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Multiscale Problems

We do not have an explicit and accurate model for D;

A reliable microscale model is available:

We are interested in the macroscale behavior of the system,  
which is described by the (incomplete) model:

∂tU = L(U ;D)

∂τu = L(u)
but this is too expensive to be used directly.

τε ! tMWe focus on problems in which 
τε : the relaxation time for the microscale model;

: the time scale for the dynamics of the macroscale variable.tM



ρ(∂tU + (U ·∇)U) +∇P = ∇ · τd

∇ · U = 0

An example: Complex fluids

: unknown for complex fluidsτd

Macroscale model:

Microscale model: Molecular dynamics (MD)
{

q̇i = pi/mi

ṗi = fi, i = 1, 2, · · · N

Solving the MD model is far too inefficient.

τd = µ
(
∇U + (∇U)T

)
for simple fluids



Multiscale methods

Recent work: Seamless multiscale method; 

Earlier work: Heterogeneous multiscale methods (HMM).

Goal: develop efficient multiscale strategies that accurately capture 
the macroscale behavior with the help of the microscale model, 
without using empirical macroscale models.

Plan of the talk:

application to polymer fluids.

Stability of domain-decomposition type of multiscale methods.



Heterogeneous multiscale method (HMM)

Estimate the missing data: Some data needed in the macro 
solver are missing due to the incomplete knowledge of the 
macro model. These data are estimated from the micro model.

Macroscale solver: Assume a form of macroscale model, 
and then choose a stable numerical scheme for the model;

E, Engquist (2003)

A general (top-down) framework for dealing with multiscale 
problems.

Macro solver - micro solver - data estimator



 At each macro time step, the micro solver is invoked and solved for 
M steps, where                               ;τε < Mδτ ! ∆t

Coupling scheme in HMM
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 Use the results to estimate the needed data D (spatial-temporal 
averaging);

 Use the macro solver to evolve U;

Scale separation is exploited so that the micro model is solved in small 
spatial-temporal domains.



One difficulty in HMM

Observe the large gap between the microscale simulations; 
the micro solver needs to be reinitialized at each macro time step.
HMM (and other multiscale methods) requires going back and forth 
between the macro and micro states of the system.

Method Macro to micro Micro to macro

Systematic up-scaling Interpolation Restriction (projection)
HMM Reconstruction Compression
Equation-free Lifting Restriction
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∆t

τ

t macro

micro
{

Mδτ

{

∆′t = ∆t/M

E, Ren, Vanden-Eijnden, J. Comput. Phys. 2009

The macro and micro dynamics run continuously on different clocks; 
the data are exchanged at each time step;
Reinitialization of the micro solver is not needed;

A seamless coupling scheme

The micro dynamics is effectively evolved on the time step      ; 
this gives the saving factor (from the consideration of time scales 
alone): 

∆′t

Cs = ∆′t/δτ

Mδτ

{
Mδτ

{



How to choose        ?∆′t

The seamless algorithm

un+1 = Sδτ (un;Un)

Un+1 = S∆′t

(
Un;Dn+1

)
Dn+1 = D(un+1)

micro solver

data estimation

macro solver

Given                  : 
solve the following for the solution at the next time step: 

{Un, un} Un = U(n∆′t), un = u(nδτ)

Accuracy and stability requirements;
Relaxation time of the micro dynamics.

       is smaller than that required for accurately resolving the macro dynamics;  ∆′t

this is to give the micro dynamics sufficient time to adapt to the macro state.

M > τε/δτwhere∆′t = ∆t/M



Some earlier and related work

Fiber bundle dynamics (E, Lu 2007)

Macroscale behavior of complex fluids (Ren, 2007)

Some aspects of the idea were used before:

Car-Parrinello molecular dynamics (1985)

Multiscale chaotic systems (Fatkullin, Vanden-Eijnden 2004)

Free energy calculations (Maragliano, Vanden-Eijnden 2006)



w(t) : a Wiener process; ε! 1

dy = −1
ε

(y − ϕ(x)) dt +
√

1
ε
dw

dx = f(x, y)dt{
Example:  SDE with multiple time scales

ẋ = F (x)

