Full Sampling of Atomic Configurational Spaces

Gábor Csányi

Engineering Laboratory Cambridge

with: Lívia Bartók-Pártay and Albert Bartók-Pártay

Goals

- Sample Potential Energy Landscapes (PES)
- Find low energy configurations
- Evaluate the partition function and similar integrals
- Have error estimates for all measurements

Exploring the PES

- Search

Minimisation
Simulated Annealing Genetic Algorithm Basin-hopping Minima-hopping Metadynamics

- Thermodynamics

Molecular Dynamics \& MCMC Temp. Accelerated Dynamics
Parallel Tempering
Wang-Landau
Clausius-Clapeyron
Thermodynamic Integration

Nested sampling

- A very simple algorithm to sample $E(x)$:

1. Choose N points randomly: $E\left(x_{k}\right)$
2. Remove one with the highest energy E_{i}
3. Replace with a random point, $E(x)<E_{i}$
4. i=i+1, goto 2.

- At the end $\{E \in$ forms a good mesh for integrating things like $\exp (-E(x) / k T)$

Monday, 1 June 2009

Monday, 1 June 2009

samples: integration mesh

Observable

$$
\langle A\rangle=\frac{1}{Z} \sum_{\{x, p\}} A(x) e^{-\beta H(x, p)}
$$

$Z=\sum_{\{x, p\}} e^{-\beta H(x, p)}$
Estimate using samples:

$$
\langle A\rangle_{\mathrm{est}}=\frac{Z_{p}}{Z} \sum_{i} w_{i} A\left(x_{i}\right) e^{-\beta E\left(x_{i}\right)}
$$

Energy contours

High dimensionality

- Exponential growth of volume
- During the sampling, range of $E(x)$ in the live set is narrow

How to pick new points?

- Need to pick replacement for x_{i} with uniform probability from $\left\{x: E(x)<E\left(x_{i}\right)\right\}$
- MCMC in "flat" space: random walk with ∞ walls starting from x_{i}

Main points of algorithm

- Converges exponentially
- Independent of temperature β
- Top-down: good ergodicity
- Resolution: $1 / \mathrm{N}$

Toy model: 3 Gaussians

"Energy Landscape Chart"

phase space volume

Lennard-Jones clusters

$$
E_{\mathrm{LJ}}=\sum_{i<j}^{n} 4 \varepsilon\left[\left(\frac{\sigma}{r_{i j}}\right)^{12}-\left(\frac{\sigma}{r_{i j}}\right)^{6}\right]
$$

- Partition Function:

$$
Z(\beta)=\left(\frac{2 \pi m}{\beta}\right)^{3 n / 2} \frac{V^{n}}{h^{3 n} n!} \sum_{i}\left[e^{-i / N}-e^{(i+1) / N}\right] e^{-\beta E_{i}}
$$

- Internal Energy $U=-\partial \ln Z / \partial \beta$
- Heat capacity $C_{V}=\partial U / \partial T$

Heat Capacity curves
 $$
n=1-10
$$
 $$
n=11-38
$$

Relative Temperature
$O\left(10^{10}\right) \mathrm{LJ}$ evaluations for largest clusters

Energy Landscape Charts

$\mathrm{N}=5000$ live points

$N=10000$ live points

5000 live points

2000 live points

LJ $\rho-T$ phase diagram

Free energy

- Macroscopic states : order parameters
- Typically externally defined, ad-hoc
- Microscopically: which basins are occupied?

Temperature

LJ_{38}

30,000 live points

"Bottom-up" exploration using known minima

Heat capacity peak

Summary

- New ergodic athermal sampling scheme
- Finite resolution Energy Landscape Charts
- Discrete "basin" order parameter: free energy
- Future: smarter ways of picking new points, build on existing search methods
- Alternate bottom-up / top-down steps

More acknowledgements

- John Skilling, Farhan Feroz, Mike Hobson
- David Wales, Daan Frenkel

