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Message

We can do better than compute a minimum free energy path:
find a path which intersects each isocommittor
at that point through which there is
the highest number of crossings of distinct reactive trajectories.



Outline

I. What is the problem?

II. Three uncontrolled approximations

III. An algorithm

IV. Comparison



What to compute

Given two metastable states A and B in configuration space,
the problem is to find one or several “representative” reaction
paths connecting them.

Motivation:
calculating free energy differences,
finding intermediate meta-stable states

(targets for inhibitors of enhanced specificity)



Problems vs. Algorithms

Two steps:

1. define the problem,

2. construct an algorithm.

We follow the approach of Vanden-Eijnden, E, Ren, Ciccotti, . . .



Dynamical equations

Consider a molecular system with potential energy function U(x)
Assume Newtonian dynamics with mass matrix M and

initial values from a Boltzmann-Gibbs distribution:
initial x from probability density ρ(x) = const e−βU(x)

and (d/dt)x from a Maxwell distribution.



An ensemble of paths

How to define an ensemble of transition paths from A to B:

Imagine an extremely long trajectory.
The trajectory enters and leaves A and B many times
yielding a huge set of reactive paths from A to B,
shown in dark in the figure below:

systems with many degrees of freedom. The purpose of the
present paper is different: here we aim at illustrating TPT via
low dimensional examples. While these examples are obvi-
ously simplistic compared to those of actual interests in ap-
plications, they already display a wide variety of behaviors
that allow to illustrate the power of TPT and the advantage
that this formalism offers overlooking directly at the reactive
trajectories themselves. In the remainder of this paper, we
will first recall the main aspects of TPT in Sec. II, leaving the
more technical aspects of the theory to the Appendix; we
also explain briefly how the various quantities of TPT were
computed on the simple examples. The predictions of TPT
on these examples are described in Secs. III–VII. In Sec. III
we consider an example in which a particle diffuses by over-
damped dynamics in a two-dimensional double-well poten-
tial. In Sec. IV, we consider a two-dimensional example
where the barrier between the metastable states is purely en-
tropic. In Sec. V, we consider an example proposed by Park
et al. in Ref. 21 in which a particle diffuse by overdamped
dynamics in a two-dimensional triple-well potential !two
deep wells and one shallow one": in this example, the pre-
ferred pathway of reaction switches from one channel to an-
other depending on the temperature. In Sec. VI, we consider
a two-dimensional example in which one variable is slow
and the other is fast. Finally, in Sec. VII, we consider an
example of a particle moving by Langevin dynamics in a
double-well potential and investigate how the mechanism of
reaction depends on the friction coefficient. In all examples,
we give the probability density of the reactive trajectories,
and compute their probability current and flux, and their rate
via TPT. We also compare these predictions with the results
of direct numerical simulations of the dynamical system. Fi-
nally, some concluding remarks are given in Sec. VIII.

II. A SHORT ACCOUNT OF TRANSITION PATH
THEORY

In this section, we give a short account of TPT. For more
details, we refer the reader to the Appendix or to the original
references.13,14 For simplicity, in Sec. II A we first describe
the theory in the case of a system governed by overdamped
!or Smoluchowsky" dynamics. Then, in Sec. II B we show
how the theory generalizes to the case of a system described
by the Langevin equation.

A. TPT in the overdamped case

Consider a system described by the overdamped equa-
tion,

!iẋi!t" = −
!V!x!t""

!xi
+ #2kBT!i"i!t" , !1"

where x= !x1 ,x2 , . . . ,xn"!Rn denotes the position of the par-
ticles, V!x" is the potential, !i is the friction coefficient on xi,
T is the temperature, and "i!t" is a white noise, i.e., a Gauss-
ian process with mean zero and covariance $"i!t"" j!s"%
=#ij#!t−s". !1" arises in the high friction limit of the Lange-
vin equation given below in !13". !1" is simpler than !13"
because if x!t", −$% t%$, is an equilibrium trajectory of
!1", then the time reversed trajectory x!−t" is statistically

indistinguishable from x!t", a property that is referred to as
the time reversibility of the solution of !1" &in contrast, if
!x!t" ,& !t"" is an equilibrium trajectory of !13", the time re-
versed trajectory which is statistically equivalent to it is
!x!−t" ,−& !−t"", i.e., we must revert the velocity as we revert
time, and this introduces some complications that are dealt
with in Sec. II B".

