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3NaAlH4 ⇔ Na3AlH6 + 2Al + 3H2

2Na3AlH6 ⇔ 6NaH + 2Al + 3H2

2NaH ⇔ 2Na + H2

T = 350Kand 3.7wt%

T = 423Kand 1.9wt%

Sodium alanates are prototypical materials for solid state 
hydrogen storage. 

T = 698Kand 1.9wt%
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3NaAlH4 ⇔ Na3AlH6 + 2Al + 3H2

Experiments cannot identify activated mobility mechanism, barrier 
of 0.126 eV (~4KBT)

 
 Hypothesis:

 Local H diffusion

 Short range H diffusion

 Na vacancy diffusion 





riα = |ri − rα|

θα =

NH∑

i=1

1

1 + ek(riα−r0)

α = 1, ..., 8

Preliminary ab initio MD run shows that the local diffusion process 
is not activated 

Short range diffusion

Collective variable: Al-H coordination number



(a) Metastabilities 

(b) Exponential scaling of the number of grid point with 
dimensions

F (z) = −β−1lnZ−1

∫
dx e−βV (x)

m∏
j=1

δ(θj(x) − zj)

Run a long MD trajectory to explore the configuration 
space of the system, histogram of the values of the 
CV to reconstruct F(z), and compute the free energy 
barriers



Single sweep method
L. Maragliano, E. Vanden Eijnden, J. Chem. Phys., 128 (2008) 184110!

(a) Use Temperature Accelerated MD to generate a trajectory in the 
space of the collective variables that efficiently explores relevant 
regions of the free energy even in the presence of significant barriers

(b) Points along the trajectory are chosen as centers for an 
interpolation grid and the free energy is represented as an optimized 
linear combination of radial basis functions centered on the grid



Temperature Accelerated MD (TAMD)
L. Maragliano L., E. Vanden-Eijnden Chem. Phys. Letters 426 168-175
U. Roethlisberger et al. (Canonical Adiabatic Free Energy Sampling)
J.Abrams, M. Tuckerman (Adiabatic Free Energy Dynamics)

Consider the extended system x = (x1, ..., xN )

(any dynamics that generates the canonical 
distribution will do)

coupled evolution equations:

new potential Uk(x, z) = V (x) +
k

2

l∑

j=1

(θj(x)− zj)

z = (z1, ..., zl)

mẍi = −∂V (x)
∂xi

− k
l∑

j=1

(θj(x)− zj)
∂θj(x)

∂xi
+ thermostat@T

Mz̈j = k(θj(x)− zj) + thermostat@T̄



Adiabatic separation of the motions can be induced via the 
parameters associated to the evolution of the z-variables. E.g. 
Langevin dynamics γ̄ >> γM >> m

The z-variables then evolve according to the effective force

Mz̈j = k

∫
dx(θj(x)− zj)

e−βUk(x,z)

Zk(z)
+ thermostat@T̄

γ̄ to the physical degrees of freedom and to the z variables respectively, the evolution of the
extended system is governed by the following set of coupled equations

mẍ = −∇xV (x)− κ
ν∑

α=1

(θα(x)− zα)∇xθ
α(x)− γẋ +

√
2β−1γηx (3)

m̄z̈ = κ(θ(x)− z)− γ̄ż +
√

2β̄−1γ̄ηz (4)

where β̄ = 1/kBT̄, and ηx and ηz are the white noise associated with the Langevin evolution
of the physical and new variables. Adiabatic separation of the motion of the physical and
fictitious variables can be induced by increasing the value of m̄ and γ̄ (with the condition
that m̄ = O(γ̄2)). In these conditions, the z variables evolve, on the slower time scale of their
motion, according to an effective force which is obtained by averaging the right hand side
of eq. (2.4) with respect to the distribution to which thermalize the, fast, physical variables.
This distribution is the conditional probability density function for eq. (2.3) at z(t) = z fixed,
given by ρ(x|z) = Z−1

κ (z)e−βUκ(x,z) with Zκ(z) =
∫

dxe−βUκ(x,z). The only term affected by
the average in the evolution equation for the z variables is the one proportional to κ and the
effective evolution equation obtained after performing this average can be written as

m̄z̈ = −∇zFκ(z)− γ̄ż +
√

2β̄−1γ̄ηz (5)

where

−∇zFκ(z) = Z−1
κ (z)

