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Peptide-inorganic interactions

e Proteins control the formation of natural hard materials.
e These proteins contain motifs that bind to the inorganic material.

e Understanding of peptide-inorganic recognition is necessary for
exploitation.

e Diverse range of applications:

- E.g. assembly of functional nanomaterials, biosensors.

Designer protein unit GEPI-A GEPIB Inorganic-A

Sarikaya et al. Nat. Mater., 2003, 2, 577.



Design of quartz binding peptides
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Quartz binding peptides

e Amino acid content:;

Non-polar, neutral residues;

Pro, trp, leu occur frequently.

e Key questions:

Ir=z

Pro

What are the mechanisms of
binding?

What are the roles of the residue
content and order?

What molecular level features
give rise to a high binding affinity
for quartz?

S1:
Pro Pro Pro Trp Leu Pro Tyr Met Pro Pro Trp Ser

S2:
Leu Pro Trp Trp Pro Pro Pro GIn Leu Tyr His
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Our approach
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e Mechanisms of binding.
e Key amino acid residues.
e Structural motifs.
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e Mechanisms of binding.
e Key amino acid residues.
e Structural motifs.

Investigate the interactions of
peptides with the surface

Characterise peptides

in solution:
e Conformations of

strong vs weak binders.

e Relationship between
sequence - structure
- function.
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Molecular dynamics simulations

e Provide a molecular-level insight.

e CHARMM forcefield with silica parameters by
Lopes et al. (bio and inorganic compatible),
and TIP3P water (using Gromacs).




Interactions of water with the
hydroxylated (100) surface

e Water forms weakly structured layers on the surface of quartz.
e \Water penetrates small pockets on the surface.

e Within the first water layer, water is also ordered laterally.

- May affect the mobility and aggregation of bound
molecules/peptides.
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Notman & Walsh Langmuir, 2009, 25, 1638.



Hydrogen bonding and lateral
diffusion on quartz (100)

e Water h-bonds to the quartz surface.
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Free energy of small molecules as a
function of distance to the (100) surface
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Solution structures of the peptides
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Solution structures of the peptides
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Flexibility of the peptides

e Strong binders contain regions in the chain backbone that are
locally, conformationally rigid.
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Secondary structure
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Hydrogen bonding
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Interaction energy

e Strong binders are less stable in solution than weak binders.
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S1 on quartz (100) surface

e Sl has many different bound _
configurations. 0251

e Thisis the lowest energy o2

configuration found so far.

e Prol, 2,3, and 10 bind directly o
to the surface. Trp lies flat on the  o.0s-
surface. 5
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S1 on quartz (100) surface

e S1 has many bound configurations.

e Common binding motifs.

| Peptide flat on
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S2 on quartz (100) surface

e As with S1, pro binds directly to
the surface.

e Leuand trp also bind.

e Trp binds either flat or
perpendicular to the surface.

PRO2 ASP3 TRP4 LEU10

Population

— LEU1
— PRO2
— ASP3
— TRP4
TRP5
— PRO6
PRO7
— PROS
— GLY9
— LEU10

— HISI2

— TYRI1 N

L UA

D1stance /nm



W1 on quartz (100) surface

e W1is bound via ala and val
(nonpolar, neutral) and arg
(basic).
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e Fewer residues interact with the
surface c.f. strong binders (lower
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Summary of interacting residues

Peptide Contact Point Residues
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Adsorption Energies
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Hydrogen bonding

e Strong binders form hydrogen bonds with the quartz surface.

e Weak binders h-bond to the surface at the expense of
Intramolecular h-bonds.

Number of H-bonds
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Summary

e Adsorption of small hydrophobic moieties is favourable.

e Hydrogen bond formation may be a key driving force for
Interactions of biomolecules with quartz surfaces.

e The relative stability of a peptide in solution compared to the
Interface is likely to be a contributing factor.

e Proline is a key residue:
- Plays a conformational role and binds directly to the surface.

e Our results support the idea that a peptide with a high binding
affinity has many bound configurations.

e Current/future work:

— Effects of mutating key residues on the binding free energy.
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