilliard system:

$$\frac{d}{dt} \Big(\int_{\Gamma_{h}(t)} c_{h}(t) \chi_{h}(t) \Big) + \int_{\Gamma_{h}(t)} D_{c} \nabla_{\Gamma_{h}(t)} \mu_{h}(t) \cdot \nabla_{\Gamma_{h}(t)} \chi_{h}(t) \\
= - \int_{\Gamma_{h}(t)} c_{h}(t) \partial_{t} \boldsymbol{x}_{h} \cdot \nabla_{\Gamma_{h}(t)} \chi_{h}(t),$$

$$\int_{\Gamma_h(t)} \mu_h(t)\phi_h(t) - \sigma \varepsilon \nabla_{\Gamma_h(t)} c_h(t) \cdot \nabla_{\Gamma_h(t)} \phi_h(t) = \dots$$

Fully discrete system:

$$\begin{pmatrix} \frac{1}{\Delta t}M^{m+1} & D_c A^{m+1} \\ -\sigma \varepsilon A^{m+1} & M^{m+1} \end{pmatrix} \begin{pmatrix} \underline{c}^{m+1} \\ \underline{\mu}^{m+1} \end{pmatrix} = \begin{pmatrix} \underline{r}_c \\ \underline{r}_{\mu} \end{pmatrix}$$

Total mass is conserved (insert $\chi_h \equiv 1$).

Implementation, Adaptivity

Implementation with the ALBERTA finite element toolkit, [Schmidt, Siebert 2005].

Isoparametric linear finite elements provided, including adaption of the grid (bisection).

Experience value from flat case: ensure 8 grid points across the interfacial layers.

Phase transition regions often most curved.

 \rightarrow used order parameter (indicating the phase interface) for grid adaption so far.

Simulations

Parameters for Convergence Test

Initial shape

relaxed shape.

$ \Omega $	2.8760	k	1.0000
$ \Gamma $	12.5610	$ar{\kappa}$	0.0000
		σ	2.5000
$R_c := \sqrt{ \Gamma /4\pi}$	0.9996	$\lambda:=rac{4}{3}R_c\sigma/k$	k 3.3319
$\bar{v} := \Omega / \frac{4}{3} \pi R_c^3$	0.6875	$x := \Gamma_1 / \Gamma $	0.6986

Convergence in ε I

Fully refined grid:

h	ε	F_h	eoc	comment
[0.032, 0.089]	0.4243	51.573		
$[0.021, \ 0.068]$	0.3000	51.388	0.7229	
$[0.014, \ 0.045]$	0.2121	51.244	1.9602	
$[0.010, \ 0.035]$	0.1500	51.171		
[0.014, 0.045]	0.3000	51.371		finer mesh

 $eoc(\varepsilon) = \log(\frac{F_h(\sqrt{2}\varepsilon) - F_h(\varepsilon)}{F_h(\varepsilon) - F_h(\varepsilon/\sqrt{2})}) / \log(\sqrt{2}).$

Timestep: $\Delta t \sim h^2$.

Convergence in ε II

Adaptively refined grid:

ε	F_h	eoc	comment
0.2121	51.270		
0.1500	51.199	1.6556	
0.1061	51.159	3.0291	
0.0750	51.145		
0.2121	51.280		finer mesh
0.2121	51.244		globally refined

18434 vertices

pprox 5314 vertices

Grid Quality

 $q = \min\{\sin(\alpha) \mid \alpha \text{ inner angle}\}.$

Simulations

Spontaneous Curvature Effect

 $\bar{\kappa}(c=1) = -1.206061$, $\bar{\kappa}(c=-1) = 0.0$, interpolation with polynomial of degree three in between.

Result:

neck more pronounced, adjacent membranes slightly more rounded.

Colour indicates the curvature between -0.35 (blue) and -0.15 (red).

Effect of Different Bending Rigidities

k(red) = 2.0, k(blue) = 0.4 and interpolation with a polynomial of degree three in between.

Quantitative Example

[Jülicher, Lipowsky 1996]:

 $\bar{v} = 0.92, \lambda = 9, x = 0.1.$ Predicted energy: [54.915, 55.047].

Measured energy: 55.019.

Computed shape:

Simulations

Budding?

Budding due to high line energy coefficient σ . $\bar{v} \approx 0.85$, $\lambda \approx 14.7$, $x \approx 0.275$, $\bar{\kappa} = 0.0$.

Random Order Parameter

$\bar{v} \approx 0.85$, $\lambda \approx 14.85$, $x \approx 0.55$ (random initial field c), $\bar{\kappa} = 0.0$.

Warwick

January 2009

Simulations

Non-Axisymmetric Structure

$\bar{v} \approx 0.9$, $\lambda \approx 9.0$, $x \approx 0.45$, $\bar{\kappa} = 0.0$.

