

Department of Mathematics Institute of Scientific Computing

PDE's on surfaces - a diffuse interface approach

Axel Voigt

Dresden

Outline

a diffuse interface/domain approach to solve PDE's

- on stationary surfaces with A. Rätz
- on evolving surfaces with A. Rätz
- ▶ in complicated domains with X. Li, J. Lowengrub, A. Rätz
- in evolving domains with X. Li, J. Lowengrub, A. Rätz
- applications where everything is coupled together

Rätz, Voigt, Comm. Math. Sci. (2006); Rätz, Voigt, Nonlin. (2007); Li, Lowengrub, Rätz, Voigt, Comm. Math. Sci. (in review)

Thomson's problem How to distribute charges on a sphere - with T. Witkowski

all simulation done with

adaptive multidimensional simulations

PDE's on surfaces	PDE's in complex domains	Applications	Thomson's problem
• 00 000000000	000000	00	000 000000

Model problem

2nd order PDE on surface Γ

$$u_t - \nabla_{\Gamma} \cdot (\mathbf{A} \nabla_{\Gamma} u) + \mathbf{b} \cdot \nabla_{\Gamma} u + cu = f$$

 ∇_{Γ} surface gradient, ∇_{Γ} · surface divergence **A** : $T_x \Gamma \rightarrow T_X \Gamma$ **b** : $T_x \Gamma \rightarrow \mathcal{R}$ $c : \mathcal{R} \rightarrow \mathcal{R}$

PDE's on surfaces	PDE's in complex domains	Applications	Thomson's problem
000000000	000000	00	000 000000

Implicit representation of Γ by phase-field function

$$\begin{split} \phi(x) &= \frac{1}{2}(1 - \tanh(\frac{3r(x)}{\epsilon}))\\ B &= B(\phi, \nabla \phi) \text{ approximation of } \delta_{\Gamma} \text{ e.g.}\\ B &= 36\phi^2(1 - \phi)^2\\ B &= \frac{\epsilon}{2}|\nabla \phi|^2 + \frac{1}{\epsilon}G(\phi) \end{split}$$

2nd order PDE on domain Ω

 $Bu_t - \nabla \cdot (B\mathbf{A}\nabla u) + B\mathbf{b} \cdot \nabla u + Bcu = Bf$

matched asymptotic analysis for $\epsilon \rightarrow 0$

Rätz, Voigt, Comm. Math. Sci. (2006)

PDE's on surfaces	PDE's in complex domains	Applications	Thomson's problem
000	000000	00	000 000000

Cahn-Hilliard equation

$$u_t = \Delta_{\Gamma} \mu$$

$$\mu = -\gamma \Delta_{\Gamma} u + \gamma^{-1} G'(u)$$

$$Bu_t = \nabla \cdot (B\nabla \mu)$$

$$B\mu = -\gamma \nabla \cdot (B\nabla u) + \gamma^{-1} BG'(u)$$

PDE's on surfaces	PDE's in complex domains	Applications	Thomson's problem
000 00000000	000000	00	000 000000

Model problem

2nd order PDE on evolving surface $\Gamma(t)$

$$u_t + \mathbf{v} \cdot \nabla u + u \nabla_{\Gamma} \cdot \mathbf{v} = -\nabla_{\Gamma} \cdot \mathbf{q}$$

 $\mathbf{v} = V\mathbf{n} + \mathbf{T}$ velocity, \mathbf{q} surface flux $\nabla_{\Gamma} \cdot \mathbf{v} = VH + \nabla_{\Gamma} \cdot \mathbf{T}, \ \mathbf{v} \cdot \nabla u = V \frac{\partial u}{\partial \mathbf{n}} + \mathbf{T} \cdot \nabla_{\Gamma} u$ if $\mathbf{T} = 0$ we obtain

 $u_t + uVH = -\nabla_{\Gamma} \cdot \mathbf{q}$

PDE's on surfaces	PDE's in complex domains	Applications	Thomson's problem
000 0●0000000	000000	00	000 000000

