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A. The Dissipation Function

* The time-integral of the dissipation function:
— Logarithm of the probability of observing sets of trajectories
and their time-reversed conjugate trajectories
— Related to ‘relative entropy’ or difference in ‘surprise’ from
information theory

« Defined in order to generalise the Fluctuation
Theorem




A. The Dissipation Function
The Fluctuation Theorem
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A. The Dissipation Function

The Fluctuation Theorem
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A. The Dissipation Function

The Fluctuation Theorem

 Generalise
Time reversible, deterministic dynamics

Every trajectory will have a conjugate related by a time-
reversible symmetry

The trajectory and its conjugate will have time-averaged
dissipative fluxes that are equal in magnitude and opposite in
sign

Ratio of observing sets of conjugate trajectories

q; =p;/ m+C;-F,

P =F; +D;-F — Siop;




A. The Dissipation Function
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If the dynamics is reversible T =iS'T".
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A. The Dissipation Function

Now consider the relative
probability of observing the phase
volumes dI' and dI'":

f(T"0) f(T"t)

*ergodic
consistency

Q,(T')=-J,VF.B




A. The Dissipation Function
Fluctuation Theorem for the

Dissipation Function

The fluctuation theorem for any dissipation function, €,
IS:

Q, = j(; ds Q(s)

Using the FT, it is simply to show the Second Law
Inequality:
Quallty- a.)>0

Evans & Searles, Ad. Phys. 51, 1529-1585 (2002)
Sevick, Prabhakar, Williams & Searles, Ann. Rev. Phys. Chem. 59, 603-633 (2008)
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Why is the Dissipation Function
Useful?

For nonequilibrium dynamics the dissipation function takes on a
form resembling the rate of extensive entropy production
(-JVF/(KT)) and can be shown to be equal to it at small fields

0= +0(F2)
kB

It satisfies a Fluctuation Theorem - in small systems it gives a
probability of observing positive and negative values

Its time-averaged value is always positive in a nonequilibrium
system (Second Law Inequality)

It is the central argument in the Dissipation Theorem




B. Why is the DF interesting?
Example: Le Chatelier’'s Principle

If a chemical system at equilibrium
experiences a change in concentration,
temperature, volume, or total pressure, then
the equilibrium shifts to partially counter-act
the imposed change.

Folded Protein = Unfolded Protein q=AH>0

Increase in temperature favours the forward reaction -
shifts the equilibrium to the right

Folded Protein = Unfolded Protein




B. Why is the DF interesting?

The Dissipation Function for
Temperature Change

Defined as:

Need to know
* the Initial distribution
- Nosé-Hoover extended canonical distribution
« dynamics which allows a temperature change
- Nosé-Hoover thermostatted dynamics
- temperature change must be a time-symmetric
protocol - step function




B. Why is the DF interesting?
Dissipation Function for

Temperature Change

Substitute for f and A and rearrange:

Q(T") = (B, — B> ) (Hy (T(1)—Hy (T(0))

((B1 = B2) (Ho (T(1) = Hy(T'(0)))) 2 0

B, >B, T,>T

1

(Ho (T(1)) — Hy (T(0))) = AH> 0




B. Why is the DF interesting?

Dissipation Function for Temperature
Change

But also satisfy the Fluctuation Theorem

P((HyCE)-HyTON)=A) _ (5 )
p((Hy (T(1))-Hy (T'(0))| = -A)




Why is the Dissipation Function
Useful?

