Fast Algorithms for the Computation of Oscillatory Integrals

Emmanuel Candès

California Institute of Technology

EPSRC Symposium Capstone Conference Warwick Mathematics Institute, July 2009

Collaborators

- Lexing Ying
- Laurent Demanet

Our problem

Evaluate numerically a Fourier integral operator (FIO)

$$(Tf)(x) = \int_{\mathbb{R}^d} a(x,k)e^{2\pi i\Phi(x,k)}\hat{f}(k) \,\mathrm{d}k$$

at points \boldsymbol{x} given on a Cartesian grid

- $k \in \mathbb{R}^d$: frequency variable $(\hat{f}(k) = \int_{\mathbb{R}^d} e^{-2\pi i x \cdot k} f(x) \, \mathrm{d}x)$
- \blacksquare a(x,k): (smooth) amplitude
- $lack \Phi(x,\lambda k)$: homogeneous (smooth) phase function as large as |k|

$$\Phi(x, \lambda k) = \lambda \Phi(x, k), \qquad \lambda > 0$$

e.g.
$$\Phi(x,k) = g(x)|k|$$

A motivating example: wave propagation

$$\frac{\partial^2 u}{\partial t^2}(x,t) = c^2 \Delta u(x,t), \qquad \begin{array}{rcl} u(x,0) & = & u_0(x) \\ \partial u/\partial t(x,0) & = & 0 \end{array}$$

A motivating example: wave propagation

$$\frac{\partial^2 u}{\partial t^2}(x,t) = c^2 \Delta u(x,t), \qquad \begin{array}{rcl} u(x,0) & = & u_0(x) \\ \partial u/\partial t(x,0) & = & 0 \end{array}$$

Solution operator is

$$u(x,t) = \frac{1}{2} \left(\int_{\mathbb{R}^2} e^{2\pi i (x \cdot k + c|k|t)} \hat{u}_0(k) \, dk + \int_{\mathbb{R}^2} e^{2\pi i (x \cdot k - c|k|t)} \hat{u}_0(k) \, dk \right)$$

Two FIOs with phase functions

$$\Phi_{\pm}(x,k) = x \cdot k \pm c|k|t$$

Inhomogeneous medium c(x) o solution operator = sum of two FIOs (small times)

Importance of FIOs

- Arise in many (inverse) problems
- Applying FIOs is often the computational bottleneck

Example in seismics

Marine survey

Kirchhoff migration

Wave measurements $f_s(t,x_r)$ parametrized by

- \blacksquare time t
- \blacksquare receiver location x_r
- source coordinate x_s

- Forward map: $F\delta c = \delta p$
- Imaging operator is F^* : FIO under general assumptions
- lacktriangle Approximations by generalized Radon transform (GRT): integration of f_s over fixed set of curves parametrized by travel times

$$g_s(x) = \int \delta(t - \tau(x, x_r) - \tau(x, x_s)) f_s(t, x_r) dt dx_r$$

Followed by stack operation over the s index

Other examples

- Transmission electron microscopy
- Radar imaging
- Ultrasound imaging

Discrete computational problem

Discrete grids

$$\begin{split} X &= \{(i_1/N, i_2/N): 0 \leq i_1, i_2 < N\} \subset [0, 1]^2 \\ \Omega &= \{(k_1/N, k_2/N): -N/2 \leq k_1, k_2 < N\} \subset [-1/2, 1/2]^2 \end{split}$$

Given input $\{f(k)\}_{k\in\Omega}$, evaluate

$$(Tf)(x) := \frac{1}{N} \sum_{k \in \Omega} a(x,k) e^{2\pi i N\Phi(x,k)} f(k), \quad \text{at all} \quad x \in X$$

with Φ smooth and homogeneous in k

Peek at the results

$$(Tf)(x) := \frac{1}{N} \sum_{k \in \Omega} a(x, k) e^{2\pi i N\Phi(x, k)} f(k), \quad x \in X$$

Kernel is not analytic and is highly oscillatory

- Naive evaluation $O(N^4)$ ($O(N^2)$ inputs/outputs)
- \blacksquare Algorithm for fast summation $O(N^{2.5}\log N)$ (C., Demanet and Ying, '06)

Peek at the results

$$(Tf)(x) := \frac{1}{N} \sum_{k \in \Omega} a(x, k) e^{2\pi i N\Phi(x, k)} f(k), \quad x \in X$$

