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The evolution of many dynamical system can be viewed as a navigation on an 
energy or free energy landscape. 

The system tends to spend long period of time in the regions of low energy, and 
it only rarely makes transition from one such region to another (metastability).

These transitions often are the most interesting part of the dynamics:

• kinetic phase transitions;

• conformation changes in macro-molecules;

• chemical reactions;

• regime changes in climate;

• etc.

Understanding the long time dynamics of these systems is a challenge, both from 
theoretical and computational viewpoints.



{

Q̇ = P,

Ṗ = Q − Q3 + P +
√

2ε Ẇ (t)
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Simplest example of system displaying metastability: 
Motion in a double-well potential, with two minima separated by a saddle point.

Examples of this type are easy to treat.                                                            

However they are very simplistic ...

ẋ(t) = −∇V (x(t)) +
√

2β−1η(t)



Example: solvated alanine dipetide:

12 point particles ( = atoms ) + 252 water molecules (i.e. a dynamical system 
with about 1e3 degrees of freedom). 
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Calculations by Luca Maragliano.
! !"# $ $"# %

!%!!

!$#!

!$!!

!#!

!

#!

$!!

$#!

%!!

!
!!

&'()*+,-.

... actual energy landscape of many systems of interest is enormously complicated!
        (and makes LD theory inapplicable directly).



Energy landscape is typically rugged, i.e.

There are many features of the potential on small scales (e.g. many critical points) 
which are mostly irrelevant for the rare events. What matters are large scale 
features (& LD theory does not apply directly).

Example: Rugged Mueller potential

dx(t) = −∇V (x(t), ε)dt +
√

2β−1 dW (t) V (x, ε) = V0(x) + εV1(x/ε)

More difficult if ε ≈ β-1 
small but finite.

and ...



Entropic (i.e. volume) effects matter, presence of dead-ends, dynamical traps, etc

Example: a maze

A

B



Large deviation theory and extensions: (Wentzell-Freidlin, Bovier et al., ...)

dx(t) = −∇V (x(t))dt +
√

2β−1 dW (t)

Assume that V(x) is a Morse function with growth condition at infinity.

Then dynamics is ergodic w.r.t. the invariant measure

dµ(x) = C−1 exp(−βV (x))dx

When β →∞ this measure becomes atomic on the minima of V(x)

Dynamics can be reduced to a continuous-time Markov chain (random walk on a 
network) by mapping the trajectory x onto the index of the last local minimum it 
visited

- elementary transitions are related to energy barriers and exponentially small in β;
- pathways of elementary transitions are predictable and follow minimum energy paths 
solution of 0 = [∇V (γ)]⊥

Full theory can be obtained by analyzing the Witten complex associated with 
the generator of the diffusion (Helffer, Kurchan, ...)

Complicated in practice (analysis must be done globally).



Key concept: reactive trajectories, i.e. those trajectories by which the reaction occurs.

Conceptually, these reactive trajectories can be obtained by pruning a long ergodic 
trajectory which oscillates between A and B.

A B

Understanding the mechanism of the reaction 
= characterizing the statistical mechanics properties of the reactive trajectories

Transition Path Theory



A B

Given a trajectory x(t), let R be the set 
of times during which it is reactive (i.e. 
red in the figure).

Two key objects:

Probability density of reactive trajectories defined as: 

ρR(x) = lim
T→∞

1
T

∫ T

0
δ(x− x(t))1R(t)dt

Probability current of reactive trajectories defined as: 

JR(x) = lim
T→∞

1
T

∫ T

0
ẋ(t)δ(x− x(t))1R(t)dt



A simple illustrative example in 2d:

4 PHILIPP METZNER,ERIC VANDEN-EIJNDEN,CHRISTOF SCHTTE

rate (committor) 1.912·10−2

rate (volume integral) 1.924·10−2

rate (DNS) 2.079 · 10−2

var(DNS) 1.33·10−6

Table 2. Transition Rate(ε = 0.6, 400× 400Grid,N = 1000, τ = 10−5)

3.2. Schulten-Potential. Now we consider the Smoluchowsky dynamics in a sim-
ple potential which exhibits metastability. This model system was first introduced
and studied in (?).
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Figure 5. Contour plot of the potential
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Figure 6. Gibbs distribution
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Figure 7. Reaction coordinate

Left: triple-well potential;                          Right: Boltzmann equilibrium PDF.

Calculations by Philipp Metzner.
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Figure 8. Distribution of AB-reactive trajectories
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Figure 9. A reactive AB-trajectory for ε = 0.6
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Figure 10. Probability current. For sake of visualization I com-
puted the current in a low resolution
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Figure 11. Streamlines colored according to the restricted inten-
sities on the committor at ”low temperature” ε = 0.2.
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Figure 12. Streamlines colored according to the restricted inten-
sities on the committor at ”low temperature” ε = 0.6.
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Figure 13. Here one can see the switching of the preferable tran-
sition tubes.

