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Motivation

Computation of averages
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Motivation

Convergence of averages
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Motivation

“While the induced temperature error is within one percent, the
resulting pressure is manyfold higher than the reference pressure, by a
factor of between 5 to 7 with a time step of 1 fs, and a factor of 14

with a time step of 2 fs.”

– M.A. Cuendet and W.F. van Gunsteren, J. Chem. Phys. 127, 184102 (2007)
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Goal

What is the error in an average from a MD trajectory?

Error = |〈A〉numerical − 〈A〉exact|

Estimate accounts for two factors:

Error ≤ Statistical Error + Truncation Error

Asymptotic Bound:

Error ≤ C1
1√
t

+ C2 ∆tp

Talk will focus on truncation error.

Poincaré hyperbolic: S. Reich, Backward error analysis for numerical integrators, ’99

Statistical error: E. Cancès, et al, Long-time averaging using symplectic ..., ’04, ’05.
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System of Equations

Newton’s equations: Force = Mass × acceleration

q̇ = p/m and ṗ = −∇U(q)

q = position, m = mass, p = momenta

First order system

ż = F (z) , where F : Rn → Rn

Exact solution map
z (t) = Φt (t0, z0)
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Ergodic

Time average:

〈A〉time = lim
t→∞

1

t

∫ t

0
A (z (τ)) dτ

Ensemble average:

〈A〉ensemble =

∫
Ω

A (z) ρ (z) dz

Ergodicity
〈A〉time = 〈A〉ensemble (a.e.)

Almost all trajectories are statistically the same.
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Liouville Equation

Continuity equation for probability density:

∂ρ

∂t
+∇ · (ρF ) = 0

or
∂ρ

∂t
+ F · ∇ρ+ ρ∇ · F = 0

In the case ρ > 0,
D ln ρ

Dt
= −∇ · F

For microcanonical ensemble

∇ · F = 0 ⇒ ρ = C δ [H (z)− E ]
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Example: Nosé-Hoover

Nosé-Hoover vector field

dq

dt
= M−1p

dp

dt
= −∇U (q)− ξ

µ
p

dξ

dt
= pTM−1p − gkBT

Invariant distribution

ρ ∝ exp

{
− 1

kBT

(
1

2
pTM−1p + U (q) +

ξ2

2µ

)}
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Error Analysis

First order system
ż = F (z)

Forward error:
Is the numerical trajectory close to the exact trajectory?

‖zn − z (tn) ‖ ≤ C∆tp

Backward error:
Is the numerical trajectory interpolated by an exact trajectory, but for
a different problem?

‖F̂∆t (z)− F (z) ‖ ≤ C∆tp

“Method of Modified Equations”
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Error Analysis

Ergodicity:
Exact trajectories are sensitive (chaotic) to perturbations in the initial
conditions
→ Large Forward Error.

Statistics:
Thermodynamic properties (averages) are not a function of the
details of the initial conditions
→ Small Backward Error.
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Symplectic Structure

In 1 dimension

Conservation of Area
dq ∧ dp = constant

In n dimensions
Conservation of “Oriented Area”∑

dqi ∧ dpi = constant
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Backward Error Analysis: Modified Equations

Given a pth-order numerical method, Ψh, we can always construct a
modified vector field, Fh, such that the numerical method provides a
r th-order approximation to the flow of the modified system .

If the numerical method and vector field are symplectic/Hamiltonian,
the modified vector field will be symplectic/Hamiltonian.

Series is truncated at an optimal r∗, which increases as h→ 0.

Use a low-order modified vector field when h is large?
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Big Picture

Flow Map

↑
Vector Field

↓
Ensemble

Φt ≈ Ψ̂∆t

↑ ↗ ↓
F ≈ F̂∆t

↓ ↓
ρ ≈ ρ̂∆t
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Example: Verlet

Hamiltonian

H (q, p) =
1

2
pTM−1p + U (q)

Verlet

pn+1/2 = pn − ∆t

2
∇U (qn)

qn+1 = qn + ∆tM−1pn+1/2

pn+1 = pn+1/2 − ∆t

2
∇U

(
qn+1

)
Splitting

H1 =
1

2
pTM−1p, H2 = U (q)
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Example: Verlet

