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The Dissipation Theorem leads to
the result:



Fe
Numerical Consequences

MD:  Cui, McCabe, Cummings, Cochran, JCP, 118, 8941 (2003)
Expt:  Hu, Carson, Granick, PRL 66, 2758 & Granick, Science, 253, 1374 (1991)

“MD study of the
nanorheology of n-
dodecane
confined between
planar surfaces”
~2.5 nm
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Part A:  The Dissipation Function

- Background
- Definition

Part B: Why is the Dissipation Function Useful?
- Example - Le Chatelier’s principle

Part C: The Dissipation Theorem
- Derivation
- Theoretical implications

- Steady state
- Determination of equilibrium distribution

- Numerical implications

Part D:  Summary



A. The Dissipation Function

• The time-integral of the dissipation function:
– Logarithm of the probability of observing sets of trajectories

and their time-reversed conjugate trajectories
– Related to ‘relative entropy’ or difference in ‘surprise’ from

information theory

• Defined in order to generalise the Fluctuation
Theorem



 

!qi = pi / m

!pi = Fi 

!qi = pi / m+CiiFe
!pi = Fi +DiiFe

The Fluctuation Theorem

• Originally constant NVE

• Eqns of motion:
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A. The Dissipation Function
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Isoenergetic constraint

Jt = ds J(s)
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The Fluctuation Theorem

A. The Dissipation Function

p(Jc,t = A)
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The Fluctuation Theorem

• Generalise
– Time reversible, deterministic dynamics

– Every trajectory will have a conjugate related by a time-
reversible symmetry

– The trajectory and its conjugate will have time-averaged
dissipative fluxes that are equal in magnitude and opposite in
sign

– Ratio of observing sets of conjugate trajectories
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A. The Dissipation Function
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A. The Dissipation Function
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probability of observing the phase
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Fluctuation Theorem for the
Dissipation Function

The fluctuation theorem for any dissipation function, Ω,
is:

Using the FT, it is simply to show the Second Law
Inequality:

p(!t = A)

p(!t = "A)
= eA !t = ds!(s)
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t
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Evans & Searles, Ad. Phys. 51, 1529-1585 (2002)
Sevick, Prabhakar, Williams & Searles, Ann. Rev. Phys. Chem. 59, 603-633 (2008)

A. The Dissipation Function
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Part B

Why is the Dissipation Function
Useful?
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Why is the Dissipation Function
Useful?

• For nonequilibrium dynamics the dissipation function takes on a
form resembling the rate of extensive entropy production
(-JVFe/(kT)) and can be shown to be equal to it at small fields

• It satisfies a Fluctuation Theorem - in small systems it gives a
probability of observing positive and negative values

• Its time-averaged value is always positive in a nonequilibrium
system (Second Law Inequality)

• It is the central argument in the Dissipation Theorem



If a chemical system at equilibrium
experiences a change in concentration,

temperature, volume, or total pressure, then
the equilibrium shifts to partially counter-act

the imposed change.

Increase in temperature favours the forward reaction -
shifts the equilibrium to the right

 Folded Protein!Unfolded Protein q = !H > 0

  Folded Protein !Unfolded Protein 

Example: Le Chatelier’s Principle
B. Why is the DF interesting?



The Dissipation Function for
Temperature Change

Need to know
• the initial distribution

- Nosé-Hoover extended canonical distribution
• dynamics which allows a temperature change

- Nosé-Hoover thermostatted dynamics
- temperature change must be a time-symmetric
protocol - step function 

!t(") = ln
f ", 0( )
f "(t),0( )

# $t

Defined as:

B. Why is the DF interesting?



Dissipation Function for
Temperature Change

Substitute for f and Λ and rearrange:

!t(") = (#1 $ #2 ) H0("(t))$H0("(0))( )
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B. Why is the DF interesting?



Dissipation Function for Temperature
Change

But also satisfy the Fluctuation Theorem

B. Why is the DF interesting?
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Why is the Dissipation Function
Useful?