The solution of !1" is ergodic with respect to the
Boltzmann-Gibbs probability density function, which means
that, given any suitable observable '!x", we have

lim
T→$

1
2T
'

−T

T

'!x!t""dt = Z−1'
Rn

'!x"e−(V!x"dx , !2"

where (=1/kBT and Z=(Rne−(V!x"dx. !2" is a property of any
generic trajectory in the system which, during the time inter-
val &−T ,T), will be involved in any given reaction many
times when T is large !and infinitely often as T→$". Sup-
pose, however, that one is not interested in the statistical
properties of such a generic trajectory but rather in the sta-
tistical properties that this trajectory displays while involved
in a reaction. This question can be made precise as follows.
Suppose that A!Rn and B!Rn are two regions in configu-
ration space that characterize the system while it is in the
reactant and the product states, respectively, of a given reac-
tion. Then, given any generic trajectory, x!t", −$% t%$, we
can prune this trajectory as illustrated in Fig. 1 to consider
only the pieces of this trajectory that connect !A !the bound-
ary of A" to !B !the boundary of B". Each such piece is a
reactive trajectory and the collection of all of them is the
ensemble of reactive trajectories. By ergodicity, the statisti-
cal properties of this ensemble are independent of the par-
ticular trajectory used to generate the ensemble, and these
properties are the object of TPT. We summarize them next.

What is the probability density to observe a reactive tra-
jectory at position x"A"B at time t, conditional on it being
reactive at time t? Let q!x" be the so-called committor func-
tion, that is, the probability that the trajectory starting from
x"A"B reaches first B rather than A. Given q!x" and ex-
ploiting both the Markov property of the dynamics and its
time reversibility, it is easy to see that the probability density
to observe a reactive trajectory at point x"A"B at time t is
the probability density to observe any trajectory !reactive or
not" at point x, which is Z−1e−(V!x", times the probability that
it will be reactive, which is q!x"!1−q!x"" since it must go to
B rather than A next &this explains the factor q!x") and it
needs to come from A rather than B last &this explains the

FIG. 1. Schematic representation of the reactant state A, the product state B,
and a piece of an equilibrium trajectory !shown in thin black". The subpieces
connecting !A to !B !shown in thick black" are each a reactive trajectory,
and the collection of all of them is the ensemble of reactive trajectories.
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Defining a path

Rather than generate an ensemble of transition paths,
which would have to be clustered anywhere,
one might directly determine a concise description of the paths.

Specifically, if the paths cluster into one or several distinct isolated
channels, one might compute the “center” of each cluster.



Collective variables

Transition paths might not cluster adequately
—in full configuration space.

Assume, however, there is a smaller set of collective variables,
functions of the configuration x ,

ζ1 = ξ1(x), ζ2 = ξ2(x), . . . , ζk = ξk(x), abbreviated as ζ = ξ(x),

such that in ζ-space,
paths cluster into one or several distinct isolated channels.

Else, there is little of interest to compute.
Our alanine dipeptide tests use phi and psi angles.



Choice of collective variables

We want a minimal set of collective variables subject to two
conditions:

I Coordinates ζ must suffice to describe states Aζ , Bζ in
ζ-space corresponding to A, B.

I Coordinates ζ must also be rich enough to “express the
mechanism of conformational change” along the transition
path.

To make the second condition more precise, introduce . . .



The committor

To measure the progress of a transition, there is a natural reaction
coordinate, known as the committor:
For each point ζ, consider a trajectory starting with random initial
values conditioned on ξ(x) = ζ and define the committor q(ζ) to
be the probability of reaching Bζ before Aζ :

q(ζ) = Pr(X (t) reaches Bζ before Aζ | ξ(X (0)) = ζ).



Expressing mechanism of change

The variables ζ = ξ(x) are rich enough to
express the mechanism of conformational change if
the committor q(ζ) has no local minima or maxima.

Else, there is some unexpressed DOF important to the transition.

from Dickson, Warmflash, and Dinner (2009)



Defining a path

How to define the “center” of a cluster of paths in ζ-space:

most probable path
swarm-of-trajectories string method

maximum flux path
our choice

center of flux path
finite temperature string method



Maximum flux path

A hypersurface {ζ | q(ζ) = p} of equal probability p is called an
isocommittor. On each isocommittor consider
the distribution j(ζ) of crossing points for distinct reactive
trajectories (last hitting points).

Seek the path ζ = Z (s), 0 ≤ s ≤ 1,
which (locally) maximizes j(ζ) on each isocommittor through
which it passes.
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Short Anecdote

. . .

Is it offensive
to suggest that computational scientists are not in control
of the errors that they are introducing?



Intractible.

Uncontrolled approximation #1:

separation of time scales. Suppose there is some time interval τrlx
(i) over which the collective variables change only a little, but
(ii) during which all other degrees of freedom almost fully relax.

Hence, evolve the dynamics of ζ(t)
def
= ξ(x(t)) as follows:

Choose x(t) at random from ρ(x) conditioned on ξ(x(t)) = ζ(t).
Choose (d/dt)x(t) at random from a Maxwell distribution.
Determine x(t + τrlx), from Newtonian dynamics.
Set ζ(t + τrlx) = ξ(x(t + τrlx)).



Before stating the result

Define
exp(−βF (ζ)) = const〈δ(ξ(x)− ζ)〉,

〈O(x)〉ξ(x)=ζ =
〈δ(ξ(x)− ζ)O(x)〉
〈δ(ξ(x)− ζ)〉 ,

D(ζ) =
τrlx
2β
〈ξx(x)M−1ξx(x)T〉ξ(x)=ζ ,

and D1/2D
T
1/2 = D.