PDF of reactive trajectories, probability current and flux
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Another example:
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Probability current and flux in rugged Mueller potential
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The key object to quantify the statistical properties of the reactive trajectories is 
(beside the equilibrium PDF) the committor function q(x) (aka capacitor, p-fold, ...) 
whose value at point x is the probability to reach B first rather A starting from x:6 PHILIPP METZNER,ERIC VANDEN-EIJNDEN,CHRISTOF SCHTTE
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Figure 8. Reaction coordinate
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Figure 9. Distribution of AB-reactive trajectories

rate (committor) 1.8885e-02
rate (volume integral) 1.9228e-02
rate (DNS) 1.9280e-02

Table 2. Rates computed in different ways ...
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ple potential which exhibits metastability. This model system was first introduced
and studied in (?).
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Figure 5. Contour plot of the potential

q(x) = Px(τB < τA)

τA = inf{t : x(t) ∈ A},
τB = inf{t : x(t) ∈ B}

Thm (E, V.-E.): a.s. as T→∞:

1
T

∫ T

0
δ(x− x(t))1R(t) ◦ dx(t) → Z−1e−βV (x)∇q(x)

1
T

∫ T

0
δ(x− x(t))1R(t)dt→ Z−1e−βV (x)q(x)(1− q(x))
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Figure 5. Contour plot of the potential

q(x) = Px(τB < τA)

τA = inf{t : x(t) ∈ A},
τB = inf{t : x(t) ∈ B}

q(x) is THE reaction coordinate!

Thm (E, V.-E.): a.s. as T→∞:

1
T

∫ T

0
δ(x− x(t))1R(t) ◦ dx(t) → Z−1e−βV (x)∇q(x)

1
T

∫ T

0
δ(x− x(t))1R(t)dt→ Z−1e−βV (x)q(x)(1− q(x))



The maze example:
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The main issue becomes the computation and analysis of the committor function q(x).
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This can be done by sampling using the original (physical) dynamics, or any artificial 
dynamics with the same committor (indeed, just as different dynamics can have the 
same equilibrium distribution, they can also have the same q(x)).
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assumption (e.g. small temperature, localized tubes concentrating the flux of 
reactive trajectories, etc.)
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The second approach is the one taken in the string method (E, Ren, V.-E.) based on:

Variational formulation:    The committor function is the minimizer of:
∫

Ω
e−βV (x)|∇q(x)|2dx,

among all q(x) such that q(x) = 0 in A and q(x) = 1 in B.



Lower bound argument to find the flowline of max-flux: 

Given a curve γ connecting A and B, let Bδ = {x : d(x, γ) ≤ δ}.

∫

Ω
e−βV (x)|∇q(x)|2dx ≤

∫

Bδ

e−βV (x)|∇q(x)|2dx

≤
∫

Bδ

e−βV (x)|γ′ ·∇q(x)|2dx

inf
q

∫

Ω
e−βV (x)|∇q(x)|2dx ≤ sup

γ
inf
q

∫

Bδ

e−βV (x)|∇q(x)|2dx

≈ sup
γ

(∫

γ
eβV (γ)ds

)−1

Optimizing the bound:

Given a curve γ connecting A and B, let Bδ = {x : d(x, γ) ≤ δ}.

∫

Ω
e−βV (x)|∇q(x)|2dx ≥

∫

Bδ

e−βV (x)|∇q(x)|2dx

≥
∫

Bδ

e−βV (x)|γ′ ·∇q(x)|2dx
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q

∫

Ω
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γ
inf
q

∫
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e−βV (x)|γ′ ·∇q(x)|2dx

δ&1≈ sup
γ
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String method in a nutshell:

Parametrize the curve e.g. by normalized arc-length;

Evolve it using a time-splitting method:

- one step of steepest descent along gradient of objective function (or CG,   
BFGS, etc.);

- one step of interpolation-reparametrization to control the parametrization of 
the curve
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Chain made of 12 monomers of size 7.2 A solvated in a periodic box of size 99.5 A x 
99.5 A x 116.1 A containing 34,000 rigid water molecules modeled by SPC/E.

Collective variables = monomer positions + local density field
                  - in total over 129,000 collective variables
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Application: hydrophobic collapse of a polymeric chain

in collaboration with Tommy Miller (Caltech) and David Chandler (UC Berkekeley)



MFEP identified by the string method



Free energy

Dominated by work done by the solvent degrees of freedom.



Dynamical trajectories initiated from the transition state region
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-150 ps -90 ps -60 ps



Summarizing:

Reactive events can be understood from a probabilistic (i.e. statistical mechanistic) 
viewpoint. In the context of reactive events, this means focusing on the statistical 
mechanics description of the reactive trajectories;

Concepts for probability theory permit to define precisely the concept of reaction 
coordinate to describe the transition from a reactant state A to a product state B in 
terms of the committor function;

Open the door to accelerated computing strategies (i.e. with biased/artificial 
dynamics) to analyze rare reactive events like e.g. the string method.
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