Measuring and correcting algorithmic bias in molecular dynamics averages

Stephen Bond

University of Illinois Urbana-Champaign
Department of Computer Science

EPSRC Symposium Workshop on Molecular Dynamics June 1-5, 2009

Collaborators

- Nana Arizumi (Illinois)
- Ben Leimkuhler (Edinburgh)
- Brian Laird (Kansas)
- Ruslan Davidchack (Leicester)
S. Bond and B. Leimkuhler Acta Numerica 16, 2007.
N. Arizumi and S. Bond, in preparation, 2009.

Motivation

Computation of averages

Motivation

Convergence of averages

Motivation

System	Δt	True temperature $[\mathrm{fs}]$	Feedback pressure $[\mathrm{bar}]$	True pressure $[\mathrm{bar}]$
Na^{+}in water	1	300.46	1.01	5.14
Na^{+}in water	2	301.83	1.24	17.83
TCR-pMHC protein solvent	1	300.65 302.23 300.48	1.05	6.97

"While the induced temperature error is within one percent, the resulting pressure is manyfold higher than the reference pressure, by a factor of between 5 to 7 with a time step of 1 fs , and a factor of 14 with a time step of 2 fs ."

- M.A. Cuendet and W.F. van Gunsteren, J. Chem. Phys. 127, 184102 (2007)

Goal

- What is the error in an average from a MD trajectory?

$$
\text { Error }=\left|\langle A\rangle_{\text {numerical }}-\langle A\rangle_{\text {exact }}\right|
$$

- Estimate accounts for two factors:

$$
\text { Error } \leq \text { Statistical Error }+ \text { Truncation Error }
$$

- Asymptotic Bound:

$$
\text { Error } \leq C_{1} \frac{1}{\sqrt{t}}+C_{2} \Delta t^{p}
$$

- Talk will focus on truncation error.

Poincaré hyperbolic: S. Reich, Backward error analysis for numerical integrators, '99
Statistical error: E. Cancès, et al, Long-time averaging using symplectic ..., '04, '05.

System of Equations

- Newton's equations: Force $=$ Mass \times acceleration

$$
\dot{q}=p / m \quad \text { and } \quad \dot{p}=-\nabla U(q)
$$

$q=$ position,$m=$ mass, $p=$ momenta

- First order system

$$
\dot{z}=F(z), \quad \text { where } \quad F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}
$$

- Exact solution map

$$
z(t)=\Phi_{t}\left(t_{0}, z_{0}\right)
$$

Ergodic

- Time average:

$$
\langle A\rangle_{\text {time }}=\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} A(z(\tau)) \mathrm{d} \tau
$$

- Ensemble average:

$$
\langle A\rangle_{\text {ensemble }}=\int_{\Omega} A(z) \rho(z) \mathrm{d} z
$$

- Ergodicity

$$
\langle A\rangle_{\text {time }}=\langle A\rangle_{\text {ensemble }} \quad \text { (a.e.) }
$$

Almost all trajectories are statistically the same.

Liouville Equation

- Continuity equation for probability density:

$$
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho F)=0
$$

or

$$
\frac{\partial \rho}{\partial t}+F \cdot \nabla \rho+\rho \nabla \cdot F=0
$$

- In the case $\rho>0$,

$$
\frac{\mathrm{D} \ln \rho}{\mathrm{D} t}=-\nabla \cdot F
$$

- For microcanonical ensemble

$$
\nabla \cdot F=0 \Rightarrow \rho=C \delta[H(z)-E]
$$

Example: Nosé-Hoover

- Nosé-Hoover vector field

$$
\begin{aligned}
\frac{d q}{d t} & =M^{-1} p \\
\frac{d p}{d t} & =-\nabla U(q)-\frac{\xi}{\mu} p \\
\frac{d \xi}{d t} & =p^{T} M^{-1} p-g k_{B} T
\end{aligned}
$$

- Invariant distribution

$$
\rho \propto \exp \left\{-\frac{1}{k_{B} T}\left(\frac{1}{2} p^{T} M^{-1} p+U(q)+\frac{\xi^{2}}{2 \mu}\right)\right\}
$$

Error Analysis

- First order system

$$
\dot{z}=F(z)
$$

- Forward error:

Is the numerical trajectory close to the exact trajectory?

$$
\left\|z_{n}-z\left(t_{n}\right)\right\| \leq C \Delta t^{p}
$$

- Backward error:

Is the numerical trajectory interpolated by an exact trajectory, but for a different problem?

$$
\left\|\hat{F}_{\Delta t}(z)-F(z)\right\| \leq C \Delta t^{p}
$$

"Method of Modified Equations"

Error Analysis

- Ergodicity: Exact trajectories are sensitive (chaotic) to perturbations in the initial conditions
\rightarrow Large Forward Error.
- Statistics:

Thermodynamic properties (averages) are not a function of the details of the initial conditions
\rightarrow Small Backward Error.

Symplectic Structure

- In 1 dimension

- In n dimensions

Backward Error Analysis: Modified Equations

- Given a p th-order numerical method, Ψ_{h}, we can always construct a modified vector field, F_{h}, such that the numerical method provides a r th-order approximation to the flow of the modified system .
- If the numerical method and vector field are symplectic/Hamiltonian, the modified vector field will be symplectic/Hamiltonian.

