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State-of-the-art VLSI circuits
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VLSI interconnect

e \Wires are not ideal:
m Resistance
m Capacitance

m Inductance

e Consequences:
[
m Noise
m Energy consumption

m Power distribution




Interconnect now dominates
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Lumped-circuit paradigm
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Need for dimension reduction
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A simple RC circuit

i(t)! "R
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e Impulse response:

() = — ex ( t ) £>0
/) = — —
R2C P RC)’ —

e In frequency domain:

1/R?C
s+ 1/RC

I(s) = (=: H(s)), seC



General case

e Impulse response:

N
i(t) = > k; exp(tp;), t>0
=1

e In frequency domain:

e Simplest RC reduced-order model

H(s) i= —— ~ H(s)



Simplest RC reduced-order model

e Moment matching: Choose p and k such that
H(s) = H(s) + O (32)

e Reduced circuit: Set
k h/\/\/\/\—
R .= — and (C := ? i(t)[% R
OUINES

e Elmore delay: ‘
t
7:= RC, i(t) =1(0) exp (——)
~

|




AWE (Pillage and Rohrer, ‘90)

e [ransfer function of RCL network:

n .
H(s)= 5 —

i=1° " Pi

e Reduced-order model via approximation

S
k;.
H,(s) = ) ‘. where n<N

i=1° — Pi

e Moment matching: Choose the k;'s and p;'s such that

Hy(s) = H(s) + O (s*")

e AWE generates H,, via explicit moment computations



PVL (Feldmann and F., ‘94)

e Based on the classical Lanczos-Padé connection

e Write the transfer function in state-space form:

—1
H(s)=1T<I—(s—so)A) r, where AecRVXN p 1eRVN

e Run n steps of the Lanczos process (applied to A, starting
vectors r and 1) to obtain n x n tridiagonal matrix T,

The n-th Padé approximant H,, of H is given by

Ho(s) = (I"r) o] (I— (s — 50) Tn) €1

where eq is the first unit vector



An RCL network with mostly C’s and L’s

- = PVL 60 iter.

frequency range
of interest

Exact and reduced-order model of size n = 60



T he multi-input multi-output case

e Matrix-valued transfer function

H(s) =L - (s—s9) AR
where A € CVXN R e CNxm_ [, e CN*p

e Band Lanczos process for any m and p
Aliaga, Boley, F., and Hernandez, ‘94, ‘96, and ‘00
F., ‘00, ‘03, and ‘09

o (' atrix- ‘adé ia | anczos) algorithm
(Feldmann and F., ‘95)

e '‘Symmetric’ algorithm tailored to RC networks:
(Feldmann and F., ‘97 and ‘98)



Full chip SIV — statistics

interconnect nets
pins

total capacitors
cross-coupled C’'s
grounded C’'s
resistors

potential violations
nets in cluster
total run time
SyMPVL run time

24,607
01,277
5,413,127
4,955,020
458,107
265,941
602

2—7

2.5 hours

15 minutes
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RCL networks as descriptor systems

e System of linear time-invariant DAEs of the form

C %X(t} + Gx(t) = Bu(t)
y () = BMx(¢)
where C, G € CNXN and B € CNxm

e x(t) € CV is the unknown vector of state variables

e m iNputs, m outputs



Reduced-order models

e System of DAEs of the same form:

d
Cn az(t} + Grz(t) = Bru(t)

y(t) = Bllz(¢)

e But now:

Cn, G, eC*™™ and B,eCt*™
where n < N



Transfer functions

e Original descriptor system:

H(s) =B7(sC+G)"'B

e Reduced-order model:

H,(s) =B (sCn+ Gr) 1B,

e ‘'Good’ reduced-order model
‘Good’ approximation H,, ~ H



e Original dimension N ~ 104-°

i
H(s) =

e Reduced dimension n < N (n ~ 100_2)

