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Introductory Example

Shape determined by elastic energy (bending energy).

Phase separation of lipids (red and blue domains)

; phase interface carrying energy (line energy).

Goal: Compute equilibrium shapes of vesicles,

define and study an appropriate relaxational dynamics.

[ Baumgart, Hess, Webb 2005 ]

Example: Diffuse interface approach for phase separation,

areas of the two phases and enclosed volume preserved. Budding?
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Outline

1. Biomembranes with Lipid Decomposition

• elastic properties biomembranes

• phase field approach for the phase separation

2. Relaxational Dynamics

• dynamics of the phase separation

• dynamics of the surface

3. Numerical Approach

• linear finite elements on triangulated surfaces

• discretisation of evolution equations

4. Simulation Results

• convergence (in interfacial thickness)

• influence of physical parameters
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Membrane Energy

Lipid Bilayers

• consist of lipid molecules

• constitute boundaries of cells and cell organs

[ Peletier, Röger ]

Bending energy: [ Canham, Evans, Helfrich 1970s ]

Membrane modelled as two-dimensional hypersurface Γ ⊂ R3 with energy (to leading order)

Fb =

Z
Γ

k

2
(κ− κ̄)

2
h

+

Z
Γ

kGκG
i

κ mean curvature, κG Gauss curvature, k, kG rigidities, κ̄ spontaneous curvature.

Gauss-Bonnet: kG constant, ∂Γ empty⇒
R

Γ
kGκG = kG 2πχ(Γ).
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Membrane Energy

Lipid Decomposition

Ordered-disordered phase transition

observed in giant unilamellar vesicles.

[ Jülicher, Lipowsky 1996 ]:

Γ is split into two domains (phases) Γ1, Γ2

with a common boundary γ = ∂Γ1 = ∂Γ2.

Assumption: Γ smooth across γ.

Line Energy:

Fl =

Z
γ

σ

σ line energy coefficient (constant). [ Baumgart, Hess, Webb 2003 ]
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Membrane Energy

Some Work of Relevance

[ Jülicher, Lipowsky 1996 ], equilibrium shapes and budding, axisymmetric case only,

[ Taniguchi, 1996, 1997 ], sphere-like membranes, diffuse interface model for phase separation,

[ Jiang, Lookman, Saxena 1999 ], other symmetries, diffuse interface model for phase separation.

[ Du, Wang 2004, 2006 ], diffuse interface model for representation of the membrane,

[ Campelo, Saxena 2006 ], FD methods, no intermembrane domains,

[ Lowengrub, Xu, Voigt 2007 ], IIM, phase separation on vesicles in 2D flow,

[ Ma, Klug 2008 ], C1 FE, direct minimisation, mesh regularisation.
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Membrane Energy

Ideas and Methods

Goal: Computation of equilibrium shapes by gradient flow dynamics.

• Phase Separation: use a phase field model,

; parabolic equation for an order parameter on an evolving surface.

Overview article: [ Chen 2002 ].

Use [ Dziuk, Elliott 2006 ] for solving pdes on evolving surfaces .

• Geometric Evolution: surface Γ(t) evolves according to

normal velocity = force (space, orientation, curvature, . . . ).

Here: of Willmore flow type (L2 gradient flow of bending energy).

Overview article: [ Deckelnick, Dziuk, Elliott 2005 ]. Relevant work (triangulated surfaces):

[ Mayer, Simonett 2002 ], [ Clarenz, Diewald, Dziuk, Rumpf, Rusu 2004 ],

[ Bänsch, Morin, Nochetto 2005 ], [ Barrett, Garcke, Nürnberg 2007 ], [ Dziuk 2008 ].
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Membrane Energy

Line Energy in the Phase Field Approach

Replace by a Ginzburg-Landau energy:

F
ε
l =

Z
Γ

εσ

2
|∇Γc|2 +

σ

ε
ψ(c),

with a double-well potential ψ ∼ (1− c2)2 and the surface gradient

∇Γc = ∇c−∇c · nn = P∇c where P = Id− n⊗ n,

n unit normal on Γ.