Implicit representation of Γ by phase-field function

$$\begin{split} \phi(x,t) &= \frac{1}{2}(1 - \tanh(\frac{3r(x,t)}{\epsilon}))\\ B &= B(\phi,\nabla\phi) \text{ approximation of } \delta_{\Gamma} \text{ e.g.}\\ B &= 36\phi^2(1-\phi)^2\\ B &= \frac{\epsilon}{2}|\nabla\phi|^2 + \frac{1}{\epsilon}G(\phi) \end{split}$$

2nd order PDE on evolving domain $\boldsymbol{\Omega}$

$$Bu_t + (-\epsilon \nabla \cdot (u \nabla \phi) + \epsilon^{-1} G'(\phi) u) \phi_t = -\epsilon^{-1} \nabla \cdot (B\mathbf{q})$$

matched asymptotic analysis for $\epsilon \to 0$

Rätz, Voigt, Nonlin. (2007), Elliott, Stinner, Math. Mod. Meth. Appl. (2009)

Biomembrane - extended Helfrich model

thermodynamically consistent model

$$\begin{aligned}
u_t + uVH &= \nabla_{\Gamma} \cdot \left(\xi_u \nabla_{\Gamma} \frac{\delta E}{\delta u} \right) \\
V &= -\xi_V \left(\mathbf{n} \cdot \frac{\delta E}{\delta \Gamma} - uH \frac{\delta E}{\delta u} \right) \\
\mathbf{T} &= -\xi_T \left((\mathbf{I} - \mathbf{n} \otimes \mathbf{n}) \frac{\delta E}{\delta \Gamma} \right) \end{aligned}$$

+ constraints on volume and area u lipid concentration, ξ_u, ξ_V, ξ_T kinetic coefficients

Lowengrub, Rätz, Voigt, Phys. Rev. E (submitted)

Energy $E = E_B + E_G + E_S + E_T$

the normal bending energy

$$E_{B} = \frac{1}{2} \int_{\Gamma} b_{N}(u) \left(H - H_{0}(u)\right)^{2} dA$$

the Gaussian bending energy

$$E_G = \int_{\Gamma} b_G(u) K \, dA$$

the excess energy

$$E_{\mathcal{S}} = \int_{\Gamma} \gamma(u) \, dA$$

the line energy

$$E_{T} = \sigma \int_{\Gamma} \left(\frac{\delta}{2} ||\nabla_{\Gamma} u||^{2} + \delta^{-1} W(u) \right) dA$$

Comment on Gaussian bending energy

Gauss-Bonnet theorem: $E_G = \int_C [b_G] \kappa_g \, ds$

approximate by phase-field representations (use phase-field approximation for Willmore flow with spontaneous curvature $H_0 = 1$, $E_B = \int_{\Gamma} H^2 + 2H + 1 dA$)

$$E_G = \frac{1}{\delta} \int_{\Gamma} [b_G] (-\delta \Delta_{\Gamma} u + \frac{1}{\delta} W'(u)) \sqrt{2W(u)} \ dA$$

Phase-field representation

l

sharp interface model

$$\begin{aligned} u_t + uVH &= \nabla_{\Gamma} \cdot \left(\xi_u \nabla_{\Gamma} \frac{\delta E}{\delta u}\right) \\ V &= -\xi_V \left(\mathbf{n} \cdot \frac{\delta E}{\delta \Gamma} - uH \frac{\delta E}{\delta u}\right) \end{aligned}$$

phase field approximation

$$\begin{split} Bu_t + \left(-\epsilon \nabla \cdot (u \nabla \phi) + \epsilon^{-1} u G'(\phi)\right) \phi_t &= \epsilon^{-1} \nabla \cdot (\beta_u B \nabla \mu) \\ B\mu &= \frac{\delta F}{\delta u} \\ \epsilon \phi_t + \beta_\phi \left(\frac{\delta F}{\delta \phi} + \left(\epsilon \nabla \cdot (u \nabla \phi) - \epsilon^{-1} u G'(\phi)\right) \mu\right) &= 0 \end{split}$$