Kernel is not analytic and is highly oscillatory

- Naive evaluation $O(N^4)$ ($O(N^2)$ inputs/outputs)
- \blacksquare Algorithm for fast summation $O(N^{2.5}\log N)$ (C., Demanet and Ying, '06)

Today:

Novel algorithm with optimal complexity for accurate summation

- $O(N^2 \log N)$ flops
- $O(N^2)$ storage

Agenda

- The butterfly structure
- Fast butterfly algorithm for the evaluation of FIOs

The Butterfly Structure

Butterfly algorithm

General algorithmic structure for evaluating certain types of integrals

$$u_i = \sum_j K(x_i, p_j) f_j$$

- Introduced by Michielssen and Boag ('96)
- Generalized by O'Neil and Rokhlin ('07)

Butterfly algorithm

General algorithmic structure for evaluating certain types of integrals

$$u_i = \sum_j K(x_i, p_j) f_j$$

- Introduced by Michielssen and Boag ('96)
- Generalized by O'Neil and Rokhlin ('07)

Example: $K(x,p) = e^{2\pi i N x p}$

- \blacksquare $\{x_i\}$: N points in [0,1]
- \blacksquare $\{p_j\}$: N points in [0,1]
- \blacksquare $\{f_j\}$: sources at $\{p_j\}$

Applications

- FFT
- nonuniform FFTs
- many others

Kernel is dense and oscillatory

Low-rank approximation $(K(x, p) = \exp(2\pi i Nxp))$

 $\begin{array}{ll} A \text{ interval in } x \\ B \text{ interval in } p \end{array} \quad \text{obeying} \quad \operatorname{length}(A) \times \operatorname{length}(B) \leq 1/N \end{array}$

The submatrix $\{K(x_i,p_j): x_i \in A, p_j \in B\}$ has approximately low rank:

$$|K(x,p) - \sum_{t=1}^{r} a_t(x)b_t(p)| \le \epsilon$$

with
$$r = O(\log(1/\epsilon))$$

Example

- $\blacksquare 10^6 \times 10^6 \; \mathrm{DFT}$
- \blacksquare Top left $10^3\times10^3$ block

Interpolative decompositions

O'Neil and Rokhlin suggest using interpolative decompositions

$$a_t(x) := K(x, p_t), \quad p_t \in B$$

- Rank-revealing QR decomposition: Gu and Eisenstat ('96)
- Interpolative decomp.: Cheng, Gimbutas, Martinsson and Rokhlin ('05)

Interpolative representation

$$K(x,p) \approx \sum_{t=1}^{r} K(x,p_t) b_t(x)$$

Cost for an $m \times n$ matrix is $O(mn^2)$

Multiscale decompositions

■ Compute low-rank approximations of all submatrices obeying

$$\mathsf{length}(A) \times \mathsf{length}(B) = 1/N$$

■ Use two-scale relations for efficiency

Partial sums

$$u^{B}(x) = \sum_{p_j \in B} K(x, p_j) f_j$$

■ Approximation for $x \in A$ and length $(A) \times \text{length}(B) \leq 1/N$

$$u^B(x) \approx \sum_{t=1}^r K(x, p_t^{AB}) \left(\sum_{p_j \in B} b_t^{AB}(p_j) f_j \right), \quad x \in A$$

Partial sums

$$u^{B}(x) = \sum_{p_j \in B} K(x, p_j) f_j$$

■ Approximation for $x \in A$ and length $(A) \times \text{length}(B) \le 1/N$

$$u^B(x) \approx \sum_{t=1}^r K(x, p_t^{AB}) \left(\sum_{p_j \in B} b_t^{AB}(p_j) f_j \right), \quad x \in A$$

■ Equivalent sources for (A, B): $\{f_t^{AB}\}_{1 \le t \le r}$

$$f_t^{AB} = \sum_{p_j \in B} b_t^{AB}(p_j) f_j$$

Partial sums

$$u^{B}(x) = \sum_{p_j \in B} K(x, p_j) f_j$$

■ Approximation for $x \in A$ and length $(A) \times \text{length}(B) \le 1/N$

$$u^B(x) \approx \sum_{t=1}^r K(x, p_t^{AB}) \left(\sum_{p_j \in B} b_t^{AB}(p_j) f_j \right), \quad x \in A$$