Strang Splitting

exp (∆tL) = exp

(
∆t

2
L2

)
exp (∆tL1) exp

(
∆t

2
L2

)
+O [∆t3

]
L = L1 + L2

L1 = M−1p · ∇q L2 = −∇qU (q) · ∇p

Modified Equations

exp
(

∆tL̂[r ]
∆t

)
= exp

(
∆t

2
L2

)
exp (∆tL1) exp

(
∆t

2
L2

)
+O [∆tr+1

]
Solve for L̂[r ]

∆t using Baker-Campbell-Hausdorff formula
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Example: Verlet

Original Hamiltonian:

H (q, p) =
1

2
pTM−1p + U (q)

Modified Hamiltonian:

H2,∆t (q, p) = H (q, p) +
∆t2

12

(
pTM−1U ′′M−1p − 1

2
∇UTM−1∇U

)
Verlet conserves H2,∆t to 4th order accuracy!

Practical Computation:

d2

dt2
U (q) =

d

dt
∇U (q) ·M−1p

= ptM−1U ′′ (q) M−1p −∇U (q) ·M−1∇U (q)
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Correcting Microcanonical Averages

Hamiltonian + Symplectic integrator ⇒ Modified Hamiltonian

H(z) = E

H(z) = E

Numerical average is computed on Ĥ surface

What is the error from using the wrong surface?
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Correcting Microcanonical Averages

H(z) = E

H(z) = E

Exact − Numerical ≈ 〈A〉H=E − 〈A〉Ĥ=Ê =∫
A (z) δ

[
H (z)− E

]
dz∫

δ
[
H (z)− E

]
dz

−−
∫

A (z) δ
[
Ĥ (z)− Ê

]
dz∫

δ
[
Ĥ (z)− Ê

]
dz
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Correcting Microcanonical Averages

Expand delta function

δ
[
H (z)

]
= δ
[
Ĥ (z)

]
+
(
H − Ĥ

)
δ′
[
Ĥ (z)

]
+ · · ·

and use directional derivative

u · ∇z δ
[
H (z)

]
= δ′

[
H (z)

]
u · ∇H

Corrected average

〈A〉exact =
〈A〉num + 〈∇ · (w A)〉num

〈1〉num + 〈∇ · w〉num
+ · · ·

where
w :=

(
Ĥ − H

) u

u · ∇Ĥ
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Example: Quartic Oscillator
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Example: Quartic Oscillator
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Correcting Microcanonical Averages

H(z) = E

H(z) = E

Alternative method:

〈A〉exact = 〈ω A (T (z))〉num

where T maps points on Ĥ to points on H.

Weighting factor, ω, accounts for distortion
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Liouville Equation for Modified Vector Field

Modified Equations

dẑ

dt
= F̂∆t (ẑ) where F̂∆t = F + ∆tpG

Modified Liouville Equation

∂

∂t
ρ̂∆t +∇ ·

(
ρ̂∆t F̂∆t

)
= 0

Weighting factor

ω := ρ/ρ̂∆t , assuming ρ, ρ̂∆t > 0

implies
D
Dt

ln (ω) = ∆tp (∇ · G + G · ∇ ln ρ)
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Averages

Truncation Error Estimate

〈A〉num − 〈A〉exact ≈
∫

Γ
A (q, p) ρ∆t dΓ−

∫
Γ
A (q, p) ρ dΓ

≈ 〈A〉num 〈ω〉num − 〈Aω〉num

〈ω〉num

Reweighted Averages

〈A〉exact =
〈Aω〉num

〈ω〉num
+O [∆tr ]
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Example:

Nosé-Poincaré Hamiltonian:

H (q, p̃, s, πs) = s

(
1

2 s2
p̃TM−1p̃ + U (q) +

π2
s

2µ
+ g k T ln s − E0

)
Nosé-Poincaré Modified Hamiltonian:

Ĥ∆t = HNP +
∆t2

12
s

(
πs

µ s
p̃TM−1∇U

− 1

2
∇UTM−1∇U +

1

s2
p̃TM−1U ′′M−1p̃

− 1

2µ

(
1

s2
p̃TM−1p̃ − g k T

)2

+
2 g k T π2

s

µ2

)
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Example:

Modified marginal distribution:

ρ̄∆t(q, p) dp dq =
1

C

∫
s

∫
ps

δ
[
Ĥ∆t(q, s, p̃, ps)− Ê0

]
dp̃ dq dps ds,

=
1

C

∫
s

∫
ps

δ

[
s

(
HN − H0

N + ∆t2G

)]
dp̃ dq dps ds.

