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Our problem

Evaluate numerically a Fourier integral operator (FIO)

(Tf)(x) =
∫

Rd

a(x, k)e2πiΦ(x,k)f̂(k) dk

at points x given on a Cartesian grid

k ∈ Rd: frequency variable (f̂(k) =
∫

Rd e
−2πix·kf(x) dx)

a(x, k): (smooth) amplitude

Φ(x, λk): homogeneous (smooth) phase function as large as |k|

Φ(x, λk) = λΦ(x, k), λ > 0

e.g. Φ(x, k) = g(x)|k|



A motivating example: wave propagation

∂2u

∂t2
(x, t) = c2∆u(x, t),

u(x, 0) = u0(x)
∂u/∂t(x, 0) = 0

Solution operator is

u(x, t) =
1
2

(∫
R2
e2πi(x·k+c|k|t)û0(k) dk +

∫
R2
e2πi(x·k−c|k|t)û0(k) dk

)
Two FIOs with phase functions

Φ±(x, k) = x · k ± c|k|t

Inhomogeneous medium c(x)→ solution operator = sum of two FIOs (small times)
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∫
R2
e2πi(x·k−c|k|t)û0(k) dk
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Importance of FIOs

Arise in many (inverse) problems

Applying FIOs is often the computational bottleneck



Example in seismics

Marine survey



Kirchhoff migration

Wave measurements fs(t, xr) parametrized
by

time t

receiver location xr

source coordinate xs

Forward map: Fδc = δp

Imaging operator is F ∗: FIO under general assumptions

Approximations by generalized Radon transform (GRT): integration of fs
over fixed set of curves parametrized by travel times

gs(x) =
∫
δ(t− τ(x, xr)− τ(x, xs)) fs(t, xr) dtdxr

Followed by stack operation over the s index



Other examples

Transmission electron microscopy

Radar imaging

Ultrasound imaging



Discrete computational problem

Discrete grids

X = {(i1/N, i2/N) : 0 ≤ i1, i2 < N} ⊂ [0, 1]2

Ω = {(k1/N, k2/N) : −N/2 ≤ k1, k2 < N} ⊂ [−1/2, 1/2]2

Given input {f(k)}k∈Ω, evaluate

(Tf)(x) :=
1
N

∑
k∈Ω

a(x, k) e2πiNΦ(x,k)f(k), at all x ∈ X

with Φ smooth and homogeneous in k



Peek at the results

(Tf)(x) :=
1
N

∑
k∈Ω

a(x, k) e2πiNΦ(x,k)f(k), x ∈ X

Kernel is not analytic and is highly oscillatory

Naive evaluation O(N4) (O(N2) inputs/outputs)

Algorithm for fast summation O(N2.5 logN) (C., Demanet and Ying, ’06)

Today:

Novel algorithm with optimal complexity for accurate summation

O(N2 logN) flops

O(N2) storage
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Agenda

The butterfly structure

Fast butterfly algorithm for the evaluation of FIOs



The Butterfly Structure



Butterfly algorithm

General algorithmic structure for evaluating certain types of integrals

ui =
∑
j

K(xi, pj)fj

Introduced by Michielssen and Boag (’96)

Generalized by O’Neil and Rokhlin (’07)

Example: K(x, p) = e2πiNxp

{xi}: N points in [0, 1]
{pj}: N points in [0, 1]
{fj}: sources at {pj}

Applications

FFT

nonuniform FFTs

many others

Kernel is dense and oscillatory
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Low-rank approximation (K(x, p) = exp(2πiNxp))

A interval in x
B interval in p

obeying length(A)× length(B) ≤ 1/N

The submatrix {K(xi, pj) : xi ∈ A, pj ∈ B} has approximately low rank:

|K(x, p)−
r∑
t=1

at(x)bt(p)| ≤ ε

with r = O(log(1/ε))