■ Equivalent sources for (A, B): $\{f_t^{AB}\}_{1 \le t \le r}$

$$f_t^{AB} = \sum_{p_j \in B} b_t^{AB}(p_j) f_j$$

■ Compact representation of $K^{AB}: B \rightarrow A$

$$u^{B}(x) = \sum_{t=1}^{r} K(x, p_{t}^{AB}) f_{t}^{AB}$$

Partial sums

$$u^{B}(x) = \sum_{p_{j} \in B} K(x, p_{j}) f_{j}$$

■ Approximation for $x \in A$ and length $(A) \times \text{length}(B) \leq 1/N$

$$u^B(x) pprox \sum_{t=1}^r K(x, p_t^{AB}) \left(\sum_{p_j \in B} b_t^{AB}(p_j) f_j \right), \quad x \in A$$

■ Equivalent sources for (A, B): $\{f_t^{AB}\}_{1 \le t \le r}$

$$f_t^{AB} = \sum_{p_j \in B} b_t^{AB}(p_j) f_j$$

■ Compact representation of $K^{AB}: B \rightarrow A$

$$u^{B}(x) = \sum_{t=1}^{r} K(x, p_{t}^{AB}) f_{t}^{AB}$$

Butterfly structure

Recursive computation of $\{p_t^{AB}\}$, $\{f_t^{AB}\}$ for $\operatorname{length}(A) \times \operatorname{length}(B) = 1/N$

Initialization

For all (A,B), $\ell(A)=1$ & $\ell(B)=1/N$, construct $\{p_t^{AB}\}_{1\leq t\leq r}$ and $\{f_t^{AB}\}_{1\leq t\leq r}$

$$f_t^{AB} = \sum_{p_j \in B} b_t^{AB}(p_j) f_j$$

cost of constructing $\{p_t^{AB}\}$ is $O(r^2N)/\text{pair}$ cost of constructing $\{f_t^{AB}\}$ is $O(r^2)/\text{pair}$ \Rightarrow tot. cost is $O(r^2N^2)$

Interpretation: $\{p_t^{AB}\}$ selected columns, $\{f_t^{AB}\}$ column weights

Recursion: "merge, split, compress"

For all (A,B), $\ell(A)=1/2$ & $\ell(B)=2/N$, get $\{p_t^{AB}\}_{1\leq t\leq r}$ and $\{f_t^{AB}\}_{1\leq t\leq r}$

$$u^{B}(x) \approx \sum_{i=1}^{2} \sum_{t=1}^{r} K(x, p_{t}^{A_{p}B_{i}}) f_{t}^{A_{p}B_{i}}, \quad x \in A \subset A_{p}$$

Recursion: "merge, split, compress"

For all (A,B), $\ell(A)=1/2$ & $\ell(B)=2/N$, get $\{p_t^{AB}\}_{1\leq t\leq r}$ and $\{f_t^{AB}\}_{1\leq t\leq r}$

- Can reduce the rank of $K(x, p_t^{A_pB_i}): x \in A, \{p_t^{A_pB_i}\}_{t,i} \to K(x, p_t^{AB})$
- Treat $\{f_t^{A_pB_i}\}_{t,i}$ as sources at $\{p_t^{A_pB_i}\}_{t,i}\subset B$

$$f_t^{AB} = \sum_{i=1}^{2} \sum_{s=1}^{r} b_t^{AB} (p_s^{A_p B_i}) f_s^{A_p B_i}$$

cost of constructing $\{p_t^{AB}\}$ is $O(r^2N)/\mathsf{pair}$ cost of constructing $\{f_t^{AB}\}$ is $O(r^2)/\mathsf{pair}$ \Rightarrow tot. cost is $O(r^2N^2)$

Schematic representation

Schematic representation

$$u^{B_i}(x) = \sum_{t=1}^{r} K(x, p_t^{A_p B_i}) f_t^{A_p B_i}$$

$$u^{B}(x) = \sum_{t=1}^{r} K(x, p_{t}^{AB}) f_{t}^{AB}$$

Next step

... until
$$\ell(B)=1$$
 and $\ell(A)=1/N$

Termination

In the end, $\ell(A)=1/N$ and $\ell(B)=1$, and

cost of evaluating $u^B(x)$ is $O(r)/\text{pair} \quad \Rightarrow \quad \text{tot. cost is } O(rN)$

Multiscale recursion

Summary: complexity analysis

If low-rank expansions available

- $lacksquare O(r^2N\log N)$ evaluation time
- $lacksquare O(r^2N\log N)$ storage

