

The Dissipation Theorem and Nonequilibrium Properties

Debra J. Searles (Bernhardt)

School of Biomolecular and Physical Sciences Queensland Micro and Nano-technology Centre

Griffith University Brisbane, Qld 4111 AUSTRALIA

Collaborators

Denis J. Evans Stephen R. Williams ANU

Sarah J. Brookes
Griffith

Davood Ajloo Pouria Dasmeh DUBS

The Dissipation Theorem leads to the result:

Numerical Consequences

"MD study of the nanorheology of n-dodecane confined between planar surfaces" ~2.5 nm

$$\eta = \frac{-\left\langle P_{xy}(t) \right\rangle}{\gamma} = \frac{-\int P_{xy}(t) f(\Gamma, 0) d\Gamma}{\gamma}$$

MD: Cui, McCabe, Cummings, Cochran, JCP, 118, 8941 (2003)

Expt: Hu, Carson, Granick, PRL 66, 2758 & Granick, Science, 253, 1374 (1991)

Plan

Part A: The Dissipation Function

- Background
- Definition

Part B: Why is the Dissipation Function Useful?

- Example - Le Chatelier's principle

Part C: The Dissipation Theorem

- Derivation
- Theoretical implications
 - Steady state
 - Determination of equilibrium distribution
- Numerical implications

Part D: Summary

- The time-integral of the dissipation function:
 - Logarithm of the probability of observing sets of trajectories and their time-reversed conjugate trajectories
 - Related to 'relative entropy' or difference in 'surprise' from information theory
- Defined in order to generalise the Fluctuation Theorem

The Fluctuation Theorem

$$\frac{p(J_t = A)}{p(J_t = -A)} = e^{-AF_eV\beta}$$

$$J_t = \int_0^t ds J(s)$$

- Originally constant NVE
- Eqns of motion:

$$\dot{\mathbf{q}}_{i} = \mathbf{p}_{i} / m + \mathbf{C}_{i} \cdot \mathbf{F}_{e}$$

$$\dot{\mathbf{p}}_{i} = \mathbf{F}_{i} + \mathbf{D}_{i} \cdot \mathbf{F}_{e} - \alpha \mathbf{p}_{i}$$

Isoenergetic constraint

The Fluctuation Theorem

$$\frac{p(J_{c,t} = A)}{p(J_{c,t} = -A)} = e^{AF_eV\beta}$$

The Fluctuation Theorem

Generalise

- Time reversible, deterministic dynamics
- Every trajectory will have a conjugate related by a timereversible symmetry
- The trajectory and its conjugate will have time-averaged dissipative fluxes that are equal in magnitude and opposite in sign
- Ratio of observing sets of conjugate trajectories

$$\begin{aligned} \dot{\mathbf{q}}_{i} &= \mathbf{p}_{i} / m + \mathbf{C}_{i} \cdot \mathbf{F}_{e} \\ \dot{\mathbf{p}}_{i} &= \mathbf{F}_{i} + \mathbf{D}_{i} \cdot \mathbf{F}_{e} - S_{i} \alpha \mathbf{p}_{i} \end{aligned}$$

If the dynamics is reversible $\Gamma = iS^t\Gamma^*$.

$$\left| \frac{d\Gamma}{d\Gamma(t)} \right| = \exp\left(-\int_0^t \Lambda(s) \, ds \right) = e^{-\Lambda_t(\Gamma)} = \left| \frac{d\Gamma}{d\Gamma^*} \right|$$

$$\Lambda = \frac{\partial}{\partial \Gamma} \cdot \dot{\Gamma}$$
 $\Lambda_t = \int_0^t \Lambda(s) \, ds$

Now consider the relative probability of observing the phase volumes $d\Gamma$ and $d\Gamma^*$:

$$\frac{p(d\Gamma)}{p(d\Gamma^*)} = \frac{f(\Gamma,0)d\Gamma}{f(\Gamma^*,0)d\Gamma^*}$$

$$= \frac{f(\Gamma,0)}{f(\Gamma(t),0)}e^{-\Lambda_t(\Gamma)}$$

$$\equiv e^{\Omega_t(\Gamma)}$$

$$\Omega_{t}(\Gamma) = \ln \frac{f(\Gamma, 0)}{f(\Gamma(t), 0)} - \Lambda_{t}$$

 $f(\Gamma,0)$ $f(\Gamma,t)$

*ergodic consistency

$$\Omega_{t}(\Gamma) = -J_{t}VF_{e}\beta$$

Fluctuation Theorem for the Dissipation Function

The **fluctuation theorem** for any dissipation function, Ω , is:

$$\frac{p(\Omega_t = A)}{p(\Omega_t = -A)} = e^A \qquad \qquad \Omega_t = \int_0^t ds \ \Omega(s)$$