Example

106 × 106 DFT

Top left 103 × 103 block

0 10 20 30 40 50 60 70 80 90 100
10−20

10−15

10−10

10−5

100
Top singular values



Interpolative decompositions

O’Neil and Rokhlin suggest using interpolative decompositions

at(x) := K(x, pt), pt ∈ B

Rank-revealing QR decomposition: Gu and Eisenstat (’96)

Interpolative decomp.: Cheng, Gimbutas, Martinsson and Rokhlin (’05)

Interpolative representation

K(x, p) ≈
r∑
t=1

K(x, pt)bt(x)

Cost for an m× n matrix is O(mn2)



Multiscale decompositions

Compute low-rank approximations of all submatrices obeying

length(A)× length(B) = 1/N

Use two-scale relations for efficiency



Definition of partial sums and equivalent sources

Partial sums
uB(x) =

∑
pj∈B

K(x, pj)fj

Approximation for x ∈ A and length(A)× length(B) ≤ 1/N

uB(x) ≈
r∑
t=1

K(x, pABt )

∑
pj∈B

bABt (pj)fj

 , x ∈ A

Equivalent sources for (A,B): {fABt }1≤t≤r

fABt =
∑
pj∈B

bABt (pj)fj

Compact representation of KAB : B → A

uB(x) =
r∑
t=1

K(x, pABt )fABt

Butterfly structure

Recursive computation of {pABt }, {fABt } for length(A)× length(B) = 1/N
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Initialization

For all (A,B), `(A) = 1 & `(B) = 1/N , construct {pABt }1≤t≤r and {fABt }1≤t≤r

fABt =
∑
pj∈B

bABt (pj)fj

cost of constructing {pABt } is O(r2N)/pair
cost of constructing {fABt } is O(r2)/pair

⇒ tot. cost is O(r2N2)

Interpretation: {pABt } selected columns, {fABt } column weights



Recursion: “merge, split, compress”

For all (A,B), `(A) = 1/2 & `(B) = 2/N , get {pABt }1≤t≤r and {fABt }1≤t≤r

uB(x) ≈
2∑
i=1

r∑
t=1

K(x, pApBi

t )fApBi

t , x ∈ A ⊂ Ap

Can reduce the rank of K(x, pApBi

t ) : x ∈ A, {pApBi

t }t,i → K(x, pABt )

Treat {fApBi

t }t,i as sources at {pApBi

t }t,i ⊂ B

fABt =
2∑
i=1

r∑
s=1

bABt (pApBi
s )fApBi

s

cost of constructing {pABt } is O(r2N)/pair
cost of constructing {fABt } is O(r2)/pair

⇒ tot. cost is O(r2N2)
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Schematic representation



Schematic representation

uBi(x) =
r∑
t=1

K(x, pApBi

t )fApBi

t
uB(x) =

r∑
t=1

K(x, pABt )fABt



Next step

... until `(B) = 1 and `(A) = 1/N



Termination

In the end, `(A) = 1/N and `(B) = 1, and

uB(x) ≈
r∑
t=1

K(x, pABt )fABt

cost of evaluating uB(x) is O(r)/pair ⇒ tot. cost is O(rN)



Multiscale recursion



Summary: complexity analysis

If low-rank expansions available

O(r2N logN) evaluation time

O(r2N logN) storage

If not

O(r2N2) evaluation time

O(r2N logN) storage

Powerful architecture but

Precomputation time may be prohibitive

Storage may be prohibitive

Our contribution

O(r2N logN) evaluation time and storage complexity is O(r2N)
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Fast Evaluation of FIOs



Recall oscillatory integral

u(x) =
∑
k∈Ω

e2πiNΦ(x,k)fk
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Polar coordinates for frequency variable k

Phase may be singular at k = 0 because of homogeneity (e.g. Φ(x, k) = |k|)

Polar coordinates p = (p1, p2)

k1 = p1 cos(2πp2) k2 = p2 sin(2πp2)
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Cartesian Polar Partitioning in k