If not

- $lacksquare O(r^2N^2)$ evaluation time
- $lacksquare O(r^2N\log N)$ storage

Summary: complexity analysis

If low-rank expansions available

- $\ \ \blacksquare \ O(r^2N\log N)$ evaluation time
- $lacksquare O(r^2N\log N)$ storage

If not

- $lacksquare O(r^2N^2)$ evaluation time
- $O(r^2N\log N)$ storage

Powerful architecture but

- Precomputation time may be prohibitive
- Storage may be prohibitive

Summary: complexity analysis

If low-rank expansions available

- $lacksquare O(r^2N\log N)$ evaluation time
- $lue{}$ $O(r^2N\log N)$ storage

If not

- $O(r^2N^2)$ evaluation time
- $lacksquare O(r^2N\log N)$ storage

Powerful architecture but

- Precomputation time may be prohibitive
- Storage may be prohibitive

Our contribution

 $O(r^2N\log N)$ evaluation time and storage complexity is $O(r^2N)$

Fast Evaluation of FIOs

Recall oscillatory integral

$$u(x) = \sum_{k \in \Omega} e^{2\pi i N\Phi(x,k)} f_k$$

Polar coordinates for frequency variable k

Phase may be singular at k=0 because of homogeneity (e.g. $\Phi(x,k)=|k|$)

Polar coordinates for frequency variable k

Phase may be singular at k=0 because of homogeneity (e.g. $\Phi(x,k)=|k|$) Polar coordinates $p=(p_1,p_2)$

$$k_1 = p_1 \cos(2\pi p_2)$$
 $k_2 = p_2 \sin(2\pi p_2)$

Slight abuse of notations

$$u(x) = \sum_{p \in \Omega} e^{2\pi i N \Psi(x,p)} f_p, \quad \Rightarrow \quad \text{smooth phase } \Psi$$

Hierarchical structure

$$\ell(A) \times \ell(B) = 1/N$$

If
$$\ell(A)\ell(B) \leq 1/N$$
, kernel

$$e^{2\pi iN\Psi(x,p)}:x\in A,p\in B$$

has approx. low rank

Assume wlog \boldsymbol{A} and \boldsymbol{B} centered at 0

If $\ell(A)\ell(B) \leq 1/N$, kernel

$$e^{2\pi i N\Psi(x,p)}: x \in A, p \in B$$

has approx. low rank

Assume wlog A and B centered at 0

Residual phase in 1D (for simplicity)

$$\begin{split} R^{AB}(x,p) &= \Psi(x,p) - \Psi(0,p) - \Psi(x,0) + \Psi(0,0) \\ &= \partial_x \partial_p \Psi(x^*,p^*) \, xp \\ &= O(1/N) \end{split}$$

Same calculation in higher dimensions

If $\ell(A)\ell(B) \leq 1/N$, kernel

$$e^{2\pi i N\Psi(x,p)}: x \in A, p \in B$$

has approx. low rank

Assume wlog A and B centered at 0

Residual phase in 1D (for simplicity)

$$R^{AB}(x,p) = \Psi(x,p) - \Psi(0,p) - \Psi(x,0) + \Psi(0,0)$$

= $\partial_x \partial_p \Psi(x^*, p^*) xp$
= $O(1/N)$

Same calculation in higher dimensions

■ Shows that $e^{2\pi iNR^{AB}(x,p)}$ approx. low rank

If $\ell(A)\ell(B) \leq 1/N$, kernel

$$e^{2\pi i N\Psi(x,p)}: x \in A, p \in B$$

has approx. low rank

Assume wlog A and B centered at 0

Residual phase in 1D (for simplicity)

$$\begin{split} R^{AB}(x,p) &= \Psi(x,p) - \Psi(0,p) - \Psi(x,0) + \Psi(0,0) \\ &= \partial_x \partial_p \Psi(x^*,p^*) \, xp \\ &= O(1/N) \end{split}$$

Same calculation in higher dimensions

- lacksquare Shows that $e^{2\pi iNR^{AB}(x,p)}$ approx. low rank
- Factorization

$$e^{2\pi i N \Psi(x,p)} = e^{-2\pi i N \Psi(0,0)} \left[e^{2\pi i N \Psi(0,x)} e^{2\pi i N R^{AB}(x,p)} e^{2\pi i N \Psi(0,p)} \right]$$

