

Simulating orientational specificity in the growth of calcite on self-assembled monolayers

D. Quigley¹, C. L. Freeman², P. M. Rodger³, J. H. Harding² and D. M. Duffy⁴

- 1. Dept. of Physics and Centre for Scientific Computing, University of Warwick.
- 2. Dept. of Engineering Materials, University of Sheffield.
- 3. Dept. of Chemistry and Centre for Scientific Computing, University of Warwick.
- 4. Dept. Physics, University College London.

Outline

- Calcium carbonate and biomineralisation.
- Growth on self-assembled monolayers.
- Direct simulations and metadynamics.
- Testing and analysis.
- Results and challenges.

Outline

- Calcium carbonate and biomineralisation.
- Growth on self-assembled monolayers.
- Direct simulations and metadynamics.
- Testing and analysis.
- Results and challenges.

UNIVERSITY OF CAMBRIDGE THE UNIVERSITY OF WARWICK

Calcium Carbonate

Aragonite

Calcite

http://www.cs.cmu.edu/~adg/adg-pcaimages.html

UNIVERSITY OF CAMBRIDGE THE UNIVERSITY OF WARWICK

Calcium Carbonate

Based on the model of Pavese et al. [Pavese et al, Phys. Chem. Miner. 19, 90 (1992)]

$$q_{oxygen} = -1.045$$

 $q_{carbon} = +1.135$

C-O bond energy modelled with a Morse potential.

O-C-O angles restrained with harmonic potentials.

Buckingham potentials between all O-O and Ca-O pairs.

$$\phi_{ij}(r) = A_{ij} \exp\left[-r/\rho_{ij}\right] - \frac{C_{ij}}{r^6}$$

Cross terms between CaCO₃ and water / organics derived in Freeman et al. [Freeman et al, J. Phys. Chem. C 111, 11943 (2007).]

Morphology of calcite

surface (hexagonal indices)	$_{ m J~m^{-2}}^{ m \gamma_{ m pure}/}$	$E_{ m attach}$ /kJ mol ⁻¹	$^{\gamma_{ m hydrated}/}_{ m J} { m m}^{-2}$	$E_{ m hydration}/ \ { m kJmol^{-1}}$
$\{10\overline{1}4\}$	0.59	-75.4	0.16	-93.9
{0001}Ca	0.97	-334.3	0.68	-79.2
$\{0001\}$ CO ₃	0.99	-204.7	0.38	-93.2
$\{10\bar{1}0\}$	0.97	-759.6	0.75	-100.5
$\{10\overline{\underline{1}}1\}$ Ca	1.23	-307.2	0.63	-113.4
$\{10\overline{1}1\}\text{CO}_3$	1.14	-276.7	0.81	-100.9
$\{11\overline{2}0\}$	1.39	-291.3	0.43	-138.5

de Leeuw, & Parker, J. Phys. Chem. B, 1998, 102, 2914-2922

American Geological Institute

Biomineralisation

Nudelman et al Faraday Discuss. 136, 9-25 (2007)

Sheets of aragonite tablets

Columns of calcite

Control of morphology and assembly?

Control of polymorph selection?

Control of orientation?

Outline

- Calcium carbonate and biomineralisation.
- Growth on self-assembled monolayers.
- Direct simulations and metadynamics.
- Testing and analysis.
- Results and challenges.

Self-assembled monolayers

Possible bio-mimetic control of crystal orientation.

15-mecaptopentaadecanoic acid (MPA)

UNIVERSITY OF CAMBRIDGE THE UNIVERSITY OF

Calcite Growth

(012) nucleation plane on MHA

Travaille *et al J. Am. Chem. Soc.*, 2003, **125**, 11571-11577

Chain parity	Even (MHA)	Odd (MPA)
Nucleation plane (Au substrate)	(012) or (01x) x=2-5	(110) (113) (116)

even

odd

Han & Aizenberg Angew. Chem. Int. Ed., 2003, 42, 3668-3670

Epitaxy and surface energies

Lowest energy MHA and MPA configurations.

- Fully ionized carboxyl groups.
- Good match to calcite (001) surface.
- Interfacial energy calculations on MHA show $\gamma_{\text{calcite-sam}}$ lower for (001) than (012).