Using the FT, it is simply to show the Second Law Inequality: $\langle \Omega_t \rangle \ge 0$

Evans & Searles, Ad. Phys. **51**, 1529-1585 (2002) Sevick, Prabhakar, Williams & Searles, Ann. Rev. Phys. Chem. **59**, 603-633 (2008)

Part B

Why is the Dissipation Function Useful?

Why is the Dissipation Function Useful?

 For nonequilibrium dynamics the dissipation function takes on a form resembling the rate of extensive entropy production (-JVF_e/(kT)) and can be shown to be equal to it at small fields

$$\Omega = \frac{\Sigma}{k_{B}} + O(F_{e}^{2})$$

- It satisfies a Fluctuation Theorem in small systems it gives a probability of observing positive and negative values
- Its time-averaged value is always positive in a nonequilibrium system (Second Law Inequality)
- It is the central argument in the Dissipation Theorem

Example: Le Chatelier's Principle

If a chemical system at equilibrium experiences a change in concentration, temperature, volume, or total pressure, then the equilibrium shifts to partially counter-act the imposed change.

Folded Protein \rightleftharpoons Unfolded Protein $q = \Delta H > 0$

Increase in temperature favours the forward reaction - shifts the equilibrium to the right

Folded Protein — Unfolded Protein

The Dissipation Function for Temperature Change

Defined as:

$$\Omega_{t}(\Gamma) = \ln \frac{f(\Gamma, 0)}{f(\Gamma(t), 0)} - \Lambda_{t}$$

Need to know

- the initial distribution
 - Nosé-Hoover extended canonical distribution
- dynamics which allows a temperature change
 - Nosé-Hoover thermostatted dynamics
 - temperature change must be a time-symmetric protocol step function

Dissipation Function for Temperature Change

Substitute for f and Λ and rearrange:

$$\Omega_{\mathsf{t}}(\Gamma) = (\beta_1 - \beta_2) \left(\mathsf{H}_0(\Gamma(\mathsf{t})) - \mathsf{H}_0(\Gamma(0)) \right)$$

$$\langle (\beta_1 - \beta_2) (H_0(\Gamma(t)) - H_0(\Gamma(0))) \rangle \geq 0$$

$$\beta_1 > \beta_2$$
 $T_2 > T_1$

$$\langle \mathsf{H}_0(\Gamma(\mathsf{t})) - \mathsf{H}_0(\Gamma(\mathsf{0})) \rangle = \Delta \mathsf{H} \ge 0$$

Dissipation Function for Temperature Change

But also satisfy the Fluctuation Theorem

$$\frac{p(\left(H_0(\Gamma(t))-H_0(\Gamma(0))\right)=A)}{p(\left(H_0(\Gamma(t))-H_0(\Gamma(0))\right)=-A)}=e^{(\beta_1-\beta_2)A}$$

Why is the Dissipation Function Useful?

 For nonequilibrium dynamics the dissipation function takes on a form resembling the rate of extensive entropy production (-JVF_e/(kT)) and can be shown to be equal to it at small fields

$$\Omega = \frac{\Sigma}{k_{B}} + O(F_{e}^{2})$$

- It satisfies a Fluctuation Theorem in small systems it gives a probability of observing positive and negative values
- Its time-averaged value is always positive in a nonequilibrium system (Second Law Inequality)
- It is the central argument in the Dissipation Theorem

Part C

The Dissipation Theorem

$$\Omega_{t}(\Gamma) = \ln \frac{f(\Gamma, 0)}{f(\Gamma(t), 0)} - \Lambda_{t}$$

Derivation

 The evolution of the phase space density in its streaming form is:

$$\frac{\mathsf{df}(\Gamma,\mathsf{t})}{\mathsf{dt}} = \left(\frac{\partial}{\partial \mathsf{t}} + \dot{\Gamma}(\Gamma)\frac{\partial}{\partial \Gamma}\right)\mathsf{f}(\Gamma,\mathsf{t}) = -\Lambda(\Gamma)\mathsf{f}(\Gamma,\mathsf{t})$$