Backward Error Analysis: Modified Equations

- Given a p th-order numerical method, Ψ_{h}, we can always construct a modified vector field, F_{h}, such that the numerical method provides a r th-order approximation to the flow of the modified system .
- If the numerical method and vector field are symplectic/Hamiltonian, the modified vector field will be symplectic/Hamiltonian.
- Series is truncated at an optimal r^{*}, which increases as $h \rightarrow 0$.
- Use a low-order modified vector field when h is large?

Big Picture

Example: Verlet

- Hamiltonian

$$
H(q, p)=\frac{1}{2} p^{T} M^{-1} p+U(q)
$$

- Verlet

$$
\begin{aligned}
p^{n+1 / 2} & =p^{n}-\frac{\Delta t}{2} \nabla U\left(q^{n}\right) \\
q^{n+1} & =q^{n}+\Delta t M^{-1} p^{n+1 / 2} \\
p^{n+1} & =p^{n+1 / 2}-\frac{\Delta t}{2} \nabla U\left(q^{n+1}\right)
\end{aligned}
$$

- Splitting

$$
H_{1}=\frac{1}{2} p^{T} M^{-1} p, \quad H_{2}=U(q)
$$

Example: Verlet

- Strang Splitting

$$
\begin{gathered}
\exp (\Delta t \mathcal{L})=\exp \left(\frac{\Delta t}{2} \mathcal{L}_{2}\right) \exp \left(\Delta t \mathcal{L}_{1}\right) \exp \left(\frac{\Delta t}{2} \mathcal{L}_{2}\right)+\mathcal{O}\left[\Delta t^{3}\right] \\
\mathcal{L}=\mathcal{L}_{1}+\mathcal{L}_{2} \\
\mathcal{L}_{1}=M^{-1} p \cdot \nabla_{q} \quad \mathcal{L}_{2}=-\nabla_{q} U(q) \cdot \nabla_{p}
\end{gathered}
$$

- Modified Equations
$\exp \left(\Delta t \hat{\mathcal{L}}_{\Delta t}^{[r]}\right)=\exp \left(\frac{\Delta t}{2} \mathcal{L}_{2}\right) \exp \left(\Delta t \mathcal{L}_{1}\right) \exp \left(\frac{\Delta t}{2} \mathcal{L}_{2}\right)+\mathcal{O}\left[\Delta t^{r+1}\right]$
Solve for $\hat{\mathcal{L}}_{\Delta t}^{[r]}$ using Baker-Campbell-Hausdorff formula

Example: Verlet

- Original Hamiltonian:

$$
H(q, p)=\frac{1}{2} p^{T} M^{-1} p+U(q)
$$

- Modified Hamiltonian:

$$
H_{2, \Delta t}(q, p)=H(q, p)+\frac{\Delta t^{2}}{12}\left(p^{T} M^{-1} U^{\prime \prime} M^{-1} p-\frac{1}{2} \nabla U^{T} M^{-1} \nabla U\right)
$$

Verlet conserves $H_{2, \Delta t}$ to 4th order accuracy!

Example: Verlet

- Original Hamiltonian:

$$
H(q, p)=\frac{1}{2} p^{T} M^{-1} p+U(q)
$$

- Modified Hamiltonian:

$$
H_{2, \Delta t}(q, p)=H(q, p)+\frac{\Delta t^{2}}{12}\left(p^{T} M^{-1} U^{\prime \prime} M^{-1} p-\frac{1}{2} \nabla U^{T} M^{-1} \nabla U\right)
$$

Verlet conserves $H_{2, \Delta t}$ to 4th order accuracy!

- Practical Computation:

$$
\begin{aligned}
\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} U(q) & =\frac{\mathrm{d}}{\mathrm{~d} t} \nabla U(q) \cdot M^{-1} p \\
& =p^{t} M^{-1} U^{\prime \prime}(q) M^{-1} p-\nabla U(q) \cdot M^{-1} \nabla U(q)
\end{aligned}
$$

Correcting Microcanonical Averages

- Hamiltonian + Symplectic integrator \Rightarrow Modified Hamiltonian

- Numerical average is computed on \hat{H} surface
- What is the error from using the wrong surface?

Correcting Microcanonical Averages

Exact - Numerical $\approx\langle A\rangle_{H=E}-\langle A\rangle_{\hat{H}=\hat{E}}=$

$$
\frac{\int A(z) \delta[H(z)-E] \mathrm{d} z}{\int \delta[H(z)-E] \mathrm{d} z}--\frac{\int A(z) \delta[\hat{H}(z)-\hat{E}] \mathrm{d} z}{\int \delta[\hat{H}(z)-\hat{E}] \mathrm{d} z}
$$

Correcting Microcanonical Averages

- Expand delta function

$$
\delta[H(z)]=\delta[\hat{H}(z)]+(H-\hat{H}) \delta^{\prime}[\hat{H}(z)]+\cdots
$$

and use directional derivative

$$
u \cdot \nabla_{z} \delta[H(z)]=\delta^{\prime}[H(z)] u \cdot \nabla H
$$

- Corrected average

$$
\langle A\rangle_{\text {exact }}=\frac{\langle A\rangle_{\text {num }}+\langle\nabla \cdot(w A)\rangle_{\text {num }}}{\langle 1\rangle_{\text {num }}+\langle\nabla \cdot w\rangle_{\text {num }}}+\cdots
$$

where

$$
w:=(\hat{H}-H) \frac{u}{u \cdot \nabla \hat{H}}
$$

Example: Quartic Oscillator

Example: Quartic Oscillator

Correcting Microcanonical Averages

- Alternative method:

$$
\langle A\rangle_{\text {exact }}=\langle\omega A(T(z))\rangle_{\text {num }}
$$

where T maps points on \hat{H} to points on H.