F (x) = lim
ε→0

∫
f(x, y)µε

x(dy)

The limiting equation as             is :ε→ 0

µε
x(dy) is the invariant measure of the fast variable y with x fixed.



yn+1 = yn − δτ

ε
(yn − ϕ(xn)) +

√
δτ

ε
ξn

Dn+1 = yn+1

xn+1 = xn + ∆′t f
(
xn, Dn+1

)

xn = x(n∆′t), yn = y(nδτ)

The seamless algorithm for the SDE

The seamless algorithm:

dy = −1
ε

(y − ϕ(x)) dt +
√

1
ε
dw

dx = f(x, y)dt{

macro solver

data estimation

micro solver



Error estimate

x̄ : the solution to the limiting equation:
xh : the numerical solution (fluctuating).

Implicit averaging: In the seamless algorithm, the data computed 
from the micro dynamics is implicitly averaged over time.

E |xh − x̄| ≤ C

(√
ε∆t

Mδτ
+

(
δτ

ε

)k

+ ∆tl
)Accuracy of HMM (with time averaging): 

E |xh − x̄| ≤ C

(√
ε∆t

Mδτ
+

(
δτ

ε

)k

+
(

∆t

M

)l
)

The first term is an estimate of the statistical error.

Accuracy of the seemless algorithm: ∆′t = ∆t/M



ε′ = ε∆′t/δτ

Where the first error term come from?

The seamless algorithm can be considered as a standard 
discretization of the modified equation with time step      :∆′t

dy = − 1
ε′ (y − ϕ(x)) dt +

√
1
ε′ dw{ dx = f(x, y)dt

Denote the exact solution to the modified equation by       , then           xε′

|xh − x̄| ≤ |x̄− xε′ | + |xε′ − xh|

E |x̄− xε′ | ∼ O(
√

ε′)
where

(E, Liu, Vanden-Eijnden, 2005)



Data to be estimated: τd = τd(∇U)

The assumed functional dependence of      is used as constraints 
in molecular dynamics.  

τd

Application to complex fluids

Macro solver: projection method (Chorin);

ρ(∂tU + (U ·∇)U) +∇P = ∇ · τd

∇ · U = 0

Assume that the macro model is of the form:

Micro model: constrained molecular dynamics.



∆Pn+1 =
ρ

∆t
∇ · U∗

Macro solver: Projection method

Projection method is a fractional step method: 

Staggered grid in space:

ρ

(
U∗ − Un

∆t
+∇ · (Un ⊗ Un)

)
= ∇ · τn

d 

ρ
Un+1 − U∗

∆t
+∇Pn+1 = 0 



Computing stress from MD

MD is constrained by the local rate of strain: An = ∇Un



∂τm +∇ · σ = 0

σ(x, τ) =
∑

i

m−1
i (pi ⊗ pi) δ(x− qi)

+
1
2

∑

j !=i

(qij ⊗ fij)
∫ 1

0
δ(λqi + (1− λ)qj − x)dλ

Microscale model: Molecular dynamics

Conservation of momentum in terms of the micro variables:

{
q̇i = pi/mi

ṗi = fi, i = 1, 2, · · · N

m is the momentum density:

σ is the momentum flux:

m(x, τ) =
∑

j

pj(τ)δ(x− qj(τ))








q̇i = pi/mi

ṗi = fi, i = 1, · · · , N
Ẋ = AX, A = ∇U

Constant rate-of-strain molecular dynamics:

Imposing velocity gradient in MD

Generalized periodic boundary condition is imposed on 
the deforming box.

The MD box deforms according to the rate of strain;

Thermostat is needed to control the temperature.

X : vertices of the MD box.



A = ∇U =
(

0 γ̇
0 0

)

Constant rate-of-strain MD in 1d

In 1d, this is equivalent to the Lees-
Edwards boundary condition for  
imposing a simple shear flow:

Lees-Edwards boundary condition



A 2d example

A =
(

0.05 0.03
0.02 −0.05

)
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Initialization: Start with some initial velocity field      ; discretize 
the macro model on the staggered grid; initialize a MD system at 
each grid point where the stress is needed; set            .