Flat case, in the sense of a Γ-limit:

F
ε
l
ε→0−→ Fl =

Z
γ

σ.
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Relaxational Dynamics

Membrane Energy

Total membrane energy:

F (Γ, c : Γ→ R) =

Z
Γ

k(c)

2
(κ− κ̄(c))

2| {z }
bending energy

+σ
“ε

2
|∇Γc|2 +

1

ε
ψ(c)

”
| {z }

line energy

Evolution:

• Evolving hypersurface {Γ(t)}t with velocity v = Vn (geometric evolution),

• Law for the order parameter c(t) : Γ(t)→ R will involve the material derivative (= normal

time derivative)

∂
•
t c = ∂tc+ v · ∇c,

• Constraints: |Γ| and
R

Γ
c are preserved (; |Γ1| and |Γ2| are preserved),

enclosed volume is preserved.
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Relaxational Dynamics

Phase Separation

Postulate a law for the order parameter c such that the energy decreases if Γ is stationary.

• Cahn-Hilliard equation, c conserved quantity (
R

Γ
c preserved):

∂
•
t c+ c∇Γ · v| {z }

=−cκV

= ∇Γ ·
`
Dc∇Γµ

´
.

• Allen-Cahn equation:

∂
•
t c = −µ− λc

with Lagrange multiplier λc to preserve
R

Γ
c.

(chemical) potential:

µ =
δF

δc
=
k′(c)

2
(κ− κ̄(c))

2 − k(c)(κ− κ̄(c))κ̄
′
(c)− σε∆Γc+

σ

ε
ψ
′
(c)
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Relaxational Dynamics

Evolution of the Surface

Deduced by computing the time derivative of the energy and using the law for c.

Exemplary for the case k constant, κ̄ = 0:

d

dt
F =

Z
Γ

kκ∂
•
tκ+ σε ∂

•
t |∇Γc|2| {z }

=∇Γc·∇Γ∂
•
t c−∇Γc⊗∇Γc:∇v

+
σ

ε
ψ
′
(c)∂

•
t c

+

Z
Γ

“k
2
κ

2
+ σε|∇Γc|2 +

σ

ε
ψ(c)

”
∇Γ · v

=−
Z

Γ

Dc|∇Γµ|2

+

Z
Γ

V
“
− σε∇Γc⊗∇Γc : ∇Γn+ (µc− f)κ+ k∆Γκ+ k|∇Γn|2κ

”
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Relaxational Dynamics

Summary, Evolution Laws

Surface:

V =− (∆Γ + |∇Γn|2)
`
k(c)(κ− κ̄(c))

´
+ (f − µc)κ+ σε∇Γc⊗∇Γc : ∇Γn

+ λv − λaκ

with Lagrange multipliers λv and λa for preserving the enclosed volume and the membrane area.

Phase Separation:

∂
•
t c− cκV = ∇Γ ·

`
Dc∇Γµ

´
µ =

k′(c)

2
(κ− κ̄(c))

2 − k(c)(κ− κ̄(c))κ̄
′
(c)− σε∆Γc+

σ

ε
ψ
′
(c)
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Numerical Approach

Linear Surface Finite Elements

Approximation of Γ by a polyhedral surface Γh
(admissible triangulation)

Γh =
[

Th∈Th

Th

given in terms of vertex positions {xi}i and topology.

Finite element space (isoparametric, linear):

Sh =
n
φh ∈ C0

(Γh)
˛̨̨
φh
˛̨
Th

linear for all Th ∈ Th
o
.

Identity xh ∈ S3
h, given by xh(xi) = xi for all i.
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Numerical Approach

Weak Formulation, Surface Evolution

Based on κn = ∆Γx.

Discretisation as in [ Barrett, Garcke, Nürnberg 2007 ]:

Vertices move in normal direction according to geometric evolution law,

in tangential direction to maintain a good grid quality (equidistribution in 1D).

Z
Γ

∂tx · nχ− fκχ− k(c)∇Γκ · ∇Γχ =

Z
Γ

· · ·+ λv

Z
Γ

χ+ λa

Z
Γ

κχ,Z
Γ

κn · ξ +∇Γx : ∇Γξ = 0.
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Numerical Approach

Discrete Surface Evolution

Given the vertices and fields at time t = m∆t:Z
Γm
h

xm+1
h − xmh

∆t
· nχh − fmh κ

m+1
h χh − k(c

m
h )∇Γm

h
κ
m+1
h · ∇Γm

h
χh = . . .