- Weighting factor, ω, accounts for distortion

Liouville Equation for Modified Vector Field

- Modified Equations

$$
\frac{d \hat{z}}{d t}=\hat{F}_{\Delta t}(\hat{z}) \quad \text { where } \quad \hat{F}_{\Delta t}=F+\Delta t^{p} G
$$

- Modified Liouville Equation

$$
\frac{\partial}{\partial t} \hat{\rho}_{\Delta t}+\nabla \cdot\left(\hat{\rho}_{\Delta t} \hat{F}_{\Delta t}\right)=0
$$

- Weighting factor

$$
\omega:=\rho / \hat{\rho}_{\Delta t}, \quad \text { assuming } \quad \rho, \hat{\rho}_{\Delta t}>0
$$

implies

$$
\frac{\overline{\mathrm{D}}}{\overline{\overline{\mathrm{D}}} t} \ln (\omega)=\Delta t^{p}(\nabla \cdot G+G \cdot \nabla \ln \rho)
$$

Averages

- Truncation Error Estimate

$$
\begin{aligned}
\langle A\rangle_{\text {num }}-\langle A\rangle_{\text {exact }} & \approx \int_{\Gamma} A(q, p) \rho_{\Delta t} \mathrm{~d} \Gamma-\int_{\Gamma} A(q, p) \rho \mathrm{d} \Gamma \\
& \approx \frac{\langle A\rangle_{\text {num }}\langle\omega\rangle_{\text {num }}-\langle A \omega\rangle_{\text {num }}}{\langle\omega\rangle_{\text {num }}}
\end{aligned}
$$

- Reweighted Averages

$$
\langle A\rangle_{\text {exact }}=\frac{\langle A \omega\rangle_{\text {num }}}{\langle\omega\rangle_{\text {num }}}+\mathcal{O}\left[\Delta t^{r}\right]
$$

Example:

- Nosé-Poincaré Hamiltonian:

$$
H\left(q, \tilde{p}, s, \pi_{s}\right)=s\left(\frac{1}{2 s^{2}} \tilde{p}^{T} M^{-1} \tilde{p}+U(q)+\frac{\pi_{s}^{2}}{2 \mu}+g k T \ln s-E_{0}\right)
$$

- Nosé-Poincaré Modified Hamiltonian:

$$
\begin{aligned}
\hat{H}_{\Delta t} & =H_{N P}+\frac{\Delta t^{2}}{12} s\left(\frac{\pi_{s}}{\mu s} \tilde{p}^{T} M^{-1} \nabla U\right. \\
& -\frac{1}{2} \nabla U^{T} M^{-1} \nabla U+\frac{1}{s^{2}} \tilde{p}^{T} M^{-1} U^{\prime \prime} M^{-1} \tilde{p} \\
& \left.-\frac{1}{2 \mu}\left(\frac{1}{s^{2}} \tilde{p}^{T} M^{-1} \tilde{p}-g k T\right)^{2}+\frac{2 g k T \pi_{s}^{2}}{\mu^{2}}\right)
\end{aligned}
$$

Example:

- Modified marginal distribution:

$$
\begin{aligned}
\bar{\rho}_{\Delta t}(q, p) \mathrm{d} p \mathrm{~d} q & =\frac{1}{C} \int_{s} \int_{p_{s}} \delta\left[\hat{H}_{\Delta t}\left(q, s, \tilde{p}, p_{s}\right)-\hat{E}_{0}\right] \mathrm{d} \tilde{p} \mathrm{~d} q \mathrm{~d} p_{s} \mathrm{~d} s \\
& =\frac{1}{C} \int_{s} \int_{p_{s}} \delta\left[s\left(H_{\mathrm{N}}-H_{\mathrm{N}}^{0}+\Delta t^{2} G\right)\right] \mathrm{d} \tilde{p} \mathrm{~d} q \mathrm{~d} p_{s} \mathrm{~d} s
\end{aligned}
$$

- Change of variables, integrating

$$
\begin{aligned}
\bar{\rho} & =\frac{1}{C} \int_{p_{s}} \mathrm{e}^{N_{f} \eta_{0}}\left|g k_{B} T+h^{2} \frac{\partial}{\partial \eta} G\left(q, \mathrm{e}^{\eta}, p, p_{s}\right)\right|_{\eta=\eta_{0}}^{-1} \mathrm{~d} p_{s} . \\
\eta_{0} & =\frac{-1}{g k_{B} T}\left(H(q, p)+\frac{p_{s}^{2}}{2 \mu}+h^{2} G\left(q, \mathrm{e}^{\eta_{0}}, p, p_{s}\right)-H_{\mathrm{N}}^{0}\right),
\end{aligned}
$$