U0

n = 0

Compute the velocity gradient         at each grid point;∇Un

Evolve the macro model by one macro time step       to obtain        .    ∆′t Un+1

Set                   , and go to step 1.n := n + 1

The seamless algorithm

Compute the stress for the MD results; 

Evolve each MD system for one micro time step     ; δτ
Evolve the MD box by      according to        .δτ ∇Un



Numerical examples

Channel flow driven by a pressure gradient;

Two examples:

Driven cavity flow.



f

x

z
y

z=0

z=L

ρ∂tu = ∂zτ + f(t), 0 < z < L

Channel flow driven by a pressure gradient

Macro model:



VLJ(r) = 4ε

((σ

r

)12
−

(σ

r

)6
)

A benchmark problem: Lennard-Jones fluid 

Lennard-Jones potential:

f

x

z
y

z=0

z=L



∆′t = 500/40, δτ = 0.005
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Numerical results: Lennard-Jones fluid 

Blue curves: solution of multiscale method



VFENE(r) =





1
2kr2

0 ln
(

1−
(

r
r0

)2
)

if r < r0

∞ if r ≥ r0

Polymer fluids

f

x

z
y

z=0

z=L

the spring force is modeled by the FENE 
potential:

Bead-spring model for the polymers;



∆t = 500, δt = 0.002, M = 200
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A 2d example: driven cavity flow

U

ρ(∂tU + (U ·∇)U) +∇P = ∇ · τd

∇ · U = 0
Macro model:
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τd = µ

(
∇U + (∇U)T

)

Driven cavity flow: Lennard-Jones fluid

Atomistic-Continuum Navier-Stokes

 is computed from MD.τd
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∆′t = 0.5 ∆′t = 0.25

Driven cavity flow: Polymer fluid
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{
q̇i = pi/mi

ṗi = fi

Domain-decomposition type of multiscale methods

Continuum regionΩc

Ωp

{
ρ(∂tu + (u ·∇)u) = µ∆u−∇p
∇ · u = 0

The two models are coupled by exchanging BCs; commonly used 
BCs include: velocity exchange and (momentum) flux exchange.

Ωc ∩ Ωp = Ωo :  overlapping region.

Ren, J. Comput. Phys. 2007



The particle region and the continuum region have 
disparate size (            );lp ! lc

Two distinct features

Compared to classical DD-type of methods, the multiscale 
methods have two distinct features:

Different physical methods are used in different domains; 
the boundary condition computed from the particle model 
contains large statistical errors.

How the statistical error affects the stability of the multiscale 
methods?



The system is at static; the exact solution is             .u = 0

A benchmark problem

y
z

x C!region

C!region

P!region velocity-velocity
flux-velocity
velocity-flux
flux-flux

Simple fluids in a channel:

Four possible coupling 
schemes:



Numerical scheme

{
Tc

δt

t
δt

t

continuum

atomistic

The boundary conditions in the two models are updated for 
every time period      .Tc

When                , where       is the hydrodynamic relaxation time,
the coupling scheme reduces to the Schwartz alternation scheme 
for steady state problems.

Tc > tM tM
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Error of the numerical solution vs. time:



en(z) =

(
n∑

i=1

κn−iξi

)
g(z)

Analytical study (large Tc)

statistical error introduced in the BCξi :

en : error at the n-th step

κ : the amplification factor

lo : size of the overlapping region; lp : size of the particle region;
ls : the system size.

κ = 1  unstable (weakly)

κ ≈ 1− lo/lp stable
κ ≈ lp/ls stable
κ ≈ ls/lp unstable

velocity-velocity
flux-velocity
velocity-flux
flux-flux



Amplification factor vs Tc
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vel-vel and flux-vel schemes are stable;
vel-flux is stable for small T c, and unstable for large T c;
flux-flux scheme is weakly unstable.



Summary:

The method was applied to study type B problems (i.e. problems 
for which the micro models are used to supply the constitutive 
relations), e.g. complex fluids.

Presented a seamless multiscale method. 
The method does not require going back and forth between the 
macro and micro models;
No need for the reinitialization of the micro solver;
It has the ability of implicit averaging.

The method can also be applied type A problems, for which the 
micro models are used to help resolving local singularities, defects, 
boundary conditions, etc.
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