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1. What are Shockwaves?

2. How are Shockwaves Generated?

3. What can Shockwaves Teach Us?

4. Shockwaves from Molecular Dynamics
5. Some Lessons + Remaining Questions



1. What are Shockwaves?

Near-Discontinuities in {v, p, e, o, T}:
Velocity, Density, Energy, Stress, and
Temperature Jump in a few Free Paths

Phys Rev Letts
1979

Shockwaves are a Simple Laboratory for
studying nonlinear Transport as the boundary
conditions are equilibrium.



2. How are Shockwaves Generated?




Constants of the Motion
pu,
Pyx + pU?,

pule + (P /p) + (u2/2)] + Q,
with velocity changing from
Ug to (Ug- uy) In Shockwave.
Newtonian Viscosity + Fourier Heat Conductivity
can convert these to differential equations, to

make it possible to compute P,, and Q,.
Holian says Q, can change sign!



Fourier, Newton, and Fick

P =[Py —AV e V]l —m[VV+VV']
J=-DVp



3. What can Shockwaves Teach Us?

 High-Pressure Equation of State
— Hugoniot Energy Conservation Relation
— Pressure varies Linearly with Volume!

e Viscosity determines the distance scale

 Highly Nonlinear Transport Information,
—such as the Temperature Tensor, with

Ty FTyy



Threefold Compression - 6TPa

12-60 Megabars: Al, C, Fe, LIH, SIO,, U ...

Quortz

PHYSICAL REVIEW A VOLUME 29, NUMBER 3 MARCH 1984

Shock-wave experiments at threefold compression

Charles E. Ragan I1I
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
{Received 3 June 1983)




Simple Repulsive Pair Potential

Choose a weak repulsive force
Resembling a SPAM weight function
or a van der Waals type repulsion:

(1) = (10/xh?)[1 - (r/h)]3.

Then we expect to find:
e=(p/l2)+ T and P =pe.

Zl/N ~ VTe-p/ZT



Although the Compression is Irreversible we
Conserve Mass, Momentum - Rayleigh Line

PoUs = p(us ) up) =M
P+ p(us ) up)2 = I:)O + pOus2

P - Py = (M?/py) - (M2/p)

Cubic Spline Example: P =(9/2) - 4V



Viscosity determines ShockWidth
Momentum Conservation:
P — Py = pousu, ~ NU,/AwipTH
Awipth ~ N/PpUg
Kinetic Theory:
Avep ~ M/PC ~ N/pUg
Conclusion - Shockwaves are Thin:

AwipTH ~ Auvep



Energy Conservation - Hugoniot

Work done = P,,;1(AV/2) + Po p(AV/2)
No Change in Kinetic Energy
AE = (Pyor + PcoLp)(AV/2)

u, -l = M-
N. .

Cubic Spline Example: P =[3 - V]/[6V - 2]
With V =1and T = 0 initially.
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4. Simulation Technigues

e 1. Shrinking Boundary Conditions
e 2. Stagnation Against a Wall

* 3. Two Treadmills @ ugand [ ug—uy|.
— This last method is the best one!




Navier-Stokes vs Molecular Dynamics

Navier-Stokes
Shockwidths

are too Narrow

for Strong Shocks
( Linear ) transport
Coefficients

are too Small! 2>

Weak Shocks
are the same .




Analysis from Kinetic Theory

Temperature
IS Just the
comoving

Kinetic
Energy .




Analysis from Gibbs’ Ensemble

Configurational Temperature
Involves forces and their
Gradients. This expression
was noted
by Landau and Lifshitz
around 1950.




50% Compression with

a Strong Shockwave

D e Ry
ek
A€ A YUt "'J,s'-:ﬁ'?;:ugf-':ﬂb;ﬁ? gl
I S N !
AN

Hot
Slow

2 ot pl An s W T S SHL e
ML R e .? f‘lﬂ: p e .;‘r_
CO I d :-‘: '.ﬂ' &:.:?MH-L :.'I; '\-“‘ L-:f:.‘ = -,‘;:“ _'r::-
=
-

2 SR

ARSIt S DL T 1}} AL T R ST A :

Fast }ﬁm‘:gﬁzliffwﬁéﬁ?g?ﬁ?ﬁﬂ%@ S e S
o hah WIS wly fe ey - ] B T arydn R el g LT s ey ) v i N
S o S O e e e oA e
RS .‘:J-;-:;::;:-‘&‘.s.é'f.aﬁf-'}y-m'{*-‘tz;‘?%g 3 31 "'af&'-!"@'-
R T S A o e S e SN S ae s

I'1G. 1. Snapshot of the 12 960-particle shock wave simulation

This shockwave has quite an
Interesting temperature profile !



2.960-Particle Shock Profiles
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agrant Violation of Fourier's Law !




Some Interesting Points

Shockwidth gives a Viscosity estimate
Heat Conductivity can be Negative!*
Shockwave Stability Is Interesting
Boundaries are Equilibrium ones

The transition is Irreversible

*See Mott-Smith in 1951 Physical Review.



Simple Equation of State
(apologies to van der Waals)

Choose a weak repulsive force
Resembling the weight function:

¢(r) = (10/mh?)[1 - (r/h)]°,

Expecting to find:
e=(p/2)+T and P = pe



Stationary Shockwave Solution
Satisfying Conservation Laws
Ucop =23 Upor = 1

Pcop = 15 Prot = 2
Peoin = 1/2; Pror = 5/2

€colp = 1/2 ; e o1 = 5/4
Teoip=0/4; Tor = 1/4

Ae = (3/4) = < -P >Av = (3/2)(1/2)



Solution for Twofold Compression

pu =2
P+ pu2 = 9/2
ou[ e + (P/p) + (U2/2)] = 10

Almost correct, with the shockwave
moving slowly to the right.
u,p,P,e=(2,1, 1/2,1/2) 2> (1, 2, 5/2, 5/4)



Development of Smooth Profiles
INn either One or Two Dimensions

p(X) = ij(x - X;)
where, with r = |X]
Wy = (5/4h)[1 - (F/)]P[L + 3(r/h)]
or
p(X,y) = ij(x - XY - Yj)
where, with r = [x? + y?]'/2
W, = (5/mh?)[1 - (/][ + 3(r/h)]



What about Shock Stability?
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Twofold Compression Shockwave

larged Shockfront View

En




The

Density Profiles with us = 2

Shockwave .
profile ' | |
2.0
narrows
with time, 19
indicating that 1.0«
It 1S 0.5 i
STABLE I 0.0 | |




What about Temperature?

Kinetic Temperature € Momenta
Configurational Temperature € Forces

KTkinetic = <p2/m> relative to mean flow

kTconfig = < VH 25/ < V2H >

Determine the mean flow by using w(r):

<v> = Xw,Vv;/Zw; ; w(r) a weight function.



Negative Temperature Particles

Cold Particles
withu=1.75

Twofold
Compression




Temperature Profiles; us =2
0.30

0.25
0.20
0.15
0.10
0.05
0.00

Configurational Temperature Blows up! Among the
various Kinetic Temperatures only the Grid-Based
temperature has a Strong maximum. Evidently local
temperatures will be more useful in analyzing
nonlinear flows.



Some Useful Reference Books

World Scientific

For a pdf file, go to For a comp copy, write
www.williamhoover.info hooverwilliam@yahoo.com



Remaining Puzzles

Description of Temperature/Heat Flow
Direct Measurement of Shock Heat Flux
Cell Model of the Shockwave Process
Prediction of the Nonlinear Viscosity
Best Definitions of P, p, U, et cetera

For more details: arXiv:0905.1913