Z
Γm
h

κ
m+1
h n · ξh +∇Γm

h
x
m+1
h : ∇Γm

h
ξh = 0.

Tangential motion of the vertices determined by second equation.

System: „
(Nm)T −Bm

Am Nm

«„
xm+1

κm+1

«
=

„
am + λvl

m + λaM
mκm

0

«
Resolving first equation w.r.t. κm+1 yields

I
m
x
m+1

= r
m

+ λvν
m

+ λak
m
.
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Numerical Approach

Constraints

Formula for new vertices:

I
m
x
m+1

= r
m

+ λvν
m

+ λak
m
.

Goal: λv and λa such thatZ
Γm+1
h

n
m+1 · xm+1

h =

Z
Γ0
h

n
0 · x0

h, |Γ
m+1
h | = |Γ0

h|.

[ Barrett, Garcke, Nürnberg 2007 ] employ explicit formulae ; λmv , λma .

Here implicitely (similar to ideas of [ Bonito, Nochetto ])

1. solve (Im)−1rm, (Im)−1νm, (Im)−1km with CG,

2. compute λm+1
v and λm+1

a with a Newton method (involves computing xm+1),

3. find the new curvature values κm+1.

Price: three linear systems instead of one ; switch when the surface has ’almost relaxed’.
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Numerical Approach

Weak Formulation, Phase Separation

Discretisation based on [ Dziuk, Elliott 2006 ] for surface pdes,

requires motion of the grid points according to material velocity, here v = Vn.

But: grid points involve tangential motion, ∂tx = Vn+ T , which must be taken into account.

∂
•
t c− cV κ = ∂tc+ Vn · ∇c+ c∇Γ · (Vn)

= ∂tc+ (∂tx) · ∇c+ c∇Γ · (∂tx)−∇Γ · (cT )

Cahn-Hilliard system:Z
Γ

`
∂tc+ ∂tx · ∇c+ c∇Γ · (∂tx)

´
χ+Dc∇Γµ · ∇Γχ =

Z
Γ

−c∂tx · ∇Γχ,Z
Γ

µφ− σε∇Γc · ∇Γφ =

Z
Γ

“k′(c)
2

(κ− κ̄(c))
2 − k(c)(κ− κ̄(c))κ̄

′
(c) +

σ

ε
ψ
′
(c)
”
φ.
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Numerical Approach

Discrete Phase Separation

Semi-discrete Cahn-Hilliard system:

d

dt

“Z
Γh(t)

ch(t)χh(t)
”

+

Z
Γh(t)

Dc∇Γh(t)µh(t) · ∇Γh(t)χh(t)

= −
Z

Γh(t)

ch(t)∂txh · ∇Γh(t)χh(t),

Z
Γh(t)

µh(t)φh(t)− σε∇Γh(t)ch(t) · ∇Γh(t)φh(t) = . . .

Fully discrete system: „
1

∆tM
m+1 DcA

m+1

−σεAm+1 Mm+1

«„
cm+1

µm+1

«
=

 
rc
rµ

!

Total mass is conserved (insert χh ≡ 1).
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Numerical Approach

Implementation, Adaptivity

Implementation with the ALBERTA finite element toolkit,

[ Schmidt, Siebert 2005 ].

Isoparametric linear finite elements provided,

including adaption of the grid (bisection).

Experience value from flat case:

ensure 8 grid points

across the interfacial layers.

Phase transition regions often most curved.

; used order parameter (indicating the phase interface) for grid adaption so far.
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Simulations

Parameters for Convergence Test

Initial shape relaxed shape.

|Ω| 2.8760 k 1.0000

|Γ| 12.5610 κ̄ 0.0000

σ 2.5000

Rc :=
p
|Γ|/4π 0.9996 λ := 4

3Rcσ/k 3.3319

v̄ := |Ω|/4
3πR

3
c 0.6875 x := |Γ1|/|Γ| 0.6986
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Simulations

Convergence in ε I

Fully refined grid:

h ε Fh eoc comment

[0.032, 0.089] 0.4243 51.573

[0.021, 0.068] 0.3000 51.388 0.7229

[0.014, 0.045] 0.2121 51.244 1.9602

[0.010, 0.035] 0.1500 51.171

[0.014, 0.045] 0.3000 51.371 finer mesh

eoc(ε) = log(
Fh(
√

2ε)−Fh(ε)

Fh(ε)−Fh(ε/
√

2)
)/ log(

√
2).