Energy $F = F_B + F_G + F_S + F_T$

the normal bending energy

$$F_B[\phi, u] = \frac{1}{2} \int_{\Omega} \epsilon^{-1} b_N(u) \left(\epsilon \Delta \phi - \epsilon^{-1} G'(\phi) + 6\phi(1-\phi) H_0(u) \right)^2 dx,$$

the Gaussian bending energy

 $F_G[\phi,u]=?$

the excess energy

$$F_{\mathcal{S}}[\phi, u] = \int_{\Omega} \left(\frac{\epsilon}{2} |\nabla \phi|^2 + \epsilon^{-1} G(\phi) \right) \gamma(u) \, dx.$$

the line energy

$$F_L[\phi, u] = \int_{\Omega} \left(\frac{\epsilon}{2} |\nabla \phi|^2 + \epsilon^{-1} G(\phi)\right) \left(\frac{\delta}{2} |\nabla u|^2 + \delta^{-1} W(u)\right) dx.$$

15	PDE's on surfaces	PDE's in complex domains	Applications	Thomson's problem
AI	000 0000000€0	000000	00	000

Results

÷	PDE's on surfaces	PDE's in complex domains	Applications	Thomson's problem
	000 00000000	000000	00	000

Results

0 1

0.002

t

0.004

Model problem

2nd order PDE in complex domain Ω_{in}

 $u_t - \nabla \cdot (\mathbf{A} \nabla u) + \mathbf{b} \cdot \nabla u + cu = f$

subject to IC and BC (Dirichlet, Neumann, Robin)

large literature on fictitious domain methods various method to incoporate BC composit FEM - modify basis functions in vicinity of boundary extended FEM - enlarge set of test functions immersed interface method - enlarge set of test functions nonconforming FEM - enlarge set of test functions

• • •

PDE's on surfaces	PDE's in complex domains	Applications	Thomson's problem
000 000000000	00000	00	000 000000

Implicit representation of Ω_{in} by phase-field function

$$\begin{split} \phi(x) &= \frac{1}{2}(1 - \tanh(\frac{3r(x)}{\epsilon}))\\ B &= B(\phi, \nabla \phi) \text{ approximation of } \delta_{\Gamma} \text{ e.g.}\\ B &= 36\phi^2(1 - \phi)^2\\ B &= \frac{\epsilon}{2}|\nabla \phi|^2 + \frac{1}{\epsilon}G(\phi) \end{split}$$

2nd order PDE on domain Ω

 $(\phi u)_t - \nabla \cdot (\phi \mathbf{A} \nabla u) + \phi \mathbf{b} \cdot \nabla u + \phi c u + B.C. = \phi f$

matched asymptotic analysis for $\epsilon \rightarrow 0$

Li, Lowengrub, Rätz, Voigt, Comm. Math. Sci. (submitted)

DE's on surfaces	PDE's in complex domains	Applications	Thomson's problem
00 00000000	00000	00	000 000000

Diffuse domain approximation

Ρ

Dirichlet boundary

 $\Delta u = f \text{ in } \Omega_{in}$ $u = g \text{ on } \Gamma$

diffuse domain approximation

(a)

$$abla \cdot (\phi \nabla u) - \epsilon^{-3} (1 - \phi) (u - g) = \phi f \quad \text{in} \quad \Omega$$

(b)

$$abla \cdot (\phi \nabla u) + (u - g) \Delta \phi = \phi f \quad \text{in} \quad \Omega$$

compare formal form of PDE

$$\nabla \cdot (\Xi_{\Omega_{in}} \nabla u) + (u - g) \nabla \cdot \nabla \Xi_{\Omega_{in}} = \Xi_{\Omega_{in}} f \text{ in } \Omega$$

PDE's on surfaces	PDE's in complex domains	Applications	Thomson's problem
000 000000000	000000	00	000

Diffuse domain approximation

Neumann boundary

 $\Delta u = f \text{ in } \Omega_{in}$ $\nabla u \cdot \mathbf{n} = g \text{ on } \Gamma$

diffuse domain approximation

(a)

$$abla \cdot (\phi \nabla u) + \epsilon g |\nabla \phi|^2 = \phi f \quad \text{in} \quad \Omega$$