Oscillatory Chebyshev interpolation

Chebyshev interpolation of $e^{2\pi iNR^{AB}(x,p)}$ in

- $\qquad x \text{ when } \ell(A) \leq 1/\sqrt{N}$

E.g. interpolation in p

- $\blacksquare \{p_t\}^B$: tensor-Chebyshev grid in B
- \blacksquare $L_t^B(p)$: Lagrange interpolant with inputs at $\{p_t^B\}$, $L_t^B(p_{t'}^B)=\delta(t=t')$

Oscillatory Chebyshev interpolation

Chebyshev interpolation of $e^{2\pi iNR^{AB}(x,p)}$ in

- $lacksquare x \ \text{when} \ \ell(A) \leq 1/\sqrt{N}$

E.g. interpolation in p

- lacksquare $\{p_t\}^B$: tensor-Chebyshev grid in B
- $\blacksquare \ L^B_t(p):$ Lagrange interpolant with inputs at $\{p^B_t\}, \ L^B_t(p^B_{t'}) = \delta(t=t')$

With grid of logarithmic size in $1/\epsilon$

$$\left| e^{2\pi i N R^{AB}(x,p)} - \sum_t e^{2\pi i N R^{AB}(x,p_t^B)} L_t^B(p) \right| \leq \epsilon \quad \text{on } A \times B$$

When interpolation in x, low-rank approximation is $\sum_t e^{2\pi i N R^{AB}(x_t^A,p)} L_t^A(x)$

Demodulation/Interpolation/Remodulation

$$\left| e^{2\pi i N \Psi(x,p)} - \sum_t \underbrace{e^{2\pi i N \Psi(x,p_t^B)}}_{a_t(x)} \ \underbrace{e^{-i2\pi N \Psi(0,p_t^B)} L_t^B(p) \, e^{i2\pi N \Psi(0,p)}}_{b_t(x)} \right| \leq \epsilon$$

Similar structure (with different interpretation) when interpolating kernel in \boldsymbol{x}

Overall structure and two-scale relation

- Initialize equivalent sources
- Propagate equivalent sources (interpolation in p) until mid-level
- 3 Switch representation at mid-level
- 4 Propagate equivalent sources (interpolation in *x*)
- Terminate by evaluating output

Step 2: propagation of equivalent sources

$$\begin{split} f_t^{AB} &= \sum_{c,t'} b_t^B(p_{t'}^{B_c}) f_{t'}^{A_p B_c} \\ &= e^{-2\pi i N \Psi(x_0(A), p_t^B)} \sum_c \sum_{t'} L_t^B(p_{t'}^{B_c}) \, e^{2\pi i N \Psi(x_0(A), p_{t'}^{B_c})} \, f_{t'}^{A_p B_c} \end{split}$$

■ Step 4: similar

Finer points and summary

- $lackbox{ } \{p_t^B\}$ and polynomials $L_t(p)$ are computed all at once
- Only need to store equivalent sources at pairs of consecutive scales
- Separation rank higher than that of the interpolative decomposition

Finer points and summary

- $lackbox{ } \{p_t^B\}$ and polynomials $L_t(p)$ are computed all at once
- Only need to store equivalent sources at pairs of consecutive scales
- Separation rank higher than that of the interpolative decomposition

- $\qquad \qquad \mathbf{Complexity is} \ O(\mathsf{polylog}(1/\epsilon) \, N^2 \log N)$
- $\blacksquare \ \, \mathsf{Storage} \ \, \mathsf{is} \ \, O(\mathsf{polylog}(1/\epsilon)\,N^2$

for ϵ -accurate computation

Easy extensions to varying amplitudes $ightarrow a(x,k)e^{i2\pi N\Phi(x,k)}$

Numerical results

Generalized Radon transform integrating f along ellipses

- \blacksquare centered at x
- \blacksquare and with axes of length $c_1(x)$ and $c_2(x)$

is the sum of two FIOs with phases

$$\Phi_{\pm}(x,k) = x \cdot k \pm \sqrt{c_1^2(x)k_1^2 + c_2^2(x)k_2^2}$$

Numerical results

Generalized Radon transform integrating f along ellipses

- \blacksquare centered at x
- \blacksquare and with axes of length $c_1(x)$ and $c_2(x)$

is the sum of two FIOs with phases

$$\Phi_{\pm}(x,k) = x \cdot k \pm \sqrt{c_1^2(x)k_1^2 + c_2^2(x)k_2^2}$$

First example (constant amplitude)

$$u(x) = \sum_{k \in \Omega} e^{2\pi i N\Phi_{+}(x,k)} \hat{f}(k)$$

with

$$c_1(x) = \frac{1}{3}(2 + \sin(2\pi x_1)\sin(2\pi x_2)), \quad c_2(x) = \frac{1}{3}(2 + \cos(2\pi x_1)\cos(2\pi x_2))$$