The solution to this is:

$$f(\Gamma(t),t) = e^{-\int_0^t \Lambda(\Gamma(s)) ds} f(\Gamma,0) = e^{-\Lambda_t(\Gamma)} f(\Gamma,0)$$

$$f(\Gamma(t),t) = e^{-\Lambda_t(\Gamma)}f(\Gamma,0)$$

Remember - the definition of the dissipation function is

So:

$$\frac{f(\Gamma,0)}{f(\Gamma(t),0)}e^{-\Lambda_t(\Gamma)} \equiv e^{\Omega_t(\Gamma)}$$

$$f(\Gamma(t),t) = e^{-\Lambda_t(\Gamma)}f(\Gamma,0) = e^{\Omega_t(\Gamma)}f(\Gamma(t),0)$$

True for any Γ , so transform $\Gamma(t) \to \Gamma(0)$

$$f(\Gamma(0),t) = e^{\Omega_t(\Gamma(-t))}f(\Gamma(0),0) = e^{\int_{-t}^0 \Omega(\Gamma(s))ds}f(\Gamma(0),0)$$

Response of phase variables

We can use the distribution function to evaluate

$$\left\langle B(t)\right\rangle = \int\!B(\Gamma)f(\Gamma,t)d\Gamma = \int\!B(\Gamma)\!e^{\int_{-t}^{0}\Omega(\Gamma(s))ds}f(\Gamma,0)d\Gamma$$

By differentiation and integration

$$\langle \mathsf{B}(\mathsf{t}) \rangle = \langle \mathsf{B}(0) \rangle + \int_0^\mathsf{t} \langle \mathsf{B}(\mathsf{s}) \Omega(0) \rangle \mathsf{d}\mathsf{s}$$

Note that the ensemble average is wrt to the initial distribution.

Comparison with past work...

$$f(\Gamma(0),t) = e^{\int_{-t}^{0} \Omega(\Gamma(s)) ds} f(\Gamma(0),0) \qquad \qquad \langle B(t) \rangle = \langle B(0) \rangle + \int_{0}^{t} \langle B(s) \Omega(0) \rangle ds$$

- Kawasaki adiabatic (unthermostatted)
- Evans and Morriss homogeneously thermostatted nonequilibrium dynamics (Gaussian isokinetic)
- This is more general

Theoretical Consequences

- Nonlinear response for arbitrary dynamics, (inc. boundary thermostatting, part of the system subject to field etc.)
- Application to systems that are relaxing towards equilibrium (so dynamics is just the equilibrium dynamics)

Numerical Consequences

"MD study of the nanorheology of n-dodecane confined between planar surfaces" ~2.5 nm

$$\eta = \frac{-\left\langle P_{xy}(t) \right\rangle}{\gamma} = \frac{-\int P_{xy}(t) f(\Gamma, 0) d\Gamma}{\gamma}$$

MD: Cui, McCabe, Cummings, Cochran, JCP, 118, 8941 (2003)

Expt: Hu, Carson, Granick, PRL 66, 2758 & Granick, Science, 253, 1374 (1991)

Numerical Consequences

$$\langle \mathsf{B}(\mathsf{t}) \rangle = \int \mathsf{B}(\mathsf{t}) \mathsf{f}(\Gamma, 0) \, \mathsf{d}\Gamma$$

$$\langle \mathsf{B}(\mathsf{t}) \rangle - \langle \mathsf{B}(\mathsf{t}) \rangle_{eq} = \int \mathsf{B}(\mathsf{t}; \mathsf{F}_e) \mathsf{f}(\Gamma, 0) \, d\Gamma - \int \mathsf{B}(\mathsf{t}; 0) \mathsf{f}(\Gamma, 0) \, d\Gamma \quad \begin{array}{c} \mathsf{Odd} \; \mathsf{B} \\ \mathsf{only!} \end{array}$$

$$\left\langle \mathsf{B}(\mathsf{t})\right\rangle = \int \mathsf{B}(\Gamma)\mathsf{f}(\Gamma,\mathsf{t})\mathsf{d}\Gamma = \int \mathsf{B}(\Gamma)\!e^{\int_{-\mathsf{t}}^{0}\Omega(\Gamma(\mathsf{s}))\!\mathsf{d}\mathsf{s}}\mathsf{f}(\Gamma,0)\mathsf{d}\Gamma$$

$$\langle \mathsf{B}(\mathsf{t}) \rangle = \langle \mathsf{B}(0) \rangle + \int_0^\mathsf{t} \langle \mathsf{B}(\mathsf{s}) \Omega(0) \rangle \, \mathsf{d}\mathsf{s}$$