Warwick

Scale Invariance, Effective Parameters

Consider smooth hypersurfaces Γ in \mathbb{R}^3 of sphere-topology enclosing a domain Ω , as well as smooth, compact curves $\gamma \subset \Gamma$. Characteristic radius: $R = |\Gamma|/4\pi$.

System energy

$$F = \int_{\Gamma} \frac{k}{2} (\kappa - \bar{\kappa})^2 + \int_{\gamma} \sigma$$

is invariant under scaling $\boldsymbol{x} \mapsto \eta \boldsymbol{x}$, $\boldsymbol{x} \in \Gamma$, $\eta > 0$, provided that $\sigma \mapsto \sigma/\eta$ and $\bar{\kappa} \mapsto \bar{\kappa}/\eta$.

Equilibrium shapes / local minimiser are characterised by:

$v_r = \Omega / (4\pi/3) R^3$	reduced volume,
$q_r = \Gamma_1 / \Gamma $	relative domain size,
$\sigma_r = \sigma R/k$	reduced line tension,
$c_r = \bar{\kappa}R$	reduced spontaneous curvature.

Effective Parameters, Phase Diagram

Example from [Jülicher, Lipowsky 1996].

 $q_r = 0.1$ fixed, $c_r = 0.0$.

Top: variation of $\lambda = \sigma_r$ and $v = v_r$. Bottom: $\sigma_r = 0.9$ fixed, variation of v_r .

Limit shapes: L_{CB} : prolate and a spherical bud, L_{sp} : two cut spheres.

Axisymmetric shapes only.

Relaxational Dynamics

Total Energy:

$$F(\Gamma, c) = \int_{\Gamma} \frac{k}{2} (\kappa - \bar{\kappa})^2 + \sigma \left(\frac{\varepsilon}{2} |\nabla_{\Gamma} c|^2 + \frac{1}{\varepsilon} \psi(c)\right)$$

Approach to define the motion laws:

First, postulate a motion law for the order parameter such that the energy decreases if the surface does not move.

Here: Allen-Cahn equation with Lagrange multiplier for the constraint.

Second, compute the time derivative of the energy and deduce the laws for the velocity such that energy decreases in time.

Euler-Lagrange Equation, SIM

$$egin{aligned} 0 &= \sum_{i=1}^2 \int_{\Gamma_i} k_i \Big(\Delta_{\Gamma} \kappa_i + |
abla_{\Gamma} oldsymbol{n}|^2 (\kappa_i - ar\kappa_i) - rac{1}{2} (\kappa_i - ar\kappa_i)^2 \kappa_i \Big) oldsymbol{n} \cdot oldsymbol{w} \ &+ \int_{\gamma} \Big(\sigma oldsymbol{\kappa}_{\gamma} + \sum_{i=1}^2 k_i (\kappa_i - ar\kappa_i)^2 oldsymbol{ au}_i \Big) \cdot oldsymbol{w} \ &+ \sum_{i=1}^2 \lambda_A^{(i)} \Big(\int_{\Gamma_i} -oldsymbol{\kappa}_i \cdot oldsymbol{w} + \int_{\gamma} oldsymbol{ au}_i \cdot oldsymbol{w} \Big) \ &+ \lambda_V \sum_{i=1}^2 \int_{\Gamma_i} oldsymbol{n} \cdot oldsymbol{w}. \end{aligned}$$

Example IV: Discocyte

2.000000e-04 4.000000e-03 1.002000e-02 2.002000e-02 Cells kappa_h Cells kappa_h Cells kappa_h Cells kappa h - 0.8 - 0.8 - 0.8 - 0.8 - 0.24 - 0.24 - 0.24 - 0.24 --0.32 --0.32 --0.32 --0.32 -0.88 -0.88 -0.88 --0.88 --1.44 --1.44 --1.44 --1.44 - -2 - -2 - -2 - -2 --2.56 --2.56 --2.56 --2.56 --3.12 --3.68 --4.24 --3.12 --3.12 --3.12 --3.68 --4.24 --3.68 --4.24 --3.68 --4.24 -4.8 2.000000e-04 4.000000e-03 1.002000e-02 2.002000e-02 Cells c_h Cells c_h Cells c_h Cells c_h -0.901 -0.901 -0.901 -0.901 - 0.8 - 0.8 - 0.8 0.8 - 0.7 - 0.7 - 0.7 - 0.7 - 0.6 - 0.6 - 0.6 - 0.6 - 0.5 - 0.5 - 0.5 - 0.5 - 0.4 - 0.4 - 0.4 0.4 - 0.3 - 0.3 - 0.3 - 0.3 -0.199 -0.199 -0.199 -0.199 -0.0992 -0.0992 0.0992

-0.0010

Effects by spontaneous curvature.

0.0010

Example III: Mesh