(b)

$$\nabla \cdot (\phi \nabla u) + \epsilon^{-1} B(\phi) g = \phi f$$
 in Ω

compare formal form of PDE

$$\nabla \cdot (\Xi_{\Omega_{in}} \nabla u) + g \delta_{\Gamma} = \Xi_{\Omega_{in}} f \quad \text{in} \quad \Omega$$

Diffuse domain approximation

Robin boundary

 $\Delta u = f \text{ in } \Omega_{in}$ $\nabla u \cdot \mathbf{n} = k(u-g) \text{ on } \Gamma$

diffuse domain approximation

(a)

$$abla \cdot (\phi \nabla u) + \epsilon k(u - g) |\nabla \phi|^2 = \phi f \text{ in } \Omega$$

(b)

$$abla \cdot (\phi \nabla u) + \epsilon^{-1} B(\phi) k(u-g) = \phi f \quad \text{in} \quad \Omega$$

compare formal form of PDE

$$abla \cdot (\Xi_{\Omega_{in}} \nabla u) + k(u - g)\delta_{\Gamma} = \Xi_{\Omega_{in}} f \quad \text{in} \quad \Omega$$

5	PDE's on surfaces	PDE's in complex domains	Applications	Thomson's problem
I	000 000000000	00000	00	000

Example with Robin boundary condition

adaptive refinement (5 grid points across diffues interface versus 10 grid points)

Model problem

2nd order PDE in complex evolving domain $\Omega_{in}(t)$

$$u_t - \nabla \cdot (\mathbf{A} \nabla u) + \mathbf{b} \cdot \nabla u + cu = f$$

subject to IC and BC (Dirichlet, Neumann, Robin)

Neumann boundary $\mathbf{A}\nabla u \cdot \mathbf{n} + uV = g$ Robin boundary $\mathbf{A}\nabla u \cdot \mathbf{n} + uV = k(u - g)$

	PDE's on surfaces	PDE's in complex domains	Applications	Thomson's problem	
0	500000000	000	0	000000	

Implicit representation of $\Omega_{in}(t)$ by phase-field function

$$\begin{split} \phi(x,t) &= \frac{1}{2}(1 - \tanh(\frac{3r(x,t)}{\epsilon}))\\ B &= B(\phi,\nabla\phi) \text{ approximation of } \delta_{\Gamma} \text{ e.g.}\\ B &= 36\phi^2(1-\phi)^2\\ B &= \frac{\epsilon}{2}|\nabla\phi|^2 + \frac{1}{\epsilon}G(\phi) \end{split}$$

2nd order PDE on domain Ω

 $(\phi u)_t - \nabla \cdot (\phi \mathbf{A} \nabla u) + \phi \mathbf{b} \cdot \nabla u + \phi c u + B.C. = \phi f$

matched asymptotic analysis for $\epsilon \rightarrow 0$

Li, Lowengrub, Rätz, Voigt, Comm. Math. Sci. (submitted)

PDE's on surfaces	PDE's in complex domains	Applications	Thomson's problem
000 000000000	00000	00	000 000000

Example on evolving domain

$$u_t + \nabla \cdot (u\mathbf{v}) - \Delta u + u = f \text{ in } \Omega_{in}(t)$$

$$\nabla u \cdot \mathbf{n} = g \text{ on } \Gamma(t)$$

diffuse domain approximation

$$(\phi u)_t + \nabla \cdot (\phi u \mathbf{v}) - \nabla \cdot (\phi \nabla u) - g |\nabla \phi| + \phi u = \phi f$$
 in Ω

Cell biology - coupled bulk and surface quantities

proteins diffusion inside the cell can bind to membrane and diffuse along membrane, whereas membrane-bound proteins can dissociate and become free to diffuse in cytoplasm