- More mathematical manipulations

$$
\bar{\rho}=\frac{\rho_{c}}{\bar{C}} \exp \left\{-\frac{\Delta t^{2}}{24 k_{B} T}\left[\sum_{j, k} \frac{2 p_{j} p_{k} U_{q_{j} q_{k}}}{m_{j} m_{k}}-\sum_{j} \frac{U_{q_{j}}^{2}}{m_{j}}-\frac{1}{\mu}\left(\sum_{j} \frac{p_{j}^{2}}{m_{j}}-g k_{B} T\right)^{2}\right]\right\}
$$

Example:

- Weighting Factor:

$$
\begin{aligned}
\omega \approx & \exp \left\{\frac { - \Delta t ^ { 2 } } { 2 4 k _ { \mathrm { B } } T } \left[2 p^{T} M^{-1} U^{\prime \prime}(q) M^{-1} p\right.\right. \\
& \left.\left.-\nabla U(q)^{T} M^{-1} \nabla U(q)-\frac{1}{\mu}\left(p^{T} M^{-1} p-g k_{\mathrm{B}} T\right)^{2}\right]\right\}
\end{aligned}
$$

- Reweighted Averages:

$$
\langle A\rangle_{\mathrm{exact}} \approx \frac{\langle A \omega\rangle_{\mathrm{num}}}{\langle\omega\rangle_{\mathrm{Num}}}
$$

- Hybrid Monte Carlo:
J. Izaguirre and S. Hampton, J. Comput. Phys. 200, 2004.
E. Akhmatskaya and S. Reich, LNCSE 49, 2006.
- Time correlation functions:
R. D. Skeel, SIAM J. Sci. Comput. 31, 2009.

Numerical Experiment:

- System:
- 256 Particle Gas
- Lennard-Jones Potential
- $T=1.5 \epsilon / k, \rho=0.95 r_{0}^{3}, t=20 r_{0} \sqrt{m / \epsilon}$
- Method:
- Nosé-Poincaré (Symplectic, Time-Reversible)
- $\Delta t=0.012 r_{0} \sqrt{m / \epsilon}$ to $0.0001 r_{0} \sqrt{m / \epsilon}$
- Reference:
- Dettmann and Morriss, Phys. Rev. E 551997
- Bond, Laird, and Leimkuhler J. Comput. Phys. 1511999.
- S. Bond and B. Leimkuhler Acta Numerica 16, 2007.

Numerical Experiment:

- "Extended" Energy Conservation:

Nose-Poincare

Verlet (NVE)

Numerical Experiment:

- Improved Estimator

Stephen Bond
 Measuring and correcting bias in MD

Numerical Experiment:

- Improved Estimator Error

Final Thoughts:

- Numerical stability of pressure measurement
- In general, when can we correct for numerical bias?
- Is the error in the dynamics or the observation?

Final Thoughts:

- Numerical stability of pressure measurement
- In general, when can we correct for numerical bias?
- Is the error in the dynamics or the observation?
- Ruslan Davidchack, Warwick Capstone Minisymposium (July 1, 2009)

Goal-Oriented Error Estimation and Multilevel Preconditioning for the Poisson-Boltzmann Equation

Stephen Bond
University of Illinois at Urbana Champaign
Department of Computer Science

$$
\text { June 1-5, } 2009
$$

Acknowledgements

- Eric Cyr (Illinois / Sandia)
- Michael Holst (UCSD)
- Andrew McCammon (UCSD)
- Burak Aksoylu (LSU)
- Nathan Baker (Wash U)
- Kaihsu Tai (Oxford)
- Hugh MacMillan (Clemson)

Motivation

Green Mamba: Fasciculin 2

Neuromuscular Junction

Motivation

Outline

(1) Motivation: Poisson-Boltzmann Equation
(2) Formulation

- PDE
- Solvation Free Energy
- Born Ion
(3) Discretization
(4) Adaptive Refinement
- Error Indicators
- Marking Strategy
- Results
(5) Final Thoughts

Motivation

Proteins naturally occur in solution
\Rightarrow Must model them in solution

Two options for modeling solute-solvent electrostatic interactions
(1) Explicit: Solvent molecules explicitly represented
(2) Implicit: "Average" effect of solvent is computed

Motivation

Proteins naturally occur in solution
\Rightarrow Must model them in solution

Two options for modeling solute-solvent electrostatic interactions
(1) Explicit: Solvent molecules explicitly represented
(2) Implicit: "Average" effect of solvent is computed

Motivation

Want to compute electrostatic Solvation Free Energy:

- Total Solvation Free Energy

$$
G=W_{s}-W_{c}+G_{n p}
$$

- Electrostatic Solvation Free Energy

$$
S=W_{s}-W_{c}
$$

Outline

(1) Motivation: Poisson-Boltzmann Equation

(2) Formulation

- PDE
- Solvation Free Energy
- Born Ion
(3) Discretization

4) Adaptive Refinement

- Error Indicators
- Marking Strategy
- Results
(5) Final Thoughts

Formulation

Poisson-Boltzmann Equation (PBE): Nonlinear PDE to compute electrostatics of protein in solution

