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Our problem

Evaluate numerically a Fourier integral operator (FIO)

T = [ ol by 0 ) a

at points x given on a Cartesian grid

m k € R%: frequency variable ( fR e~ 2miwk f () dx)
m a(z,k): (smooth) amplltude
m O(x, \k): homogeneous (smooth) phase function as large as |k

O(x,\k) = A®(z, k), A>0

e.g. ®(z, k) =g(x)|k|



A motivating example: wave propagation

2
%(m,t) = CQAu(ac,t),

u(z,0)
Ou/ot(x,0)

uo(x)



A motivating example: wave propagation

2
%(m,t) = C2Au($,t),

u(z,0) = wup(x)
ou/ot(x,0) = 0

Solution operator is

1 . .
U(.’L’,t) _ (/ 62ﬂl(w.k+clk‘t)ﬁ0(k)) dk +/ e?ﬂz(z‘k—dk\t)ﬁo(k)) dk)
2 R2 R2
Two FIOs with phase functions

Oy (x, k) =a-kxclk|t

Inhomogeneous medium ¢(z) — solution operator = sum of two FIOs (small times)



Importance of FIOs

m Arise in many (inverse) problems
m Applying FlOs is often the computational bottleneck



Example in seismics

Marine survey

[=] = = = o>



Kirchhoff migration

Wave measurements fs(¢,z,) parametrized

by Source Receiver
m timet
m receiver location z, PN R
. M3~ QuuofPhase TR/ Dipping
m source coordinate Ty l\::\\:wginie]]atlon oo A Retkector
LAARSL N

.
W ~ In-Phase
Reinforcement

m Forward map: Féc = dp
m Imaging operator is F*: FIO under general assumptions

m Approximations by generalized Radon transform (GRT): integration of f;
over fixed set of curves parametrized by travel times

gs(x) = /(5(15 —7(z,2) — 7(x,25)) fs(t, 2,) dt d,.

Followed by stack operation over the s index



Other examples

m Transmission electron microscopy
m Radar imaging

m Ultrasound imaging



Discrete computational problem

Discrete grids

X = {(i1/N,ia/N) : 0 < iy,ip < N} C [0,1]?
Q= {(k1/N,kg/N): =N/2 < ki, kg < N} C [-1/2,1/2)?

Given input {f(k)}req. evaluate

(Tf)(x) = % > alx, k)" NPER f(E), atall ze X
keQ

with ® smooth and homogeneous in &




Peek at the results

(Tf)(x):= % Z a(z, k) 2T N@ER) £y ze X

ke

Kernel is not analytic and is highly oscillatory

m Naive evaluation O(N*) (O(N?) inputs/outputs)
m Algorithm for fast summation O(N?log N) (C., Demanet and Ying, '06)



Peek at the results

(Tf)(x):= % Z a(z, k) 2T N@ER) £y ze X

ke

Kernel is not analytic and is highly oscillatory

m Naive evaluation O(N*) (O(N?) inputs/outputs)
m Algorithm for fast summation O(N?log N) (C., Demanet and Ying, '06)

Novel algorithm with optimal complexity for accurate summation
m O(N?log N) flops
m O(N?) storage




m The butterfly structure
m Fast butterfly algorithm for the evaluation of FIOs



The Butterfly Structure



Butterfly algorithm

General algorithmic structure for evaluating certain types of integrals

wi =Y K(zi,p;)f
J

m Introduced by Michielssen and Boag ('96)
m Generalized by O'Neil and Rokhlin ('07)



Butterfly algorithm

General algorithmic structure for evaluating certain types of integrals

wi =Y K(zi,p;)f
J

m Introduced by Michielssen and Boag ('96)
m Generalized by O'Neil and Rokhlin ('07)

Example: K(z,p) = e?™Nep Applications
m {z;}: N points in [0, 1] m FFT
® {p;}: N points in [0, 1] m nonuniform FFTs
m {fj}: sources at {p;} = many others

Kernel is dense and oscillatory



Low-rank approximation (K (z,p) = exp(2miNzp))

A interval in x .
B interval in p obeying length(A) x length(B) < 1/N

B be(z)

The submatrix {K (z;,p;) : ; € A,p; € B} has approximately low rank:

Zat p)| <e

with r = O(log(1/e))




Example

m 10° x 10 DFT
m Top left 103 x 103 block

Top singular values
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Interpolative decompositions

O’Neil and Rokhlin suggest using interpolative decompositions
ar(z) = K(x,pt), pt € B

m Rank-revealing QR decomposition: Gu and Eisenstat ('96)
m Interpolative decomp.: Cheng, Gimbutas, Martinsson and Rokhlin ('05)

B Dt K(z,pt) be(z)

= IE

Interpolative representation

r

K(z,p) = Z K(z,p)bi(x)

t=1

Cost for an m x n matrix is O(mn?)