[Duffy and Harding Langmuir, 2004, 20, 7637-7642]

Line defects

Can be induced by presence of bicarbonates.

e.g. MHA

Reasonable match to a slightly distorted (012) calcite surface.

Interfacial energy calculations now favour (012) over (001).

One possible mechanism for generating (012).

	(0001)		(0112)			
	$\gamma_{\rm cm} ({\rm J} \; {\rm m}^{-2})$	m	f(m)	$\gamma_{\rm cm} ({\rm J} {\rm m}^{-2})$	m	f(m)
even (MHA)	0.081	-0.62	0.90	0.074	-0.57	0.88
odd (MPA)	0.086	-0.66	0.92	0.095	-0.73	0.95

Duffy et al J. Phys. Chem. B, 2005, 109, 5713-5718

Outline

- Calcium carbonate and biomineralisation.
- Growth on self-assembled monolayers.
- Direct simulations and metadynamics.
- Testing and analysis.
- Results and challenges.

Direct Simulations

- We aim to predict the crystal orientation without
 - (a) Prior knowledge from experiment.
 - (b) Manual construction of defects.
 - (c) Imposing a unrealistic temperatures.

$$G_{\text{bulk}} = \frac{4}{3}\pi\Delta\mu r^3$$

$$G_{\tt surf} = 4\pi \gamma r^2$$

$$\Delta \mu = \mu_{\text{sol}} - \mu_{\text{liq}}$$

Competition of bulk and surface free energy

Typically Δ G_{crit} ~ 10 -100 k_BT

UNIVERSITY OF CAMBRIDGE THE UNIVERSITY OF WARWICK

Metadynamics

[Laio & Parrinello P.N.A.S. 99 12562 (2002)]

Augment the Hamiltonian with a history dependent potential *V* written as a function of some collective variables *s*,

$$H = \sum_{i=1}^{N} \frac{p_i^2}{2m_i} + U\left(\mathbf{r}^N\right) + V\left[\mathbf{s}\left(\mathbf{r}^N\right), t\right].$$

V is constructed as,

$$V\left[\mathbf{s}\left(\mathbf{r}^{N}\right),t\right] = w \sum_{k=1}^{N_{G}} \exp\left[\frac{-\left|\mathbf{s}\left(k\tau_{G}\right) - \mathbf{s}\left(t\right)\right|^{2}}{2\delta h^{2}}\right]$$

where k runs over all N_G =int[t/ τ_G] previously deposited Gaussians. Provided the disposition rate w/τ_G is slow, V ultimately compensates for the underlying free energy landscape,

$$F_G(\mathbf{s}) = -\lim_{t \to \infty} V\left[\mathbf{s}\left(\mathbf{r}^N\right), t\right].$$

UNIVERSITY OF CAMBRIDGE THE UNIVERSITY OF WAR PWICK

Metadynamics

[Laio & Parrinello P.N.A.S. 99 12562 (2002)]

Small Gaussian bias potentials are added to current location in order parameter space at intervals T_{aug}.

Pushed over free energy barriers into unexplored regions.

Crystallisation

Apply to water, using Q_4 , Q_6 , ξ and potential energy as an order parameter.

Calcium Carbonate Scheme

Bias Q_4 or Q_6 separately for each of the five "bond types" listed below, plus the "local" energy of the calcite component (real-space part of all vdw/coulomb/bond/angle energies which include either Ca or CO_3).

$$f_{c}(r) = \begin{cases} 1 & \text{if } r \leq r_{1}; \\ \frac{1}{2} \left\{ \cos \left[\frac{(r-r_{1})}{r_{2}-r_{1}} \pi \right] + 1 \right\} & \text{if } r_{1} < r \leq r_{2}; \\ 0 & \text{if } r > r_{2}. \end{cases}$$

$$Q_{l}^{\alpha\beta} = \left[\frac{4\pi}{2l+1} \sum_{m=-l}^{l} \left| \frac{1}{4N_{nn}} \sum_{b=1}^{N_{b}} f_{c}(r_{b}) Y_{lm}(\theta_{b}, \phi_{b}) \right|^{2} \right]^{1/2}$$

pair type	calcite	aragonite	vaterite
_		Ü	
	$0.2464 \ (0.0007)$		
* \	$0.4882 \ (0.0014)$	\ /	\ /
	0.7053 (0.0008)		
• \ /	$0.4863 \ (0.0017)$	\ /	\ /
	0.5247 (0.0008)		
	$0.2215 \ (0.0006)$		
	0.2470 (0.0007)		
$Q_6(\text{C-C})$	\ /	$0.4983 \ (0.0005)$	(/
$Q_4(\text{C-O})$	0.8216 (0.0178)		
$Q_6(\text{C-O})$	$0.7988 \ (0.0117)$	0.6698 (0.0096)	0.2999 (0.0088)