- 3D infinite domain: Ω
- 2 Subdomains:
- Solute: Ω_{m}
- Solvent: Ω_{s}
- Interface: Г

Formulation: PDE

Poisson-Boltzmann Equation (PBE) for electrostatic potential

$$
\begin{array}{rll}
-\nabla \cdot \epsilon(x) \nabla \phi(x)+\bar{\kappa}^{2}(x) \sinh (\phi(x))=4 \pi \rho_{f}(x) & \text { for } & x \in \Omega_{m} \cup \Omega_{s}, \\
\phi(x)=0 & \text { for } & x=\infty \\
{[\epsilon(x) \nabla \phi(x) \cdot n]=0} & \text { for } & x \in \Gamma .
\end{array}
$$

Note: ϵ and $\bar{\kappa}$ are discontinuous at interface Simplifications:

- Infinite domain assumed to be finite
- Linearized PBE (LPBE) assumes $\phi \approx \sinh (\phi)$

Challenge:

PBE Domain

- ρ_{f} : point charges at solute atom locations cause singularities in ϕ

Formulation: PDE

Poisson-Boltzmann Equation (PBE) for electrostatic potential

$$
\begin{array}{rll}
-\nabla \cdot \epsilon(x) \nabla \phi(x)+\bar{\kappa}^{2}(x) \sinh (\phi(x))=4 \pi \rho_{f}(x) & \text { for } & x \in \Omega_{m} \cup \Omega_{s}, \\
\phi(x)=0 & \text { for } & x=\infty \\
{[\epsilon(x) \nabla \phi(x) \cdot n]=0} & \text { for } & x \in \Gamma .
\end{array}
$$

Note: ϵ and $\bar{\kappa}$ are discontinuous at interface Simplifications:

- Infinite domain assumed to be finite
- Linearized PBE (LPBE) assumes $\phi \approx \sinh (\phi)$
Challenge:
PBE Domain
- ρ_{f} : point charges at solute atom locations cause singularities in ϕ

Formulation: PDE

Poisson-Boltzmann Equation (PBE) for electrostatic potential

$$
\begin{array}{rll}
-\nabla \cdot \epsilon(x) \nabla \phi(x)+\bar{\kappa}^{2}(x) \sinh (\phi(x))=4 \pi \rho_{f}(x) & \text { for } & x \in \Omega_{m} \cup \Omega_{s}, \\
\phi(x)=g(x) & \text { for } & x \in \partial \Omega, \\
{[\epsilon(x) \nabla \phi(x) \cdot n]=0} & \text { for } & x \in \Gamma
\end{array}
$$

Note: ϵ and $\bar{\kappa}$ are discontinuous at interface Simplifications:

- Infinite domain assumed to be finite
- Linearized PBE (LPBE) assumes $\phi \approx \sinh (\phi)$
Challenge:

PBE Domain

- ρ_{f} : point charges at solute atom locations cause singularities in ϕ

Formulation: PDE

Poisson-Boltzmann Equation (PBE) for electrostatic potential

$$
\begin{array}{rll}
-\nabla \cdot \epsilon(x) \nabla \phi(x)+\bar{\kappa}^{2}(x) \sinh (\phi(x))=4 \pi \rho_{f}(x) & \text { for } & x \in \Omega_{m} \cup \Omega_{s}, \\
\phi(x)=g(x) & \text { for } & x \in \partial \Omega, \\
{[\epsilon(x) \nabla \phi(x) \cdot n]=0} & \text { for } & x \in \Gamma
\end{array}
$$

Note: ϵ and $\bar{\kappa}$ are discontinuous at interface Simplifications:

- Infinite domain assumed to be finite
- Linearized PBE (LPBE) assumes $\phi \approx \sinh (\phi)$
Challenge:
PBE Domain
- ρ_{f} : point charges at solute atom locations cause singularities in ϕ

Formulation: PDE

Poisson-Boltzmann Equation (PBE) for electrostatic potential

$$
\begin{array}{rll}
-\nabla \cdot \epsilon(x) \nabla \phi(x)+\bar{\kappa}^{2}(x) \phi(x)=4 \pi \rho_{f}(x) & \text { for } & x \in \Omega_{m} \cup \Omega_{s}, \\
\phi(x)=g(x) & \text { for } & x \in \partial \Omega, \\
{[\epsilon(x) \nabla \phi(x) \cdot n]=0} & \text { for } & x \in \Gamma .
\end{array}
$$

Note: ϵ and $\bar{\kappa}$ are discontinuous at interface Simplifications:

- Infinite domain assumed to be finite
- Linearized PBE (LPBE) assumes $\phi \approx \sinh (\phi)$

Challenge:

PBE Domain

- ρ_{f} : point charges at solute atom locations cause singularities in ϕ

Formulation: PDE

Poisson-Boltzmann Equation (PBE) for electrostatic potential

$$
\begin{array}{rll}
-\nabla \cdot \epsilon(x) \nabla \phi(x)+\bar{\kappa}^{2}(x) \phi(x)=4 \pi \rho_{f}(x) & \text { for } & x \in \Omega_{m} \cup \Omega_{s}, \\
\phi(x)=g(x) & \text { for } & x \in \partial \Omega, \\
{[\epsilon(x) \nabla \phi(x) \cdot n]=0} & \text { for } & x \in \Gamma .
\end{array}
$$

Note: ϵ and $\bar{\kappa}$ are discontinuous at interface Simplifications:

- Infinite domain assumed to be finite
- Linearized PBE (LPBE) assumes $\phi \approx \sinh (\phi)$
Challenge:
PBE Domain

- ρ_{f} : point charges at solute atom locations cause singularities in ϕ

Formulation: What Challenge?