Change of variables, integrating

ρ̄ =
1

C

∫
ps

eNf η0

∣∣∣∣gkBT + h2 ∂

∂η
G (q, eη, p, ps)

∣∣∣∣−1

η=η0

dps .

η0 =
−1

g kB T

(
H(q, p) +

p2
s

2µ
+ h2 G (q, eη0 , p, ps)− H0

N

)
,

More mathematical manipulations

ρ̄ =
ρc

C̄
exp

{
− ∆t2

24kBT

[∑
j ,k

2pjpkUqjqk

mjmk
−
∑

j

U2
qj

mj
− 1

µ

(∑
j

p2
j

mj
−gkBT

)2]}
,
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Example:

Weighting Factor:

ω ≈ exp

{ −∆t2

24 kB T

[
2pTM−1U ′′ (q) M−1p

−∇U (q)T M−1∇U (q)− 1

µ

(
pTM−1p − g kB T

)2
]}

Reweighted Averages:

〈A〉exact ≈ 〈Aω〉num

〈ω〉Num

Hybrid Monte Carlo:
J. Izaguirre and S. Hampton, J. Comput. Phys. 200, 2004.

E. Akhmatskaya and S. Reich, LNCSE 49, 2006.

Time correlation functions:
R. D. Skeel, SIAM J. Sci. Comput. 31, 2009.
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Numerical Experiment:

System:

256 Particle Gas

Lennard-Jones Potential

T = 1.5ε/k , ρ = 0.95r3
0 , t = 20r0

√
m/ε

Method:

Nosé-Poincaré (Symplectic, Time-Reversible)

∆t = 0.012r0

√
m/ε to 0.0001r0

√
m/ε

Reference:

Dettmann and Morriss, Phys. Rev. E 55 1997
Bond, Laird, and Leimkuhler J. Comput. Phys. 151 1999.

S. Bond and B. Leimkuhler Acta Numerica 16, 2007.
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Numerical Experiment:

“Extended” Energy Conservation:
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Numerical Experiment:

Improved Estimator
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Numerical Experiment:

Improved Estimator Error
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Final Thoughts:

Numerical stability of pressure measurement

In general, when can we correct for numerical bias?

Is the error in the dynamics or the observation?

Ruslan Davidchack, Warwick Capstone Minisymposium (July 1, 2009)
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Motivation

Green Mamba: Fasciculin 2

Neuromuscular Junction
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Motivation
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Motivation

Proteins naturally occur in solution

⇒ Must model them in solution

Two options for modeling solute-solvent electro-
static interactions

1 Explicit: Solvent molecules explicitly
represented

2 Implicit: “Average” effect of solvent is
computed
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Motivation

Want to compute electrostatic Solvation Free Energy:

Total Solvation Free Energy

G = Ws −Wc + Gnp

Electrostatic Solvation Free Energy

S = Ws −Wc

Wc←−−

G

y yGnp

←−−
Ws
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Formulation

Poisson-Boltzmann Equation (PBE): Nonlinear PDE to compute
electrostatics of protein in solution

3D infinite domain: Ω

2 Subdomains:

Solute: Ωm

Solvent: Ωs

Interface: Γ

Solute
(Explicit Charges)

Ωs

Solvent

Ωm

_

__

_

_

_

_

_

_

_

_

+

+

+

+

+
+

+

+

+
+

+ +

+

_

_

_

_
+

+

Ions
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Formulation: PDE

Poisson-Boltzmann Equation (PBE) for electrostatic potential

−∇ · ε(x)∇φ(x) + κ̄2(x) sinh (φ(x)) = 4πρf (x) for x ∈ Ωm ∪ Ωs ,

φ(x) = 0 for x =∞,
[ε(x)∇φ(x) · n] = 0 for x ∈ Γ.

Note: ε and κ̄ are discontinuous at interface
Simplifications:

Infinite domain assumed to be finite

Linearized PBE (LPBE) assumes
φ ≈ sinh(φ)

Challenge:

ρf : point charges at solute atom
locations cause singularities in φ

PBE Domain
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Formulation: What Challenge?