∫
dxκ(z − θ(x))e−βUκ(x,z) (6)

and we have implicitly defined

Fκ(z) = −β−1 lnZ−1
κ

∫
dxe−βUκ(x,z)

= −β−1 lnZ−1
κ

∫
dxe−βV (x)e−

βκ
2

Pν
α=1(θα(x)−zα)2 (7)

with Zκ =
∫

dxdze−βUκ(x,z). In the limit βκ → ∞, the Gaussian function in the quantity
above tends to a delta function in the argument (θα(x) − zα) and Fκ(z) becomes the free
energy of the physical system at inverse temperature β. Remarkably then, in the appropriate
limits for the parameters in the extended Lagrangian, the fictitious variables evolve based on
the free energy landscape at the physical temperature and their trajectory can thus be used
to explore this landscape. Moreover, the evolution equation holds for any value of T̄, and
this quantity can be increased to a point when the thermal energy of the fictitious variables
is high enough to overcome the physical system’s free energy barriers and the z trajectory
can visit the relevant metastable and transition regions at least once in a reasonable amount
of time. This feature makes points along a TAMD trajectory ideal centers for an irregular
grid to be used for the global reconstruction of the free energy. In a single sweep calculation,
centers are deposed along the trajectory based on a distance criterion: beginning with the
value z1 = z(0) a new point is added to the set when its distance from all other members of
the set exceeds a given threshold d. For a fixed trajectory length, the parameter d controls
the size of the set of centers and it is adjusted to reach convergence of the free energy
reconstruction with number of centers.

5

= −∂Fk(z)
∂zj

+ thermostat@T̄

where

TAMD



Holds for all values of fictitious temperature

T̄ >> TIf        the trajectory of the auxiliary variables can overcome 
barriers and quickly sweep the relevant regions of the original free 
energy landscape

Explore the free energy (find the metastable states), many 
collective variables

Points along the trajectory can be used as centers for an 
interpolation grid

Mz̈j = −∂Fk(z)
∂zj

+ thermostat@T̄



θα =

NH∑

i=1

1

1 + ek(riα−r0)





Radial basis reconstruction 

F̃ (z) =
J∑

j=1

ajφσ(|z − zj |)

φσ(u) = e−
u
2

2σ
2e.g.

Coefficients and variance can be determined by minimizing the 
object function

E(a, σ) =
J∑

j=1

|
J∑

j′=1

aj′∇zφσ(|zj − zj′ |) + fj |
2

fj = −∇zj
F (z)

Input:

(a) location of the centers, distance criterion along the TAMD 
trajectory

(b)                             mean force at the centers, local conditional 
average                          

fj =
k

T

∫ T

0
(zj − θj(x(t)))dt



Minimization of the object function

J∑

j′=1

Bj,j′(σ)aj′ = cj(σ)

(a) For fixed value of the variance, solve

Bj,j′(σ) =
J∑

j′′=1

∇zφσ(|zj − zj′′ |)∇zφσ(|zj′′ − zj′ |)

cj(σ) =
J∑

j′=1

∇zφσ(|zj − zj′ |)fj′

where

(b) The optimal value of the variance, satisfies 

and is found by computing the residual for a (1d) grid of values 
of the variance  





(Σk)α,β = E[(zα − z̄α
k )(zβ − z̄β

k )] = σk,ασk,β(δα,β + ρk,α,β)

εα
k = 1/fα2

k

Er(a, Σ) =
K∑

k=1

ν∑

α=1

εα
k [fα

k + ∇αF̃ (zk)]
2

ΦΣk
(|z − zk|) = e−

1
2 (z−zk)T Σ−1

k (z−zk)

Modify definition of the basis elements

Modify definition of the object function

Variations on single sweep
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(a) Original method
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(b) 1xCV, standard objective function
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(c) 1xCV, relative objective function



Conclusions and future work:

- Single Sweep is a promising method to reconstruct free 
energy landscapes of rather complex systems

- Results point to the “Non-local” hydrogen vacancy diffusion 
as the mobile species that appears during the first dissociation 
reaction of sodium alanates
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