Source term: $\rho_{f}(x)=\sum_{i}^{P} q_{i} \delta\left(x-x_{i}\right)$
Coulomb's law for single charge is (ϵ_{m} is dielectric in vacuum)

$$
-\epsilon_{m} \nabla^{2} G(x)=4 \pi \delta(x) \Rightarrow G(x)=\frac{1}{\epsilon_{m}|x|}
$$

Consider PBE in molecular subdomain Ω_{m} (i.e. $\bar{\kappa}^{2}(x)=0$)

$$
-\epsilon_{m} \nabla^{2} \phi(x)=4 \pi \rho_{f}(x)
$$

- Up to $\operatorname{Ker}\left(\nabla^{2}\right), \phi$ is given by Coulomb's law
- Standard piecewise linear FE basis does not converge to $1 /|x|$ singularities

Formulation: Regularized PBE

Will remove singularities from electrostatic potential analytically

- Use analytical form of Coulomb potential $G(x)$, satisfying

$$
\begin{array}{r}
-\epsilon_{m} \nabla^{2} G(x)=4 \pi \rho_{f}(x) \\
G(\infty)=0
\end{array}
$$

- Define $u=\phi-G, u$ called Reaction Potential
- Substitute $\phi=u+G$ into PBE, solve for u gives Regularized PBE (RPBE)

$$
\begin{aligned}
& -\nabla \cdot \epsilon(x) \nabla u(x)+\bar{\kappa}^{2}(x) u(x) \\
& \left.\begin{array}{l}
=\nabla \cdot\left(\epsilon(x)-\epsilon_{m}\right) \nabla G-\bar{\kappa}^{2}(x) G(x)
\end{array}\right\} \quad \text { for } \quad x \in \Omega_{m} \cup \Omega_{s}, \\
& u(x)=g(x)-G(x) \text { for } x \in \partial \Omega, \\
& {[\epsilon(x) \nabla u(x) \cdot n]=\left(\epsilon_{m}-\epsilon_{s}\right) \nabla G(x) \cdot n \quad \text { for } \quad x \in \Gamma \text {. }}
\end{aligned}
$$

Formulation: Solvation Free Energy

Recall, goal is to compute Solvation Free Energy: $S=W_{s}-W_{c}$

- $u=\phi-G$
- S is a linear functional of u

$$
S(u)=\frac{1}{2} \int u(x) \rho_{f}(x) d x
$$

Formulation: Born ion example

Born ion is single ion in center of sphere: analytical solution known
\Rightarrow Sphere radius $=2 \AA, \epsilon_{m}=1, \epsilon_{s}=78, \bar{\kappa}^{2}=0$

Outline

(1) Motivation: Poisson-Boltzmann Equation

(2) Formulation

- PDE
- Solvation Free Energy
- Born Ion

(3) Discretization

(4) Adaptive Refinement

- Error Indicators
- Marking Strategy
- Results

(5) Final Thoughts

Discretization

Discretization concerns

- Complex geometry of molecule \Rightarrow Use Finite Elements
- Problem: Need mesh matching molecular surface Use GAMer (Geometry preserving Adaptive MeshER) from Holst group *

*Z. Yu, M. Holst, Y. Cheng, and J.A. McCammon,
J. Mol. Graphics, 2008.

Discretization

Use finite elements to solve linear RPBE

- Primal problem is

$$
a(u, v)=L(v) \quad \forall v \in V
$$

where

$$
\begin{aligned}
a(u, v) & =\int_{\Omega} \epsilon(x) \nabla u(x) \cdot \nabla v(x)+\bar{\kappa}^{2}(x) u(x) v(x) d x \\
L(v) & =\int_{\Omega}-\left(\epsilon(x)-\epsilon_{m}\right) \nabla G(x) \cdot \nabla v(x)-\bar{\kappa}^{2} G(x) v(x) d x .
\end{aligned}
$$

- Want to compute solvation free energy: $S(u)$

Initial mesh not good enough for accurate solvation free energy

- Use Adaptive Mesh Refinement to improve accuracy

Outline

(1) Motivation: Poisson-Boltzmann Equation

(2) Formulation

- PDE
- Solvation Free Energy
- Born Ion
(3) Discretization

4. Adaptive Refinement

- Error Indicators
- Marking Strategy
- Results
(5) Final Thoughts

Adaptive Mesh Refinement

Adaptive Mesh Refinement (AMR) Algorithm

SOLVE \longrightarrow ESTIMATE \longrightarrow MARK \longrightarrow REFINE

SOLVE: Solve Regularized LPBE
ESTIMATE: Construct elementwise error estimates
MARK: Select elements with "large" error for refinement REFINE: Subdivide selected elements into smaller simplices

Adaptive Mesh Refinement

Adaptive Mesh Refinement (AMR) Algorithm

SOLVE \longrightarrow ESTIMATE \longrightarrow MARK \longrightarrow REFINE

SOLVE: Solve Regularized LPBE
ESTIMATE: Construct elementwise error estimates
MARK: Select elements with "large" error for refinement
REFINE: Subdivide selected elements into smaller simplices

I will focus on ESTIMATE and MARK

AMR - ESTIMATE

From approximate solution u^{h} calculate error
(1) Easily computed
(2) Bounds the error

- What error should be bounded?