Assumptions (i) and (ii) imply that approximately

ζ(t + τrlx) = ζ +
√

2τrlxD1/2(ζ)N(0, 1)k

+ τrlx(−βD(ζ)∇F (ζ) + (∇ · D(ζ))T) +O(τ
3/2
rlx )

where ζ = ζ(t). This is the Euler-Maruyama discretization for
stochastic dynamics and assumption (i) implies that ζ(t)
approximately satisfies Brownian dynamics (BD) equations

d
dt
ζ = −βD(ζ)∇F (ζ) + (∇ · D(ζ))T +

√
2D1/2(ζ)

d
dt

W (t).

Validity of the assumptions might be checked a posteriori
by comparing committor values of the Brownian dynamics to those
of actual dynamics.



The path of most probable points

It can be shown that on an isocommittor the distribution of last
hitting points of reactive trajectories, as well as the net normal
reactive flux, is given by

j(ζ) = const e−βF (ζ)∇q(ζ) · D(ζ)∇q(ζ)/|∇q(ζ)|.

An illustration follows.



Shading indicates contours of free energy, thin curves denote
isocommittors, ellipses enclose concentrations of crossing points
from reactive trajectories, and the thick curve is the center.



The BD committor minimizes the functional

I (q) =

∫
e−βF (ζ)∇q(ζ) · D(ζ)∇q(ζ)dζ

subject to q(ζ) = 0 on the boundary of Aζ and q(ζ) = 1 on the
boundary of Bζ .



Uncontrolled approximation #2:

localized tube assumption.
Assume that regions of low F (ζ) constitute a tube
and that isocommittors are nearly planar there
and that D(ζ) is nearly constant on each plane.



(Approximating the isocommittor)

Take for q(ζ) an approximation constructed
from q(Z (s)) and ∇q(Z (s)), 0 ≤ s ≤ 1,

by extrapolation.

Need solve only for k + 1 functions of s to get committor.



Uncontrolled approximation #3:

narrow tube assumption.
Assume that on each isocommittor

the probability is strongly peaked around path.
Then the probability flux of reactive trajectories is tangent to the
path

const e−βF (Z)D(Z )∇q(Z ) ‖ Zs .

where Z = Z (s) and Zs = (d/ds)Z (s).



result is a

Maximum flux transition path

Zs ‖ g , g = −D(Z )∇F (Z ) +
1

β

D(Z )(D(Z )−1Zs)s

ZT
s D(Z )−1Zs

.



Uncontrolled approximation #4:

zero temperature assumption.

Neglect the term
1

β

D(Z )(D(Z )−1Zs)s

ZT
s D(Z )−1Zs

.



result is a

Minimum free energy path

Zs ‖ − D(Z )∇F (Z ).

Free energy is minimized “orthogonal” to the path.

We can prove that the MFEP
has cusps at some intermediate local minima.

This undermines the localized tube assumption.
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Controlled approximations

I discretization of path

I solution of nonlinear discrete equations

I sampling



Discretization of path

Sequence of replicas for ζ = Zj , j = 0, 1, . . . , J.
Upwinded differencing for (Zs)j

based on direction of modified mean force gj

Normalization: (|Zs |)s = 0.

MFEP would have cusps at some intermediate local minima,
which requires adaptive discretization methods.



Solution of nonlinear discrete equations

For large systems, targeted MD has been used to get initial path.
Simplified string method is good for refining it:

1. Z ∗
j = Zj + τgj

2. choose the Zj+1 to be equidistant along the resulting curve

(τrlxτ)1/2 = 48.89 fs
Number of iterations = 50.



Sampling

Strong harmonic restraints are good for constrained sampling.

Our alanine dipeptide simulations use
force constant K = 1000 kcal/mol/rad2,
Langevin dynamics with friction coefficient 10/ps on all atoms,
timestep = 1 fs,
10 ps equilibration, 100 ps production.
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The following figure compares MEP (having a cusp) and MFTP for
the potential energy function

U(x , y) = −4 exp(−4x2 − (y − 2)2)− 5 exp(−(x − 1)2 − y2)

− 5 exp(−(x + 1)2 − y2) + 8 exp(−x2 − (y +
1

4
)2).



Contour plot of potential energy, white circles are initial string,
yellow dots are MFTP, and red line is MEP.



The cusp of MEP/MFEP is hard to compute. For example, the
cusp will be missed if there are 40 replicas along the string rather
than 41 as shown below:





The next figure compares MFEP and MFTP for alanine dipeptide
in vacuo at T = 300 using CHARMM22 force field.

MPI for Python + CHARMM

hours of CPU time on 8 cores



Contour plot of potential energy in ϕ and ψ torsion angles, black
circles are MFTP, and red line is MFEP.



Conclusion

The maximum flux transition path (MFTP) involves one less
approximation than the minimum free energy path (MFEP).

The MFEP has cusps, which makes it
• unsuitable for defining an isocommitor,
• unsuitable for defining a reaction coordinate, and
• harder to compute.


