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Message

We can do better than compute a minimum free energy path:
find a path which intersects each isocommittor

at that point through which there is

the highest number of crossings of distinct reactive trajectories.
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What to compute

Given two metastable states A and B in configuration space,
the problem is to find one or several “representative” reaction
paths connecting them.

Motivation:
calculating free energy differences,
finding intermediate meta-stable states
(targets for inhibitors of enhanced specificity)



Problems vs. Algorithms

Two steps:

1. define the problem,

2. construct an algorithm.

We follow the approach of Vanden-Eijnden, E, Ren, Ciccotti, ...



Dynamical equations

Consider a molecular system with potential energy function U(x)
Assume Newtonian dynamics with mass matrix M and
initial values from a Boltzmann-Gibbs distribution:
initial x from probability density p(x) = const e~ #U()
and (d/dt)x from a Maxwell distribution.



An ensemble of paths

How to define an ensemble of transition paths from A to B:

Imagine an extremely long trajectory.

The trajectory enters and leaves A and B many times
yielding a huge set of reactive paths from A to B,
shown in dark in the figure below:

o« i =
from Metzner, Schiitte, and Vanden-Eijnden (2006)
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Defining a path

Rather than generate an ensemble of transition paths,
which would have to be clustered anywhere,
one might directly determine a concise description of the paths.

Specifically, if the paths cluster into one or several distinct isolated
channels, one might compute the “center” of each cluster.



Collective variables

Transition paths might not cluster adequately

—in full configuration space.
Assume, however, there is a smaller set of collective variables,
functions of the configuration x,

G =&(x), 0 =&(x),...,Ck = &k(x), abbreviated as ¢ = £(x),

such that in {-space,
paths cluster into one or several distinct isolated channels.

Else, there is little of interest to compute.



Choice of collective variables

We want a minimal set of collective variables subject to two
conditions:

> Coordinates ¢ must suffice to describe states A¢, B¢ in
(-space corresponding to A, B.

» Coordinates ( must also be rich enough to “express the
mechanism of conformational change” along the transition
path.

To make the second condition more precise, introduce ...



The committor

To measure the progress of a transition, there is a natural reaction
coordinate, known as the committor:

For each point (, consider a trajectory starting with random initial
values conditioned on &(x) = ¢ and define the committor g(¢) to
be the probability of reaching B before A:

q(¢) = Pr(X(t) reaches B; before A: | £(X(0)) = ().



Expressing mechanism of change
The variables { = &(x) are rich enough to

express the mechanism of conformational change if
the committor g(¢) has no local minima or maxima.

Else, there is some unexpressed DOF important to the transition.

from Dickson, Warmflash, and Dinner (2009)



Defining a path
How to define the “center” of a cluster of paths in (-space:

most probable path
swarm-of-trajectories string method
maximum flux path
our choice
center of flux path
finite temperature string method



Maximum flux path

A hypersurface {C | q({) = p} of equal probability p is called an
isocommittor. On each isocommittor consider

the distribution j(() of crossing points for distinct reactive
trajectories (last hitting points).

Seek the path (= Z(s), 0 <s <1,
which (locally) maximizes j(¢) on each isocommittor through
which it passes.
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Short Anecdote

Is it offensive
to suggest that computational scientists are not in control
of the errors that they are introducing?



Intractible.
Uncontrolled approximation #1:

separation of time scales. Suppose there is some time interval Ty
(i) over which the collective variables change only a little, but
(i) during which all other degrees of freedom almost fully relax.

Hence, evolve the dynamics of ((t) o &(x(t)) as follows:

Choose x(t) at random from p(x) conditioned on &(x(t)) = ((t).
Choose (d/dt)x(t) at random from a Maxwell distribution.
Determine x(t + 7y1x), from Newtonian dynamics.

Set C(t + Trlx) = f(X(t + Trlx))'



Before stating the result

Define
exp(—BF(C)) = const(6(£(x) — C)),
0(&(x) — ) O(x
= = g 2oy

D(C) = S5 ECIM 60 ecwr=c

and D1/2D]—-|—/2 =D.