Source term: ρf (x) =
∑P

i qiδ(x − xi )

Coulomb’s law for single charge is (εm is dielectric in vacuum)

−εm∇2G (x) = 4πδ(x) ⇒ G (x) =
1

εm|x |

Consider PBE in molecular subdomain Ωm (i.e. κ̄2(x) = 0)

−εm∇2φ(x) = 4πρf (x)

Up to Ker(∇2), φ is given by Coulomb’s law

Standard piecewise linear FE basis does not converge to 1/|x |
singularities
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Formulation: Regularized PBE

Will remove singularities from electrostatic potential analytically

Use analytical form of Coulomb potential G (x), satisfying

−εm∇2G (x) = 4πρf (x)

G (∞) = 0

Define u = φ− G , u called Reaction Potential

Substitute φ = u + G into PBE, solve for u gives Regularized PBE
(RPBE)

−∇ · ε(x)∇u(x) + κ̄2(x)u(x)

= ∇ · (ε(x)− εm)∇G − κ̄2(x)G (x)

}
for x ∈ Ωm ∪ Ωs ,

u(x) = g(x)− G (x) for x ∈ ∂Ω,

[ε(x)∇u(x) · n] = (εm − εs)∇G (x) · n for x ∈ Γ.

Goto weak form
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Formulation: Solvation Free Energy

Recall, goal is to compute Solvation Free Energy: S = Ws −Wc

u = φ− G

S is a linear functional of u

S(u) =
1

2

∫
u(x)ρf (x) dx

←−y y
←−
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Formulation: Born ion example

Born ion is single ion in center of sphere: analytical solution known

⇒ Sphere radius= 2Å, εm = 1, εs = 78, κ̄2 = 0

A2
+

Γ
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Discretization

Discretization concerns

Complex geometry of molecule ⇒ Use Finite Elements

Problem: Need mesh matching molecular surface
Use GAMer (Geometry preserving Adaptive MeshER) from Holst group ∗

∗Z. Yu, M. Holst, Y. Cheng, and J.A. McCammon,
J. Mol. Graphics, 2008.
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Discretization

Use finite elements to solve linear RPBE

Primal problem is
a(u, v) = L(v) ∀v ∈ V

where

a(u, v) =

∫
Ω
ε(x)∇u(x) · ∇v(x) + κ̄2(x)u(x)v(x) dx

L(v) =

∫
Ω
−(ε(x)− εm)∇G (x) · ∇v(x)− κ̄2G (x)v(x) dx .

Want to compute solvation free energy: S(u)

Initial mesh not good enough for accurate solvation free energy

Use Adaptive Mesh Refinement to improve accuracy

see RPBE
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Adaptive Mesh Refinement

Adaptive Mesh Refinement (AMR) Algorithm

SOLVE −→ ESTIMATE −→ MARK −→ REFINE

SOLVE: Solve Regularized LPBE

ESTIMATE: Construct elementwise error estimates

MARK: Select elements with “large” error for refinement

REFINE: Subdivide selected elements into smaller simplices

−→ −→
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Adaptive Mesh Refinement

Adaptive Mesh Refinement (AMR) Algorithm

SOLVE −→ ESTIMATE −→ MARK −→ REFINE

SOLVE: Solve Regularized LPBE

ESTIMATE: Construct elementwise error estimates

MARK: Select elements with “large” error for refinement

REFINE: Subdivide selected elements into smaller simplices

I will focus on ESTIMATE and MARK
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AMR - ESTIMATE

From approximate solution uh calculate error

1 Easily computed
2 Bounds the error

What error should be bounded?

How to compute error in uh?

Relate weak residual to error

R(v) = L(v)− a(uh, v) ∀v ∈ V
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AMR - ESTIMATE: Energy-based

Measure error in energy-norm (|||g |||2 = a(g , g))

∣∣∣∣∣∣∣∣∣u − uh
∣∣∣∣∣∣∣∣∣2 ≤ C

(∑
K

η2
K (uh)

)

Indicator is

η2
K (uh) = h2

K‖rK‖2
L2(K) +

1

4
h∂K‖r∂K‖2

L2(∂K)

where

rK (x) = (∇ · (ε(x)− εm)∇G (x)− κ̄2(x)G (x))− (−∇ · ε(x)∇uh(x) + κ̄2(x)uh(x))

r∂K (x) = nK ·
[
(ε(x)− εm)∇G (x) + ε(x)∇uh(x)

