Molecular Dynamics Simulations of Peptides Interacting with Quartz Surfaces

Rebecca Notman and Tiffany Walsh

University of Warwick, UK

Workshop on Molecular Dynamics 5th June 2009

Peptide-inorganic interactions

- Proteins control the formation of natural hard materials.
- These proteins contain motifs that bind to the inorganic material.
- Understanding of peptide-inorganic recognition is necessary for exploitation.
- Diverse range of applications:
 - E.g. assembly of functional nanomaterials, biosensors.

Design of quartz binding peptides

Quartz binding peptides

- Amino acid content:
 - Non-polar, neutral residues;
 - Pro, trp, leu occur frequently.
- Key questions:
 - What are the mechanisms of binding?
 - What are the roles of the residue content and order?
 - What molecular level features give rise to a high binding affinity for quartz?

S1: Pro Pro Pro Trp Leu Pro Tyr Met Pro Pro Trp Ser **S2**: Leu Pro Asp Trp Trp Pro Pro Pro Gln Leu Tyr His **S3**: Ser Pro Pro Arg Leu Leu Pro Trp Leu Arg Met Pro W1: Glu Val Arg Lys Glu Val Val Ala Val Ala Arg Asn

Examine the nature of the surface and the role of water

- Structure and dynamics of water at the interface.
- Implications for binding.

Examine the nature of the surface and the role of water

- Structure and dynamics of water at the interface.
- Implications for binding.

Characterise peptides in solution:

- Conformations of strong vs weak binders.
- Relationship between sequence → structure → function.

Examine the nature of the surface and the role of water

- Structure and dynamics of water at the interface.
- Implications for binding.

Characterise peptides in solution:

- Conformations of strong vs weak binders.
- Relationship between sequence → structure → function.

Investigate the interactions of peptides with the surface

- Mechanisms of binding.
- Key amino acid residues.
- Structural motifs.

Examine the nature of the surface and the role of water

- Structure and dynamics of water at the interface.
- Implications for binding.

Characterise peptides in solution:

- Conformations of strong vs weak binders.
- Relationship between sequence → structure
 → function.

Investigate the interactions of peptides with the surface

- Mechanisms of binding.
- Key amino acid residues.
- Structural motifs.

Molecular dynamics simulations

- Provide a molecular-level insight.
- CHARMM forcefield with silica parameters by Lopes *et al.* (bio and inorganic compatible), and TIP3P water (using Gromacs).

Interactions of water with the hydroxylated (100) surface

- Water forms weakly structured layers on the surface of quartz.
- Water penetrates small pockets on the surface.
- Within the first water layer, water is also ordered laterally.
 - May affect the mobility and aggregation of bound molecules/peptides.

Hydrogen bonding and lateral diffusion on quartz (100)

- Water h-bonds to the quartz surface.
- There is a peak in water-water hbonds at the interface.
- H-bonds at the interface have a longer life time than h-bonds in the bulk (more stable).
- Leads to reduction in lateral diffusion of water on the surface.

Free energy of small molecules as a function of distance to the (100) surface

$$PMF = \int_{z} F_{constr}(z) dz / kJ \text{ mol}^{-1}$$

Solution structures of the peptides

Solution structures of the peptides

Flexibility of the peptides

 Strong binders contain regions in the chain backbone that are locally, conformationally rigid.

S1: two prolinerich regions connected by a semi-flexible spacer.

S2: central proline-rich region flanked by semi-flexible chains at either end.

Secondary structure

Hydrogen bonding

Intra-peptide hydrogen bonds

<u>Peptide-water</u> hydrogen bonds

- Indicates that W1
 has a greater
 intrinsic stability
 due to internal
 hydrogen bonds.
- Strong binders achieve stability via interactions with the surface?

Interaction energy

Strong binders are less stable in solution than weak binders.

S1 on quartz (100) surface

- S1 has many different bound configurations.
- This is the lowest energy configuration found so far.
- Pro 1, 2, 3, and 10 bind directly to the surface. Trp lies flat on the surface.

S1 on quartz (100) surface

S1 has many bound configurations.

S2 on quartz (100) surface

- As with S1, pro binds directly to the surface.
- Leu and trp also bind.
- Trp binds either flat or perpendicular to the surface.

W1 on quartz (100) surface

- W1 is bound via ala and val (nonpolar, neutral) and arg (basic).
- Fewer residues interact with the surface c.f. strong binders (lower surface coverage.

Summary of interacting residues

Peptide	Contact Point Residues
SI	PPPWLPYMPPWS
	PPPWLPYMPPWS
	PPPWLPYMPPWS
	PPPWLPYMPPWS
	PPPWLPYMPPWS
S2	LPDWWPPPQLYH
	LPDWWPPPQLYH
	LPDWWPPPQLYH
	LPDWWPPPQLYH
	LPDWWPPPQLYH
W1	EVRKEVVAVARN
	EVRKEVVAVARN
	EVRKEVVAVARN
	EVRKEVVAVARN
	EVRKEVVAVARN

Adsorption Energies

Hydrogen bonding

- Strong binders form hydrogen bonds with the quartz surface.
- Weak binders h-bond to the surface at the expense of intramolecular h-bonds.

Summary

- Adsorption of small hydrophobic moieties is favourable.
- Hydrogen bond formation may be a key driving force for interactions of biomolecules with quartz surfaces.
- The relative stability of a peptide in solution compared to the interface is likely to be a contributing factor.
- Proline is a key residue:
 - Plays a conformational role and binds directly to the surface.
- Our results support the idea that a peptide with a high binding affinity has many bound configurations.
- Current/future work:
 - Effects of mutating key residues on the binding free energy.

Acknowledgements

- Tiff Walsh, University of Warwick.
- Mehmet Sarikaya, Emre Oren and coworkers, University of Washington. (Quartz binders)
- EPSRC for funding.
- CSC and NGS for computing facilities.
- Thank you.