Multiscale decompositions

m Compute low-rank approximations of all submatrices obeying
length(A) x length(B) = 1/N

m Use two-scale relations for efficiency

v 1 11

Top down Tx Tp Bottom up



Definition of partial sums and equivalent sources

m Partial sums
= Z K(z,p;)f;
pJEB

m Approximation for € A and length(A) X length(B) <1

BLE)%ZK(JJ,pt (Z bAB p] )

p;EB



Definition of partial sums and equivalent sources

m Partial sums
= Z K(z,p;)f;
pJEB

m Approximation for € A and length(A) X length(B) <1
kA
Bz) ~ ZK(m,pr) Z b B (p;) f
t=1 p;€EB

m Equivalent sources for (A, B): {f/B}1<i<,
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Definition of partial sums and equivalent sources

m Partial sums
= Z K(z,p;)f;
pJEB

m Approximation for € A and length(A) X length(B) <1
ZK z, piB bAB
pJEB

m Equivalent sources for (A, B): {f/B}1<i<,

7= 0wl

p;EB

m Compact representation of K458 : B — A

ZK:{:pt



Definition of partial sums and equivalent sources

= Z K(x)pj)f]

pJEB

m Partial sums

m Approximation for € A and length(A) X length(B) <1
kA
Bz) ~ ZK(m,pr) Z b B (p;) f
t=1 p;€EB

m Equivalent sources for (A, B): {f/B}1<i<,

B= 6w

p;EB

m Compact representation of K458 : B — A
SN

Butterfly structure
Recursive computation of {p*®}, {fAP} for length(A) x length(B) = 1/N




Initialization

For all (A, B), {(A) =1 & {(B) = 1/N, construct {p{'B}1<;<, and {fAB}1<i<r

A= vt

p;€EB

cost of constructing {p/'B} is O(r?N)/pair

; 272
cost of constructing {fAB} is O(r?)/pair = tot. cost is O(r"N~)

B B
A1 A1

Interpretation: {p{'E} selected columns, {fAZ} column weights



Recursion: “merge, split, compress”

For all (A,B), E(A) = 1/2 & é(B) = Q/N, get {prhgtgr and {ftAB}1§tST

L AP J L 1 B 1 1 J

L /I\14 J ><:| 1 |A| L1111
2 T

uP(a) = 3N K p P £, ze Ac 4,

i=1 t=1




Recursion: “merge, split, compress”
For all (A, B), £{(A) =1/2 & ¢(B) = 2/N, get {p/*®} <1<, and { [P} <<
1 AP J 1 1 B 1 1
L L A J >< L IAI L1 1
2 r

uP(a) = 3N K p P £, ze Ac 4,

i=1 t=1

m Can reduce the rank of K(w,ppr") T €A, {p?pBi}t,i — K(z,p{*P)
m Treat {ftA”B"}t’i as sources at {pf”B"}t’i CB

ZZbAB fA pBi

i=1 s=1

cost of constructing {p;/'B} is O(r?N)/pair

- 2 12
cost of constructing {8} is O(r?)/pair = tot. costis O(r"N")



Schematic representation




Schematic representation







Termination

In the end, ¢(A) = 1/N and ¢(B) =1, and

Zprt

cost of evaluating v () is O(r)/pair = tot. cost is O(rN)



Multiscale recursion




Summary: complexity analysis

If low-rank expansions available If not
m O(r2Nlog N) evaluation time m O(r2N?) evaluation time
m O(r?N log N) storage m O(r?N log N) storage
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If low-rank expansions available If not
m O(r2Nlog N) evaluation time m O(r2N?) evaluation time
m O(r?N log N) storage m O(r?N log N) storage

Powerful architecture but
m Precomputation time may be prohibitive
m Storage may be prohibitive



Summary: complexity analysis

If low-rank expansions available If not
m O(r2Nlog N) evaluation time m O(r2N?) evaluation time
m O(r?N log N) storage m O(r?N log N) storage

Powerful architecture but
m Precomputation time may be prohibitive
m Storage may be prohibitive

Our contribution

O(r?N log N) evaluation time and storage complexity is O(r2N)