Assumptions (i) and (ii) imply that approximately

C(t + Trlx) = (+tv 27—rlxD1/2(C)N(O7 1)k
+ Tx(=BD(OVF(Q) + (V- D)) + O(72)

where { = ((t). This is the Euler-Maruyama discretization for
stochastic dynamics and assumption (i) implies that ((t)
approximately satisfies Brownian dynamics (BD) equations

0= ~BD(QVF(Q) + (V- D) +VEDy(€) 5 W),

Validity of the assumptions might be checked a posteriori
by comparing committor values of the Brownian dynamics to those
of actual dynamics.



The path of most probable points

It can be shown that on an isocommittor the distribution of last
hitting points of reactive trajectories, as well as the net normal
reactive flux, is given by

J(¢) = const e PFIVg(¢) - D(C)Va(¢)/IVa(Q)l-

An illustration follows.






The BD committor minimizes the functional
1(a) = [« FOVa(0) - D(E)Va(¢)iC

subject to g(¢) = 0 on the boundary of A; and g({) =1 on the
boundary of B.



Uncontrolled approximation #2:

localized tube assumption.

Assume that regions of low F(() constitute a tube
and that isocommittors are nearly planar there
and that D(() is nearly constant on each plane.



(Approximating the isocommittor)
Take for g(¢) an approximation constructed
from q(Z(s)) and Vg(Z(s)), 0 <s <1,

by extrapolation.

Need solve only for k 4+ 1 functions of s to get committor.



Uncontrolled approximation #3:

narrow tube assumption.
Assume that on each isocommittor
the probability is strongly peaked around path.
Then the probability flux of reactive trajectories is tangent to the

path
const e PFAD(Z2)Vq(2) || Z.

where Z = Z(s) and Z; = (d/ds)Z(s).



result is a
Maximum flux transition path

-1
Z | g g=-DZ)VF(Z)+L2EAWDE) Z):

T3 ZTD(2) 1z



Uncontrolled approximation #4:

zero temperature assumption.

1 D(Z)(D(Z)"*Zs)s
Neglect the term 3 ZTD(2) 17




result is a
Minimum free energy path
Z, | - D(2)VF(Z).

Free energy is minimized “orthogonal” to the path.

We can prove that the MFEP
has cusps at some intermediate local minima.
This undermines the localized tube assumption.
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Controlled approximations

» discretization of path
» solution of nonlinear discrete equations

» sampling



Discretization of path
Sequence of replicas for ( = Z;, j =0,1,...,J.
Upwinded differencing for (Z;);
based on direction of modified mean force g;

Normalization: (|Zs|)s = 0.

MFEP would have cusps at some intermediate local minima,
which requires adaptive discretization methods.



Solution of nonlinear discrete equations

For large systems, targeted MD has been used to get initial path.
Simplified string method is good for refining it:

1. ZF = Z; + 7g

2. choose the Z;; to be equidistant along the resulting curve



Sampling
Strong harmonic restraints are good for constrained sampling.

Our alanine dipeptide simulations use

force constant K = 1000 kcal /mol/rad?,

Langevin dynamics with friction coefficient 10/ps on all atoms,
timestep = 1fs,

10 ps equilibration, 100 ps production.
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The following figure compares MEP (having a cusp) and MFTP for
the potential energy function

Ulx,y) = —4exp(—4x® = (y —2)%) = Bexp(—(x — 1)* — y?)

— 5exp(—(x +1)? — y?) + 8exp(—x* — (y + %)2)
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Contour plot of potential energy, white circles are initial string,
yellow dots are MFTP, and red line is MEP.



The cusp of MEP/MFEP is hard to compute. For example, the
cusp will be missed if there are 40 replicas along the string rather
than 41 as shown below:



MFTP(dot) vs MFEP(solid line)
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The next figure compares MFEP and MFTP for alanine dipeptide
in vacuo at T = 300 using CHARMMZ22 force field.

MPI for Python + CHARMM
hours of CPU time on 8 cores
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Contour plot of potential energy in ¢ and 1 torsion angles, black
circles are MFTP, and red line is MFEP.



Conclusion

The maximum flux transition path (MFTP) involves one less
approximation than the minimum free energy path (MFEP).

The MFEP has cusps, which makes it

e unsuitable for defining an isocommitor,

e unsuitable for defining a reaction coordinate, and
e harder to compute.