How to compute error in u^{h} ?

- Relate weak residual to error

$$
R(v)=L(v)-a\left(u^{h}, v\right) \quad \forall v \in V
$$

AMR - ESTIMATE: Energy-based

Measure error in energy-norm $\left(\|g\|^{2}=a(g, g)\right)$

$$
\left\|u-u^{h}\right\|^{2} \leq C\left(\sum_{K} \eta_{K}^{2}\left(u^{h}\right)\right)
$$

Indicator is

$$
\eta_{K}^{2}\left(u^{h}\right)=h_{K}^{2}\left\|r_{K}\right\|_{L^{2}(K)}^{2}+\frac{1}{4} h_{\partial K}\left\|r_{\partial K}\right\|_{L^{2}(\partial K)}^{2}
$$

where

$$
\begin{aligned}
r_{K}(x) & =\left(\nabla \cdot\left(\epsilon(x)-\epsilon_{m}\right) \nabla G(x)-\bar{\kappa}^{2}(x) G(x)\right)-\left(-\nabla \cdot \epsilon(x) \nabla u^{h}(x)+\bar{\kappa}^{2}(x) u^{h}(x)\right) \\
r_{\partial K}(x) & =n_{K} \cdot\left[\left(\epsilon(x)-\epsilon_{m}\right) \nabla G(x)+\epsilon(x) \nabla u^{h}(x)\right]_{n_{K}}
\end{aligned}
$$

AMR - ESTIMATE: Energy-based

Elementwise error in solution of RPBE for Born ion
\checkmark Indicator shows correct error distribution
\times Scaling of indicator is wrong
\times No explicit knowledge of Solvation Free Energy

Exact Error

Numerical Indicator

AMR - ESTIMATE: Goal-oriented

Want to find error in solvation free energy: $S\left(u-u^{h}\right)$

- By Riesz Representation there exits a w such that

$$
R(w)=a\left(u-u^{h}, w\right)=S\left(u-u^{h}\right)
$$

- Given w, error in $S\left(u^{h}\right)$ can be computed
- To find w, solve the Dual problem

$$
a(v, w)=S(v) \quad \forall v \in V
$$

- In practice, w is approximated by FE solution
- Indicators bound error in functional

$$
\left|S\left(u-u^{h}\right)\right|=\left|a\left(u-u^{h}, w\right)\right| \leq C \sum_{K} \eta_{K}\left(u^{h}, w^{h}\right)
$$

AMR - ESTIMATE: Goal-oriented

Algorithm: Goal-Oriented Refinement
(1) Solve primal problem for u^{h}
(2) Solve dual problem for w^{h}
(3) Compute error indicator

$$
\left|S\left(u-u^{h}\right)\right|=\left|a\left(u-u^{h}, w\right)\right| \leq \sum_{K} \eta_{K}\left(u^{h}, w^{h}\right)
$$

where K is an element
(4) Refine elements where $\eta_{K}\left(u^{h}, w^{h}\right)$ is "large"
(5) Repeat

AMR - ESTIMATE: Goal-oriented

Two options for computing η_{K}
(1) Solve dual problem using quadratic basis functions: $w \approx w^{h, 2}$

$$
\left|S\left(u-u^{h}\right)\right|=\left|L\left(w^{h, 2}\right)-a\left(u^{h}, w^{h, 2}\right)\right| \leq \sum_{K} \eta_{K}\left(u^{h}, w^{h, 2}\right)
$$

where

$$
\begin{aligned}
\eta_{K}\left(u^{h}, w^{h, 2}\right)= & \int_{K} \mid\left(\epsilon-\epsilon_{m}\right) \nabla G(x) \nabla w^{h, 2}(x)+\bar{\kappa}^{2}(x) G(x) w^{h, 2}(x) \\
& +\epsilon(x) \nabla u^{h}(x) \cdot \nabla w^{h, 2}(x)+\bar{\kappa}^{2}(x) u^{h}(x) w^{h, 2}(x) \mid d x
\end{aligned}
$$

(2) Solve dual problem using linear basis functions

$$
\left|S\left(u-u^{h}\right)\right|=\sum_{K} \frac{1}{4}\left\|\left(u-u^{h}\right)+\left(w-w^{h}\right)\right\|_{K}^{2}-\frac{1}{4}\left\|\left(u-u^{h}\right)-\left(w-w^{h}\right)\right\|_{K}^{2}
$$

where $u-u^{h}$ and $w-w^{h}$ are approximated using element residual method

AMR - MARK

MARK: Select elements with "large" error for refinement

- Choice of marking greatly effects quality of refinement

For a triangulation $\mathcal{T}=\mathcal{T}^{m} \cup \mathcal{T}^{\text {s }}$: two marking strategies
(1) Global Marking: For $\gamma \in(0,1)$

$$
\text { Mark all } K \in \mathcal{T} \text { such that } \eta_{K}>\gamma \max _{T \in \mathcal{T}} \eta_{T}
$$