Fast Evaluation of FIOs



Recall oscillatory integral

U(JT) _ Z eQTriN@(:c,k)fk

ke
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Polar coordinates for frequency variable k

Phase may be singular at & = 0 because of homogeneity (e.g. ®(z, k) = |k|)



Polar coordinates for frequency variable k

Phase may be singular at & = 0 because of homogeneity (e.g. ®(z, k) = |k|)

Polar coordinates p = (p1, p2)

k1 = p1cos(2mpe) ke = posin(27ps)

1 1
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Partitioning in k
Slight abuse of notations

u(z) = Z 2miNY(@p) £ = smooth phase ¥
PEQ



Hierarchical structure

Top down Tx Tp Bottom up

0(A) x ((B) =1/N



Low-rank interactions

If ¢(A)¢(B) < 1/N, kernel

e2™NY(@p) . c A peB

has approx. low rank

Assume wlog A and B centered at 0



Low-rank interactions

If ¢(A)¢(B) < 1/N, kernel

e2™NY(@p) . c A peB

has approx. low rank

Assume wlog A and B centered at 0
m Residual phase in 1D (for simplicity)

RAB(xvp) = \I’(:I,‘,p) - \P(Oap) - \I/(IL',O) + \11(070)
= 0,0,¥(z",p") xp
= O(1/N)

Same calculation in higher dimensions



Low-rank interactions

If ¢(A)¢(B) < 1/N, kernel

e2™NY(@p) . c A peB

has approx. low rank

Assume wlog A and B centered at 0
m Residual phase in 1D (for simplicity)

RP (2, p) = ¥(z,p) — ¥(0,p) — ¥(z,0) + ¥(0,0)
- 8$8P\I/<$*,p*)$p
= O(1/N)
Same calculation in higher dimensions

= Shows that 2™ NE""(@.p) approx. low rank



Low-rank interactions

If ¢(A)¢(B) < 1/N, kernel

e2™NY(@p) . c A peB

has approx. low rank

Assume wlog A and B centered at 0
m Residual phase in 1D (for simplicity)

RP (2, p) = ¥(z,p) — ¥(0,p) — ¥(z,0) + ¥(0,0)
= 0:0,¥(z", p") xp
= O(1/N)
Same calculation in higher dimensions

= Shows that 2™ NE""(@.p) approx. low rank

m Factorization

2N (2,p) _ ,—2miN¥(0,0) {GQWL‘N\I}(O,Z)eQﬂiNRAB(z,p)e27riN\If(O,p):|



Oscillatory Chebyshev interpolation

Chebyshev interpolation of e2™NE""(@p) i

= 2 when ((A) < 1/VN
m p when {(B) < 1/VN

E.g. interpolation in p
m {p;}? : tensor-Chebyshev grid in B
m LZ(p) : Lagrange interpolant with inputs at {pZ}, LE(pE) =d(t =t)



Oscillatory Chebyshev interpolation

Chebyshev interpolation of e2™NE""(@p) i

= 2 when ((A) < 1/VN
m p when {(B) < 1/VN

E.g. interpolation in p
m {p;}? : tensor-Chebyshev grid in B
m LZ(p) : Lagrange interpolant with inputs at {pZ}, LE(pE) =d(t =t)

With grid of logarithmic size in 1/e

627riNRAB(z,p) . ZeszRAB(z,ptB)LtB(p) <e onAxB
t

. . . . . . ; AB/ A
When interpolation in z, low-rank approximation is 3, 2N R (2 "’)Lf(a:)



Demodulation /Interpolation /Remodulation

From RAB(z,p) = ¥(z,p) — ¥(0,p) — ¥(z,0) + ¥(0,0)

e2miNW (x,p) _ Ze2ﬂiN\I/(a:,p?) e—isz\II(o,p?) L?(p) ei2TNV(0.p) | <
—————
t

at(z) be(z)

Similar structure (with different interpretation) when interpolating kernel in z



Overall structure and two-scale relation

Initialize equivalent sources

Propagate equivalent sources
(interpolation in p) until mid-level

Switch representation at mid-level

Propagate equivalent sources
(interpolation in x)

Top down Ty Tp Bottom up

Terminate by evaluating output

m Step 2: propagation of equivalent sources

AB_E bB ApBc
t - / /

c,t’

_ e—27er‘11(aco(A) ) Z Z LB 27TZN\I’($O(A)31) ) ft"jlch

m Step 4: similar



Finer points and summary

m {pP} and polynomials L;(p) are computed all at once
m Only need to store equivalent sources at pairs of consecutive scales
m Separation rank higher than that of the interpolative decomposition