Nanoparticles

- 52,113 steps with w=3.78 k_BT (13 ns).
- 67,091 steps with w=1.0 k_BT (15.5 ns).

- Convergence of free energies is very slow.
- BUT generates sensible crystal morphologies very quickly.

N=196 N=192

Outline

- Calcium carbonate and biomineralisation.
- Growth on self-assembled monolayers.
- Direct simulations and metadynamics.
- Testing and analysis.
- Results and challenges.

Crystallisation on SAMs

- Use metadynamics to (carefully) drive amorphous to crystalline transition.
- Use Gaussian height around 2% of smallest surface energy difference.
- SAMs modelled using CHARMM united atom force-field, TIP3P water.
- Mineral-organic terms in Freeman et al J. Phys. Chem. C 111,11943 (2007).
- 8.3 ns metadynamics simulations (or until crystallised) with 2 ns MD for analysis of crystal.
- 310 Kelvin, constant density.

Testing – amorphous slabs

Crystallisation in vacuum should expose (104) surface.

Validation

$$\tau_G = 0.25 ps$$

$$\tau_G = 0.20 ps$$

$$\tau_G = 0.15 ps$$

$$\tau_G = 0.05 ps$$

UNIVERSITY OF CAMBRIDGE

THE UNIVERSITY OF WARWICK

----- (104)

Phase assignment

Based on computation of local per-ion order parameters and comparison to bulk reference values.

Surface identification

- Epitaxial order parameter: Compares Ca-Ca surface vectors at the SAM to known low energy surfaces.
- Dominant carbonate angle: Compared to that in bulk with crystal orientated perpendicular to known low energy surfaces.

N.B. Crystal not necessarily perpendicular to dominant exposed surface.

Outline

- Calcium carbonate and biomineralisation.
- Growth on self-assembled monolayers.
- Direct simulations and metadynamics.
- Testing and analysis.
- Results and challenges.

Crystallisation on MHA

Crystallisation on MHA

(012) nucleation plane

(012) nucleation plane

Lattice matching only over small area

Bicarbs+initial line defect on left.

No bicarbs on right.

Flexibility leads to experimental result regardless of initial conditions.

UNIVERSITY OF CAMBRIDGE THE UNIVERSITY OF WARWICK

Frozen MHA

(012) nucleation plane

Bicarbs+initial line defect on left.

No bicarbs on right.

Freezing the monolayer leads to selection expected by purely epitaxial arguments.

(001) nucleation plane

Crystallisation on MPA

Lattice matching in 116 case?

Bicarbs+initial line defect on left.

No bicarbs on right.

Successes

- Predict experimentally observed orientation on fully ionised MHA SAMs without imposing defects.
- Demonstrated that only *local* matching required at the interface to support (012) over (001).
- Suggests nucleation of combined SAM-calcite order rather than "nucleation of calcite" on the SAM.
- Also reproduced experimentally observed orientation on MPA and hence the odd-even effect.

Challenges

- Results on partially / non-ionised SAMs ambiguous.
 - Crystallises with (104) exposed.
 - Or crystallises very slowly.
- How to choose the distribution of ionised functional groups and its evolution?
 - Frozen with localised ionisation leads to (001) on MHA.
 - Flexible with uniform ionisation crystallises poorly.
- What is missing from (012) vs (001) surface energy calculations on MHA?
- Possible boundary and finite-size effects.
- Order parameter free methods?

Acknowledgements

Dr David Cooke

Dr Bill Smith

Dr Ilian Todorov

Dr Martyn Foster

Engineering and Physical Sciences Research Council

Modelling of the Biological Interface with Materials