(2) Split Marking: For $\gamma \in(0,1)$

Mark all $\left\{\begin{array}{l}K \in \mathcal{T}^{s} \\ K \in \mathcal{T}^{m}\end{array}\right.$ such that $\left\{\begin{array}{l}\eta_{K}>\gamma \max _{T \in \mathcal{T}^{s}} \eta_{T} \\ \eta_{K}>\gamma \max _{T \in \mathcal{T} m} \eta_{T}\end{array}\right.$

Implicit Solvent Results

Fasciculin-1

Compute solvation free energy

- "Exact" solution from uniform refinement
- Meshes from GAMer (Holst Group)
- Goal-oriented vs. energy-based refinement

921 Atoms

Implicit Solvent Results

Implicit Solvent Results

Relative Error in Solvation Free Energy of Fasciculin-1

- Goal-Based-Quad
- Goal-Based-Quad-Split
- Goal-Based-Linear-Split
- Energy-Based
- Energy-Based-Split

Take Home: Goal-oriented mesh refinement can achieve greater accuracy with fewer degrees of freedom

Multilevel Preconditioning: Multigrid

- Form a coarse problem: $A_{i-1}=P_{i}^{t} A_{i} P_{i}$
- Smooth: $A_{i} u_{i} \approx f_{i}, \quad r_{i}=f_{i}-A_{i} u_{i}$
- Restrict: $f_{i-1}=P_{i}^{t} r_{i}$
- Solve: $A_{i-1} u_{i-1}=f_{i-1}$
- Prolong: $u_{i}=u_{i}+P_{i} u_{i-1}$
- Smooth: $A_{i} u_{i} \approx f_{i}$

Electrostatics: Hierarchical Basis and BPX

B. Aksoylu, S. Bond, M. Holst, SIAM J. Sci. Comput. (2003)

- Introduce a change of basis
- Only smooth on the "new" mesh points
- Hierarchical Basis (Bank, Dupont, Yserentant)
- Recursively defined locally supported basis functions
- BPX (Bramble, Pasciak, Xu)
- Equivalent to smoothing on the "one-ring"

Outline

(1) Motivation: Poisson-Boltzmann Equation

(2) Formulation

- PDE
- Solvation Free Energy
- Born Ion
(3) Discretization

4) Adaptive Refinement

- Error Indicators
- Marking Strategy
- Results

(5) Final Thoughts

Final Thoughts

(1) Poisson-Boltzmann equation models electrostatic effects of implicit solvent
(2) Can develop error indicators using weak residual
(3) Goal-oriented refinement requires the solution of dual problem
(4) Solvation free energy accurately calculated using goal-oriented refinement
(6) Appropriate marking strategy must be used
(6) Multilevel preconditioning challenging with adaptively refined meshes

References

S.D. Bond and B.J. Leimkuhler, 'Molecular Dynamics and the Accuracy of Numerically Computed Averages,' Acta Numerica, 16 (2007) 1.
B. Aksoylu, S.D. Bond, E.C. Cyr, and M. Holst, Adaptive Solution of the PBE using Goal-Oriented Error Indicators. Preprint (2009)
S.D. Bond, J.H. Chaudhry, E.C. Cyr and L.N. Olson, 'A First Order Least Squares Finite Element Method for the PBE,' J. Comput. Chem., submitted (2009).
Y. Cheng, J.K. Suen, Z. Radić, S.D. Bond, M.J. Holst and J.A. McCammon, 'Continuum Simulations of ACh Diffusion with Reaction-determined Boundaries in Neuromuscular Junction Models,' Biophys. Chem., 127 (2007) 129.
Y. Cheng, J.K. Suen, D. Zhang, S.D. Bond, Y. Zhang, Y. Song, N. Baker, C.L. Bajaj, M. Holst and J.A. McCammon, 'Finite Element Analysis of the Time-Dependent Smoluchowski Equation for ACh Reaction Rate Calculations,' Biophys. J., 92 (2007) 3397.

References

B. Lu, Y.C. Zhou, G.A. Huber, S.D. Bond, M.J. Holst and J.A. McCammon, 'Electrodiffusion: A continuum modeling framework for biomolecular systems with realistic spatiotemporal resolution' J. Chem. Phys., 127 (2007) 135102.
K. Tai, S.D. Bond, H.R. MacMillan, N.A. Baker, M.J. Holst and J.A. McCammon, 'Finite Element simulations of ACh diffusion in Neuromuscular Junctions,' Biophys. J., 84 (2003) 2234.
B. Aksoylu, S. Bond and M. Holst, 'Local refinement and multilevel preconditioning III: Implementation and Numerical Experiments,' SIAM J. Sci. Comput., 25 (2003) 478. S.D. Bond, B.J. Leimkuhler and B.B. Laird, 'The Nosé-Poincaré Method for Constant Temperature MD,' J. Comput. Phys., 151 (1999) 114.