Finer points and summary

m {pP} and polynomials L;(p) are computed all at once
m Only need to store equivalent sources at pairs of consecutive scales
m Separation rank higher than that of the interpolative decomposition

m Complexity is O(polylog(1/€) N?log N)
m Storage is O(polylog(1/e) N*?

for e-accurate computation

Easy extensions to varying amplitudes — a(z, k)e?2™V®(@:k)



Numerical results

Generalized Radon transform integrating f along ellipses
m centered at z
m and with axes of length ¢;(x) and co(x)

is the sum of two FIOs with phases

Oy(r,k)=2-k=+ \/c%(:c)k% + c3(x)k3



Numerical results

Generalized Radon transform integrating f along ellipses
m centered at z
m and with axes of length ¢;(x) and co(x)

is the sum of two FIOs with phases

Oy(r,k)=2-k=+ \/c%(:c)k% + c3(x)k3

First example (constant amplitude)

U(QZ) _ z e27riN<I>+(w,k)f(k,)

keQ

with

o (x) = %(2 + sin(2rz1) sin(2r22)),  ea(x) = é(z + cos(2ma1 ) cos(2mws))



(IV, Chby. grid) Alg. Time Dir. Time Speedup  Error
(1024, 5) 1.48e+3 9.44e+4  6.37e+1 1.26e-2
(2048, 5) 6.57e+3  1.53e+6 2.32e+2 1.75e-2
(4096, 5) 3.13e+4 2.43e+7  7.74e+2 1.75e-2
(1024, 7) 2.76e+3  9.48e+d 3.4detl 6.45ed
(2048, 7) 1.23e+4 1.46e+6 1.19e+2 8.3%9¢-4
(4096, 7) 5.80e+4 2.3le+7 3.99e+2 8.18e-4
(1024, 9) 495e+3  044etd 10lefl 3.45e5
(2048, 9) 2.2le+4 1.48e+6 6.7le+1 4.0le-5
(4096, 9) 1.02e+5 2.23e+7 2.18e+2 4.21e-5
(1024, 11) 833e+3  050e+4d 1.ldefl 523e7
(2048, 11) 3.48e+4 1.49¢+6  4.27e+1 5.26e-7

Conclusion: scales like O(log(1/¢)) x O(N?log N)




Numerical results Il

Second example (variable amplitude): exact integration

Za+ z, k‘ 2miN Dy (z, k)f +Za T k) 2niN® _ (z,k) f( )

ke keQ

ay(x, k) = (Jo(2me(x)|k]) + 1Yo (2me(x)|k]) eF2mic(z) k|
Oy (z,k) =x-k+ c(x)|k]|

Jo and Y are Bessel functions and spheres’ radii

c(z) = ;1(3 + sin(27xq) sin(27x2))



(N, Chby. grid) Alg. Time Dir. Time Speedup  Error
(256, 5) 1.39%e+2 3.20e+3  2.3le+1 1.48e-2
(512, 5) 7.25e+2  520e+4 7.17e+l 1.62e2
(1024, 5) 3.45e+3  8.34e+5 2.42e4+2 1.90e-2
(256, 7) 2.69e+2 3.21le+3 1.19e+1 4.71e4
(512, 7) 1.38e+3 5.20e+4  3.78e+1 7.30e-4
(1024, 7) 6.43e+3 8.35e+5 1.30e+2 6.35e-4
(256, 9) 5.23e+2 3.20e+3  6.12e+0 1.59e-5
(512, 9) 2.49e+3 5.17e+4  2.08e+1 2.97e-5
(1024, 9) 1.15e+4 8.32e+5  7.25e+1 1.75e-5
(256, 11) 1.04e+3 3.18e+3  3.06e+0 8.03e-7
(512, 11) 4.10e+-3 5.11e+4  1.24e+1 9.38e-7
(1024, 11) 1.84e+4  8.38e+5  4.57e+1 8.0le-7

Conclusion: scales like O(log(1/€)) x O(N?log N)




Accurate and near-optimal numerical evaluation of FIOs

m Operating characteristics

m Butterfly structure
m Residue phase
m Oscillatory Chebyshev interpolation

m Many applications/extensions

m Other types of oscillatory kernels K (z, p)
m Other types of problems: e.g. sparse Fourier transform (Ying, '08)

Reference: E. J. Candés, L. Demanet and L. Ying (2008). “A Fast Butterfly Algorithm
for the Computation of Fourier Integral Operators,” to appear in Mult. Model. Sim