(N, Chby, grid)	Alg. Time	Dir. Time	Speedup	Error
(1024, 5)	1.48e+3	9.44e+4	6.37e+1	1.26e-2
(2048, 5)	6.57e + 3	1.53e + 6	2.32e + 2	1.75e-2
(4096, 5)	3.13e+4	2.43e + 7	7.74e + 2	1.75e-2
(1024, 7)	2.76e+3	9.48e+4	3.44e+1	6.45e-4
(2048, 7)	1.23e+4	1.46e + 6	1.19e + 2	8.39e-4
(4096, 7)	5.80e + 4	2.31e + 7	3.99e + 2	8.18e-4
(1024, 9)	4.95e+3	9.44e+4	1.91e+1	3.45e-5
(2048, 9)	2.21e+4	1.48e + 6	6.71e + 1	4.01e-5
(4096, 9)	1.02e + 5	2.23e + 7	2.18e + 2	4.21e-5
(1024, 11)	8.33e+3	9.50e+4	1.14e+1	5.23e-7
(2048, 11)	3.48e + 4	1.49e + 6	4.27e + 1	5.26e-7

Conclusion: scales like $O(\log(1/\epsilon)) \times O(N^2 \log N)$

Numerical results II

Second example (variable amplitude): exact integration

$$u(x) = \sum_{k \in \Omega} a_+(x,k) e^{2\pi i N \Phi_+(x,k)} \hat{f}(k) + \sum_{k \in \Omega} a_-(x,k) e^{2\pi i N \Phi_-(x,k)} \hat{f}(k)$$

$$a_{\pm}(x,k) = (J_0(2\pi c(x)|k|) \pm iY_0(2\pi c(x)|k|) e^{\mp 2\pi i c(x)|k|}$$

$$\Phi_{\pm}(x,k) = x \cdot k + c(x)|k|$$

 ${\it J}_0$ and ${\it Y}_0$ are Bessel functions and spheres' radii

$$c(x) = \frac{1}{4}(3 + \sin(2\pi x_1)\sin(2\pi x_2))$$

(N, Chby, grid)	Alg. Time	Dir. Time	Speedup	Error
(256, 5)	1.39e+2	3.20e+3	2.31e+1	1.48e-2
(512, 5)	7.25e + 2	5.20e+4	7.17e + 1	1.62e-2
(1024, 5)	3.45e + 3	8.34e + 5	2.42e + 2	1.90e-2
(256, 7)	2.69e+2	3.21e+3	1.19e+1	4.71e-4
(512, 7)	1.38e + 3	5.20e+4	3.78e + 1	7.30e-4
(1024, 7)	6.43e + 3	8.35e + 5	1.30e + 2	6.35e-4
(256, 9)	5.23e+2	3.20e+3	6.12e+0	1.59e-5
(512, 9)	2.49e + 3	5.17e + 4	2.08e + 1	2.97e-5
(1024, 9)	1.15e+4	8.32e + 5	7.25e+1	1.75e-5
(256, 11)	1.04e+3	3.18e+3	3.06e+0	8.03e-7
(512, 11)	4.10e + 3	5.11e+4	1.24e+1	9.38e-7
(1024, 11)	1.84e + 4	8.38e+5	4.57e + 1	8.01e-7

Conclusion: scales like $O(\log(1/\epsilon)) \times O(N^2 \log N)$

Summary

Accurate and near-optimal numerical evaluation of FIOs

- Operating characteristics
 - Butterfly structure
 - Residue phase
 - Oscillatory Chebyshev interpolation
- Many applications/extensions
 - Other types of oscillatory kernels K(x, p)
 - Other types of problems: e.g. sparse Fourier transform (Ying, '08)

Reference: E. J. Candès, L. Demanet and L. Ying (2008). "A Fast Butterfly Algorithm for the Computation of Fourier Integral Operators," to appear in *Mult. Model. Sim*