Numerical Consequences

Colour diffusion between thermostatted walls

Fluid particles:

$$\dot{\mathbf{q}}_{i} = \mathbf{p}_{i} / \mathbf{m}$$
 $\dot{\mathbf{p}}_{i} = \mathbf{F}_{i} + \mathbf{c}_{i} \mathbf{F}_{e}$

Wall particles:

$$\begin{split} \dot{\mathbf{q}}_i &= \mathbf{p}_i / m \\ \dot{\mathbf{p}}_i &= \mathbf{F}_i + \mathbf{F}_{wi} - \alpha \mathbf{p}_i \\ \alpha &= \frac{\sum_{i=1}^{N_{wall}} \mathbf{F}_i \cdot \mathbf{p}_i}{\sum_{i=1}^{N_{wall}} \mathbf{p}_i \cdot \mathbf{p}_i} \end{split}$$

$$\Omega = \sum_{i=N_{wall}+1}^{N_{part}} c_i p_{xi} F_e / k_B T_{wall}$$

Numerical Consequences

Considered various properties and fields - colour current and fluid pressure

$$\langle B(t) \rangle = \int B(t) f(\Gamma, 0) d\Gamma - \langle B(t) \rangle_{eq}$$
 Expect best at high fields

$$\left\langle B(t)\right\rangle = \int B(\Gamma)f(\Gamma,t)d\Gamma = \int B(\Gamma)e^{\int_{-t}^{0}\Omega(\Gamma(s))ds}f(\Gamma,0)d\Gamma$$

Expect best at
$$\langle B(t) \rangle = \langle B(0) \rangle + \int_0^t \langle B(s)\Omega(0) \rangle ds$$
 low fields

Numerical Consequences

$$F_e = 0.001$$
; n=0.8; $T_{wall} = 1.0$

$$\langle \mathsf{B}(\mathsf{t}) \rangle = \int \mathsf{B}(\mathsf{t}) \mathsf{f}(\Gamma, 0) \, \mathsf{d}\Gamma$$

$$\langle \mathsf{B}(\mathsf{t}) \rangle = \langle \mathsf{B}(0) \rangle + \int_0^\mathsf{t} \langle \mathsf{B}(\mathsf{s}) \Omega(0) \rangle d\mathsf{s}$$

Numerical Consequences

$$F_e = 1.0$$
; n=0.8; $T_{wall} = 1.0$

$$\langle \mathsf{B}(\mathsf{t}) \rangle = \int \mathsf{B}(\mathsf{t}) \mathsf{f}(\Gamma, 0) \, \mathsf{d}\Gamma$$

$$\langle \mathsf{B}(\mathsf{t}) \rangle = \langle \mathsf{B}(0) \rangle + \int_0^\mathsf{t} \langle \mathsf{B}(\mathsf{s}) \Omega(0) \rangle \, \mathsf{d}\mathsf{s}$$

Numerical Consequences

The Fe=0.001 and Fe=0.01 conductivities match (error bars similar size and smaller than the blue squares)

Part D

Summary and Future Work

Conclusions and Future ...

- The dissipation function is of central importance in nonequilibrium statistical mechanics - appears in the fluctuation theorem, second law inequality and the dissipation theorem
- The dissipation theorem gives a relation for the nonlinear response of phase functions
- The dissipation theorem shows how a distribution function changes due to application/change/removal of a field
- The dissipation theorem provides a practical route to properties of inhomogeneously thermostatted systems (e.g. wall thermostatted or remotely thermostatted) at small fields
- Like to use this approach to study more practical problems
- Relationship between formation of a steady state and correlations explore more widely
- Other numerical approaches to obtaining accurate results more efficiently

Acknowledgements

- Australian Research Council for their support through a Discovery Grant
- Collaborators
- DUBS, GU and ANUSF for computing time and support