Slight abuse of notations

u(x) =
∑
p∈Ω

e2πiNΨ(x,p)fp, ⇒ smooth phase Ψ
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Hierarchical structure

`(A)× `(B) = 1/N



Low-rank interactions

If `(A)`(B) ≤ 1/N , kernel

e2πiNΨ(x,p) : x ∈ A, p ∈ B

has approx. low rank

Assume wlog A and B centered at 0

Residual phase in 1D (for simplicity)

RAB(x, p) = Ψ(x, p)−Ψ(0, p)−Ψ(x, 0) + Ψ(0, 0)
= ∂x∂pΨ(x∗, p∗)xp
= O(1/N)

Same calculation in higher dimensions

Shows that e2πiNRAB(x,p) approx. low rank

Factorization

e2πiNΨ(x,p) = e−2πiNΨ(0,0)
[
e2πiNΨ(0,x)e2πiNRAB(x,p)e2πiNΨ(0,p)

]
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Oscillatory Chebyshev interpolation

Chebyshev interpolation of e2πiNRAB(x,p) in

x when `(A) ≤ 1/
√
N

p when `(B) ≤ 1/
√
N

E.g. interpolation in p

{pt}B : tensor-Chebyshev grid in B

LBt (p) : Lagrange interpolant with inputs at {pBt }, LBt (pBt′ ) = δ(t = t′)

With grid of logarithmic size in 1/ε∣∣∣∣∣e2πiNRAB(x,p) −
∑
t

e2πiNRAB(x,pB
t )LBt (p)

∣∣∣∣∣ ≤ ε on A×B

When interpolation in x, low-rank approximation is
P
t e

2πiNRAB(xA
t ,p)LAt (x)
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Demodulation/Interpolation/Remodulation

From RAB(x, p) = Ψ(x, p)−Ψ(0, p)−Ψ(x, 0) + Ψ(0, 0)∣∣∣∣∣∣∣e2πiNΨ(x,p) −
∑
t

e2πiNΨ(x,pB
t )︸ ︷︷ ︸

at(x)

e−i2πNΨ(0,pB
t ) LBt (p) ei2πNΨ(0,p)︸ ︷︷ ︸
bt(x)

∣∣∣∣∣∣∣ ≤ ε

Similar structure (with different interpretation) when interpolating kernel in x



Overall structure and two-scale relation

1 Initialize equivalent sources

2 Propagate equivalent sources
(interpolation in p) until mid-level

3 Switch representation at mid-level

4 Propagate equivalent sources
(interpolation in x)

5 Terminate by evaluating output

Step 2: propagation of equivalent sources

fABt =
∑
c,t′

bBt (pBc

t′ )fApBc

t′

= e−2πiNΨ(x0(A),pB
t )
∑
c

∑
t′

LBt (pBc

t′ ) e2πiNΨ(x0(A),pBc
t′ ) f

ApBc

t′

Step 4: similar



Finer points and summary

{pBt } and polynomials Lt(p) are computed all at once

Only need to store equivalent sources at pairs of consecutive scales

Separation rank higher than that of the interpolative decomposition

Complexity is O(polylog(1/ε)N2 logN)
Storage is O(polylog(1/ε)N2

for ε-accurate computation

Easy extensions to varying amplitudes → a(x, k)ei2πNΦ(x,k)



Finer points and summary

{pBt } and polynomials Lt(p) are computed all at once

Only need to store equivalent sources at pairs of consecutive scales

Separation rank higher than that of the interpolative decomposition

Complexity is O(polylog(1/ε)N2 logN)
Storage is O(polylog(1/ε)N2

for ε-accurate computation

Easy extensions to varying amplitudes → a(x, k)ei2πNΦ(x,k)