For nonequilibrium dynamics the dissipation function takes on a
form resembling the rate of extensive entropy production
(-JVF/(KT)) and can be shown to be equal to it at small fields

0= +0(F2)
kB

It satisfies a Fluctuation Theorem - in small systems it gives a
probability of observing positive and negative values

Its time-averaged value is always positive in a nonequilibrium
system (Second Law Inequality)

It is the central argument in the Dissipation Theorem
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C. The Dissipation Theorem

Derivation

« The evolution of the phase space density in its
streaming form is:

df(T,1) (a

LY_(2rm 2 )( ) = —AD)(T, )

 The solution to this is:

HT(),1) = e o MTENdSEr ) — o=AM D o)




C. The Dissipation Theorem

{(T(1),t) = e TfT,0)

Remember - the definition of the dissipation function is

(T(1),t) = e M KT, 0) = e (T (1),0)

True for any I', so transform I'(t) — I'(0)

{(T(0),1) = A TEVET(0),0)




C. The Dissipation Theorem

Response of phase variables

We can use the distribution function to evaluate

(B(t) = [B(T)(T, H)dT = [B(T)e A TENSHr 0)dr

By differentiation and integration

(B(1)) = (B(0))+ ], (B(s)(0))ds

Note that the ensemble average is wrt to the initial distribution.




C. The Dissipation Theorem

Comparison with past work..

(T(0), 1) = e AT 50y, 0) (B(1)) = (B(0)) + J, (B(s)(0))ds

« Kawasaki - adiabatic (unthermostatted)

« Evans and Morriss - homogeneously
thermostatted nonequilibrium dynamics
(Gaussian isokinetic)

* This is more general

Evans, Searles, Williams, JCP, 128 014504(2008); 249901 (2008)




C. The Dissipation Theorem

Theoretical Consequences

* Nonlinear response for arbitrary dynamics,
(inc. boundary thermostatting, part of the
system subject to field etc.)

* Application to systems that are relaxing
towards equilibrium (so dynamics is just the
equilibrium dynamics)




C. The Dissipation Theorem

Numerical Consequences
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C. The Dissipation Theorem

Numerical Consequences

(B(1)) — (B(1))oq = | B(tFs)H(T',0)dI" = [B(t,0)(T",0) dr” Odd B
only!

(B(t) = [BT)(T, tydT" = [B(T)e) TN 0)dr

(B(1)) = (B(0))+ [, (B(s)2(0)) ds




C. The Dissipation Theorem

Numerical Consequences

 Colour diffusion between thermostatted walls

Wall particles:
q=p;/m

q=p;/m p,=F +F, —op,

Pi = F| + CiFe ZNwa" Fi'pi

i=1

¥ Nl pop,

o=

Q= > cpyFe/kgTyal

=N, 1




C. The Dissipation Theorem

Numerical Consequences

Considered various properties and fields -
colour current and fluid pressure

B(t)f(T",0)dI" — (B(t Expect best at
/=18 (Bleq high fields

B(t)) = [B(D)(T, HdT = [B(T)e AT o)dr

Expect best at (B(1)) I
low fields ’




C. The Dissipation Theorem

Numerical Consequences
F.=0.001;n=0.8; T

=1.0

wall




C. The Dissipation Theorem

Numerical Consequences
F.=1.0,n=0.8; T

=1.0

wall
(B(1)) = [ B(t)f(T,0)dl"
(B(t))=(B(0))+ [ (B(s)(0))ds

6.36

6.34 |

6.32 |

6.3 |




C. The Dissipation Theorem

Numerical Consequences

The Fe=0.001 and Fe=0.01 conductivities
match (error bars similar size and smaller
than the blue squares)

0.036 [————T———T T

-B— Fe = 0.01 response

— — Fe = 1.0 response
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Conclusions and Future ...

The dissipation function is of central importance in nonequilibrium
statistical mechanics - appears in the fluctuation theorem, second
law inequality and the dissipation theorem

The dissipation theorem gives a relation for the nonlinear response of
phase functions

The dissipation theorem shows how a distribution function changes
due to application/change/removal of a field

The dissipation theorem provides a practical route to properties of
inhomogeneously thermostatted systems (e.g. wall thermostatted or
remotely thermostatted) at small fields

Like to use this approach to study more practical problems

Relationship between formation of a steady state and correlations -
explore more widely

Other numerical approaches to obtaining accurate results more
efficiently
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