]
nK
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AMR - ESTIMATE: Energy-based

Elementwise error in solution of RPBE for Born ion

X Indicator shows correct error distribution

× Scaling of indicator is wrong

× No explicit knowledge of Solvation Free Energy

Exact Error Numerical Indicator
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AMR - ESTIMATE: Goal-oriented

Want to find error in solvation free energy: S(u − uh)

By Riesz Representation there exits a w such that

R(w) = a(u − uh,w) = S(u − uh)

Given w , error in S(uh) can be computed

To find w , solve the Dual problem

a(v ,w) = S(v) ∀v ∈ V

In practice, w is approximated by FE solution

Indicators bound error in functional

|S(u − uh)| = |a(u − uh,w)| ≤ C
∑
K

ηK (uh,wh)
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AMR - ESTIMATE: Goal-oriented

Algorithm: Goal-Oriented Refinement

1 Solve primal problem for uh

2 Solve dual problem for wh

3 Compute error indicator

|S(u − uh)| = |a(u − uh,w)| ≤
∑
K

ηK (uh,wh)

where K is an element

4 Refine elements where ηK (uh,wh) is “large”

5 Repeat
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AMR - ESTIMATE: Goal-oriented

Two options for computing ηK

1 Solve dual problem using quadratic basis functions: w ≈ wh,2

|S(u − uh)| = |L(wh,2)− a(uh,wh,2)| ≤
∑
K

ηK (uh,wh,2)

where

ηK (uh,wh,2) =

∫
K

∣∣∣∣(ε− εm)∇G (x)∇wh,2(x) + κ̄2(x)G (x)wh,2(x)

+ ε(x)∇uh(x) · ∇wh,2(x) + κ̄2(x)uh(x)wh,2(x)

∣∣∣∣ dx

2 Solve dual problem using linear basis functions

|S(u − uh)| =
∑
K

1

4
‖(u − uh) + (w − wh)‖2

K −
1

4
‖(u − uh)− (w − wh)‖2

K

where u − uh and w − wh are approximated using element residual
method
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AMR - MARK

MARK: Select elements with “large” error for refinement

Choice of marking greatly effects quality of refinement

For a triangulation T = T m ∪ T s : two marking strategies
1 Global Marking: For γ ∈ (0, 1)

Mark all K ∈ T such that ηK > γ max
T∈T

ηT

2 Split Marking: For γ ∈ (0, 1)

Mark all

{
K ∈ T s

K ∈ T m such that

{
ηK > γ max

T∈T s
ηT

ηK > γ max
T∈T m

ηT
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Implicit Solvent Results

Compute solvation free energy

“Exact” solution from uniform
refinement

Meshes from GAMer (Holst Group)

Goal-oriented vs. energy-based
refinement

Fasciculin-1

921 Atoms
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Implicit Solvent Results

Marking Strategy
Global Split
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Implicit Solvent Results

Relative Error in Solvation Free Energy of Fasciculin-1

Take Home: Goal-oriented mesh refinement can achieve greater accuracy
with fewer degrees of freedom
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Multilevel Preconditioning: Multigrid

Form a coarse problem: Ai−1 = Pt
i AiPi

Smooth: Aiui ≈ fi , ri = fi − Aiui

Restrict: fi−1 = Pt
i ri

Solve: Ai−1ui−1 = fi−1

Prolong: ui = ui + Piui−1

Smooth: Aiui ≈ fi
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Electrostatics: Hierarchical Basis and BPX

B. Aksoylu, S. Bond, M. Holst, SIAM J. Sci. Comput. (2003)

Introduce a change of basis

Only smooth on the “new” mesh points

Hierarchical Basis (Bank, Dupont, Yserentant)

Recursively defined locally supported basis functions

BPX (Bramble, Pasciak, Xu)

Equivalent to smoothing on the “one-ring”
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Final Thoughts

1 Poisson-Boltzmann equation models electrostatic effects of implicit
solvent

2 Can develop error indicators using weak residual

3 Goal-oriented refinement requires the solution of dual problem

4 Solvation free energy accurately calculated using goal-oriented
refinement

5 Appropriate marking strategy must be used

6 Multilevel preconditioning challenging with adaptively refined meshes
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