> $v_t = \Delta_{\Gamma} v + R_1 + j \text{ on } \Gamma$ $u_t = \Delta u + R_2 \text{ in } \Omega_{in}$ $j = -\nabla u \cdot \mathbf{n} = -r_d v + r_a u \text{ on } \Gamma$

approximation

$$Bv_t = \nabla \cdot (B\nabla v) + B(R_1 + j) \text{ in } \Omega$$

$$\phi u_t = \nabla \cdot (\phi \nabla u) + \phi R_2 - \epsilon j |\nabla \phi| \text{ in } \Omega$$

$$j = -r_d v + r_a u \text{ in } \Omega$$

E	PDE's on surfaces	PDE's in complex domains	Applications	Thomson's problem
	000 000000000	000000	○● ○	000 000000

Cell biology - coupled bulk and surface quantities

bulk error 256×256

bulk error 1024×1024

bulk error 512×512

bulk error 2048×2048

surface error 256×256

surface error 1024×1024

Conclusion

using a phase-field variable to approximate a domain allows to

- solve PDE's on surfaces restrict PDE to diffuse interface using approximation for surface delta-function
- solve PDE's in complex domains with arbitrary boundary conditions - restrict PDE to domain using approximation for indicator function and incorporate B.C. through lower order term using approximation of delta-function
- solve geometric evolution problem solve evolution for phase field variable
- \Rightarrow coupled system of PDE's on Ω

Distribution of points on a 2-sphere

N unit vectors { $\mathbf{r}_i : 1 \le i \le N$ } - position of *N* points on the sphere minimize energy

$$E = \sum_{1 \le i < j \le N} |\mathbf{r}_i - \mathbf{r}_j|^{-1}$$

 v_i number of vertices with *i* nearest neighbors **Euler theorem**: $\sum_i (6 - i)v_i = 12$

 \Rightarrow disclination charge of any triangulation must be 12

Large N

- isolated defects are predicted to induce too much strain
- excess strain can be reduced by pairs of 5 – 7 defects
- ► 5 7 chains form grain boundary scars
- ground state of sufficiently large and curved crystals has grain boundary scars

Bausch et al. Science (2003)

Applications

multielectron bubbles, colloidal particles in colloidosomes, proteins in viral capsides, self-assembled spherules on core/shell microstructures, ...

X. Li et al. Science (2005)

Minimize free energy functional

possible form to produces periodic structures in a planar domain

$$\mathcal{F} = \int_{\Omega} -|\nabla \psi|^2 + \frac{1}{2} |\Delta \psi|^2 + f(\psi) \, dx$$

- ψ the number density
- $f(\psi) = \frac{1}{2}(1 \epsilon)\psi^2 + \frac{1}{4}\psi^4$ a potential

equilibrium state for $\Omega = \mathcal{R}^2$ has a perfect sixfold symmetry

- L^2 gradient flow $\partial_t \psi = -\delta \mathcal{F}/\delta \psi$ Swift, Hohenberg, Phys. Rev. A (1977)
- H^{-1} gradient flow $\partial_t \psi = \Delta \delta \mathcal{F} / \delta \psi$ Elder et al. Phys. Rev. Lett. (2002)

Formulate problem on a surface

free energy

$$\mathcal{F} = \int_{\Gamma} -|\nabla_{\Gamma}\psi|^2 + \frac{1}{2}|\Delta_{\Gamma}\psi|^2 + f(\psi) \ d\Gamma$$

•
$$H^{-1}$$
 gradient flow $\partial_t \psi = \Delta_{\Gamma} \delta \mathcal{F} / \delta \psi$
solve with parametric finite elements within AMDIS

$$\partial_t \phi = \Delta_{\Gamma} u$$

$$u = 2\Delta_{\Gamma} v + v + f'(\phi)$$

$$v = \Delta_{\Gamma} \phi.$$

Backofen, Rätz, Voigt, Phil. Mag. Lett. (2007)

PDE's on surfaces	PDE's in complex domains	Applications	Thomson's problem
000	000000	00	000 000000

Reproduce known results for $N \le 100$

PDE's on surfaces	PDE's in complex domains	Applications	Thomson's problem
000 000000000	000000	00	000 000000

Results for large N

 PDE's on surfaces
 PDE's in complex domains
 Applications
 Thomson's problem

 000
 000000
 00
 000
 000

 000000000
 000
 000
 000
 000

Results on complicated surfaces