Timestep: ∆t ∼ h2.
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Simulations

Convergence in ε II

Adaptively refined grid:

ε Fh eoc comment

0.2121 51.270

0.1500 51.199 1.6556

0.1061 51.159 3.0291

0.0750 51.145

0.2121 51.280 finer mesh

0.2121 51.244 globally refined

18434 vertices

≈ 5314 vertices
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Simulations

Grid Quality

q = min{sin(α) |α inner angle}.
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Simulations

Spontaneous Curvature Effect

With spontaneous curvature:

No spontaneous curvature:

κ̄(c = 1) = −1.206061,

κ̄(c = −1) = 0.0,

interpolation with polynomial

of degree three in between.

Result:

neck more pronounced,

adjacent membranes

slightly more rounded.

Colour indicates the curvature between -0.35 (blue) and -0.15 (red).
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Simulations

Effect of Different Bending Rigidities

k(red) = 2.0, k(blue) = 0.4 and interpolation with a polynomial of degree three in between.

t = 0.00 t = 0.05

t = 0.15 t = 0.65
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Simulations

Quantitative Example

[ Jülicher, Lipowsky 1996 ]:

v̄ = 0.92, λ = 9, x = 0.1.

Predicted energy: [54.915, 55.047].

Measured energy: 55.019.

Computed shape:
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Simulations

Budding?

Budding due to high line energy coefficient σ.

v̄ ≈ 0.85, λ ≈ 14.7, x ≈ 0.275, κ̄ = 0.0.
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Simulations

Random Order Parameter

v̄ ≈ 0.85, λ ≈ 14.85, x ≈ 0.55 (random initial field c), κ̄ = 0.0.
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Simulations

Non-Axisymmetric Structure

v̄ ≈ 0.9, λ ≈ 9.0, x ≈ 0.45, κ̄ = 0.0.
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Scale Invariance, Effective Parameters

Consider smooth hypersurfaces Γ in R3 of sphere-topology enclosing a domain Ω, as well as

smooth, compact curves γ ⊂ Γ. Characteristic radius: R = |Γ|/4π.

System energy

F =

Z
Γ

k

2
(κ− κ̄)

2
+

Z
γ

σ

is invariant under scaling x 7→ ηx, x ∈ Γ, η > 0, provided that σ 7→ σ/η and κ̄ 7→ κ̄/η.

Equilibrium shapes / local minimiser are characterised by:

vr = |Ω|
‹
(4π/3)R

3
reduced volume,

qr = |Γ1|/|Γ| relative domain size,

σr = σR/k reduced line tension,

cr = κ̄R reduced spontaneous curvature.
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Effective Parameters, Phase Diagram

Example from [ Jülicher, Lipowsky 1996 ].

qr = 0.1 fixed, cr = 0.0.

Top: variation of λ = σr and v = vr.

Bottom: σr = 0.9 fixed, variation of vr.

Limit shapes:

LCB: prolate and a spherical bud,

Lsp: two cut spheres.

Axisymmetric shapes only.

Warwick January 2009



Relaxational Dynamics

Total Energy:

F (Γ, c) =

Z
Γ

k

2
(κ− κ̄)

2
+ σ

“ε
2
|∇Γc|2 +

1

ε
ψ(c)

”
Approach to define the motion laws:

First, postulate a motion law for the order parameter such that the energy decreases if the surface

does not move.

Here: Allen-Cahn equation with Lagrange multiplier for the constraint.

Second, compute the time derivative of the energy and deduce the laws for the velocity such that

energy decreases in time.
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Euler-Lagrange Equation, SIM

0 =

2X
i=1

Z
Γi

ki
“

∆Γκi + |∇Γn|2(κi − κ̄i)−
1

2
(κi − κ̄i)2

κi
”
n ·w

+

Z
γ

“
σκγ +

2X
i=1

ki(κi − κ̄i)2
τ i
”
·w

+

2X
i=1

λ
(i)
A

“Z
Γi

−κi ·w +

Z
γ

τ i ·w
”

+ λV

2X
i=1

Z
Γi

n ·w.
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Example IV: Discocyte

Effects by spontaneous curvature.
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Example III: Mesh

without re-meshing
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