• For nonequilibrium dynamics the dissipation function takes on a
form resembling the rate of extensive entropy production
(-JVFe/(kT)) and can be shown to be equal to it at small fields

• It satisfies a Fluctuation Theorem - in small systems it gives a
probability of observing positive and negative values

• Its time-averaged value is always positive in a nonequilibrium
system (Second Law Inequality)

• It is the central argument in the Dissipation Theorem



Part C

 The Dissipation Theorem
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C. The Dissipation Theorem
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Derivation

• The evolution of the phase space density in its
streaming form is:

• The solution to this is:



FeRemember - the definition of the dissipation function is

So:

True for any Γ, so transform Γ(t) → Γ(0)

C. The Dissipation Theorem

f(!(t), t) = e"# t (! )f(!,0) = e$t (! )f(!(t),0)
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Response of phase variables

We can use the distribution function to evaluate

By differentiation and integration

Note that the ensemble average is wrt to the initial distribution.
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C. The Dissipation Theorem



Fe
Comparison with past work..

• Kawasaki - adiabatic (unthermostatted)

• Evans and Morriss - homogeneously
thermostatted nonequilibrium dynamics
(Gaussian isokinetic)

• This is more general

Evans, Searles, Williams, JCP, 128 014504(2008); 249901 (2008)
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C. The Dissipation Theorem
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Theoretical Consequences

• Nonlinear response for arbitrary dynamics,
(inc. boundary thermostatting, part of the
system subject to field etc.)

• Application to systems that are relaxing
towards equilibrium (so dynamics is just the
equilibrium dynamics)

C. The Dissipation Theorem



Fe
Numerical Consequences

MD:  Cui, McCabe, Cummings, Cochran, JCP, 118, 8941 (2003)
Expt:  Hu, Carson, Granick, PRL 66, 2758 & Granick, Science, 253, 1374 (1991)

“MD study of the
nanorheology of n-
dodecane
confined between
planar surfaces”
~2.5 nm
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Numerical Consequences
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C. The Dissipation Theorem
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Numerical Consequences

• Colour diffusion between thermostatted walls
Fe
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!qi = pi / m

!pi = Fi + ciFe

Wall particles:
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C. The Dissipation Theorem



Fe
Numerical Consequences

B(t) = B(!)" f(!,t)d! = B(!)" e
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B(t) = B(t)f(!,0)d!" # B(t)
eq

Expect best at
high fields

Expect best at
low fields

Considered various properties and fields -
colour current and fluid pressure

C. The Dissipation Theorem



Fe
Numerical Consequences

Fe = 0.001; n=0.8; Twall=1.0

B(t) = B(0) + B(s)!(0) ds
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Fe
Numerical Consequences

Fe = 1.0; n=0.8; Twall=1.0

B(t) = B(0) + B(s)!(0) ds
0

t
"

6.22

6.24

6.26

6.28

6.3

6.32

6.34

6.36

0 1 2 3 4 5 6 7 8

p
fluid

t

B(t) = B(t)f(!,0)d!"
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The Fe=0.001 and Fe=0.01 conductivities
match (error bars similar size and smaller

than the blue squares)

C. The Dissipation Theorem



Part D

Summary and Future Work



Conclusions and Future …

• The dissipation function is of central importance in nonequilibrium
statistical mechanics - appears in the fluctuation theorem, second
law inequality and the dissipation theorem

• The dissipation theorem gives a relation for the nonlinear response of
phase functions

• The dissipation theorem shows how a distribution function changes
due to application/change/removal of a field

• The dissipation theorem provides a practical route to properties of
inhomogeneously thermostatted systems (e.g. wall thermostatted or
remotely thermostatted) at small fields

• Like to use this approach to study more practical problems
• Relationship between formation of a steady state and correlations -

explore more widely
• Other numerical approaches to obtaining accurate results more

efficiently
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