Numerical results

Generalized Radon transform integrating f along ellipses

centered at x

and with axes of length c1(x) and c2(x)
is the sum of two FIOs with phases

Φ±(x, k) = x · k ±
√
c21(x)k2

1 + c22(x)k2
2

First example (constant amplitude)

u(x) =
∑
k∈Ω

e2πiNΦ+(x,k)f̂(k)

with

c1(x) =
1
3

(2 + sin(2πx1) sin(2πx2)), c2(x) =
1
3

(2 + cos(2πx1) cos(2πx2))
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(N , Chby. grid) Alg. Time Dir. Time Speedup Error
(1024, 5) 1.48e+3 9.44e+4 6.37e+1 1.26e-2
(2048, 5) 6.57e+3 1.53e+6 2.32e+2 1.75e-2
(4096, 5) 3.13e+4 2.43e+7 7.74e+2 1.75e-2
(1024, 7) 2.76e+3 9.48e+4 3.44e+1 6.45e-4
(2048, 7) 1.23e+4 1.46e+6 1.19e+2 8.39e-4
(4096, 7) 5.80e+4 2.31e+7 3.99e+2 8.18e-4
(1024, 9) 4.95e+3 9.44e+4 1.91e+1 3.45e-5
(2048, 9) 2.21e+4 1.48e+6 6.71e+1 4.01e-5
(4096, 9) 1.02e+5 2.23e+7 2.18e+2 4.21e-5

(1024, 11) 8.33e+3 9.50e+4 1.14e+1 5.23e-7
(2048, 11) 3.48e+4 1.49e+6 4.27e+1 5.26e-7

Conclusion: scales like O(log(1/ε))×O(N2 logN)



Numerical results II

Second example (variable amplitude): exact integration

u(x) =
∑
k∈Ω

a+(x, k)e2πiNΦ+(x,k)f̂(k) +
∑
k∈Ω

a−(x, k)e2πiNΦ−(x,k)f̂(k)

a±(x, k) = (J0(2πc(x)|k|)± iY0(2πc(x)|k|) e∓2πic(x)|k|

Φ±(x, k) = x · k + c(x)|k|

J0 and Y0 are Bessel functions and spheres’ radii

c(x) =
1
4

(3 + sin(2πx1) sin(2πx2))



(N , Chby. grid) Alg. Time Dir. Time Speedup Error
(256, 5) 1.39e+2 3.20e+3 2.31e+1 1.48e-2
(512, 5) 7.25e+2 5.20e+4 7.17e+1 1.62e-2

(1024, 5) 3.45e+3 8.34e+5 2.42e+2 1.90e-2
(256, 7) 2.69e+2 3.21e+3 1.19e+1 4.71e-4
(512, 7) 1.38e+3 5.20e+4 3.78e+1 7.30e-4

(1024, 7) 6.43e+3 8.35e+5 1.30e+2 6.35e-4
(256, 9) 5.23e+2 3.20e+3 6.12e+0 1.59e-5
(512, 9) 2.49e+3 5.17e+4 2.08e+1 2.97e-5

(1024, 9) 1.15e+4 8.32e+5 7.25e+1 1.75e-5
(256, 11) 1.04e+3 3.18e+3 3.06e+0 8.03e-7
(512, 11) 4.10e+3 5.11e+4 1.24e+1 9.38e-7

(1024, 11) 1.84e+4 8.38e+5 4.57e+1 8.01e-7

Conclusion: scales like O(log(1/ε))×O(N2 logN)



Summary

Accurate and near-optimal numerical evaluation of FIOs

Operating characteristics

Butterfly structure
Residue phase
Oscillatory Chebyshev interpolation

Many applications/extensions

Other types of oscillatory kernels K(x, p)
Other types of problems: e.g. sparse Fourier transform (Ying, ’08)

Reference: E. J. Candès, L. Demanet and L. Ying (2008). “A Fast Butterfly Algorithm

for the Computation of Fourier Integral Operators,” to appear in Mult. Model. Sim