—1
Hn(S): S—I_



Padé approximation

e Choose expansion point sg € C such that the matrix s C+ G
IS nonsingular

o C,, G, € C*n B, € C"*™ are such that

Hy(s) = H(s) + O ((s — 50)7™)

and g(n) is maximal

e g(n) >2 {EJ with equality in the ‘generic’ case

m



Padeé-type approximation

e Padé approximants have undesirable properties in general
e Remedy: relax approximation property

o C,, G, cCt*n B, € C*"*™ gre such that

Hy(s) = H(s) + O ((s — 50)7™)

where g(n) is no longer maximal

e Typical: g(n) > {EJ with equality in the ‘generic’ case
m



Reduction to one matrix

e [Transfer function:

—1
H(s) = BH (SC—I—G)_lB:BH<SOC—I—G—I—(S—SO)C) B

e Set

A:=—(s0C+G)'C and R:=(spC+G) !B

e Rewriting H gives

HGs) =B (I-(s—s9) A" 'R



Krylov subspaces and Pade

e EXxpanding about sg gives

H(s) =BT I - (s—s9)A) 'R

= i BH(Ai R) (s — sp)"
(=0

= > ((A")'B)"R (s - so)’

(=0

e Right and left block Krylov sequences:

R AR ... AR ---] and [B AHB .. (AM)'B ..
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Problem of structure preservation

e Any RCL network is stable, passive, ...

e Reduced-order model should be stable, passive, ...

e More difficult problem:
Reduced-order model of an RCL network should be
synthesizable as an RCL network

e Padé reduced-order models are not even stable in general!



Preservation of RCL structure
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General RCL network equations

e System of linear time-invariant DAEs of the form

where

C1

0 0

C=|0 C, 0

0

e Moreover:

0 0

d
C ax(t) + G x(t) = Bu(t)

C>0

(This implies passivity!)

y(t) = BHx(t)

_ G
—Gg
—G§

and G—l—GHzO

Gy, Gs]
0 0
0 0

B; 0
0 0
0 B,




Dimension reduction via projection

assive educed nterconnect ~acromodeling lgorithm
(Odabasioglu, '96; Odabasioglu, Celik, and Pileggi, '97)

tructure- reserving educed nterconnect ~acromodeling
(F., '04 and '09)

e PRIMA and SPRIM satisfy a Padé-type property:

H,(s) =H(s)+ O ((s — so)j)

for some 5 = j(n)



PRIMA does not preserve RCL structure

e Structure of the data matrices:

C; 0 O] [ G1 Go G3] B; O
C=|0 C, o0, G=|-GY 0o o0o|, B=|0 0
0 0 0 -GY 0 o 0 By

e Structure of PRIMA reduced-order matrices:

Cn:.a Gn:., Bn:I



SPRIM does preserve RCL structure

e Structure of SPRIM reduced-order matrices:
0

&

e Padé-type property:
H,(s) =H(s)+ O ((s — so)j)

e
0
0

0
C
0

0

O_

7Gn

&
_GH

~H
__G3

erery
0 0
0 0

with 5 the same integer as for PRIMA

e For SPRIM, we even have 37 = 2j5. Why?

7Bn

o o I

o O

o)
N




An RCL network with mostly C’s and L’s

— — — PRIMA model
- SPRIM model
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Frequency (Hz)

Exact and models corresponding to
block Krylov subspace of dimension n = 120
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Projection-based reduction

o Let V,, € CVX" pe any matrix with full column rank n

e Use V,, to explicitly project the data matrices of

d
C ax(t) + G x(t) = Bu(t)

y(t) = BAx(¢)
onto the subspace spanned by the columns of V,



Projection-based reduction, continued

e Resulting reduced-order model

d
Cn az(t} + Gpz(t) = Bru(?)

y(t) = BHz(t)
where

cC,=vlcv, G,=VviGcv, B,=V'B

n

e Passivity is preserved:

C-0,G+G"'~0 = Cp>0, G, +GH>0



Projection Krylov

e Choose an expansion point sg € C and re-write the original
transfer function:

H(s) =BH(sC+G) !B
=BH(I-(s—sp)A) 'R

where

A:=—(59C+G) 'C and Ri=(soC+G) B

R,AR,A°R,..., AR, ...



Projection Krylov, continued

K5 (A, R) := colspan; [R AR AR --.

e Choose the projection matrix V,, such that

K;:(A,R) C RangeVy,

e Projection 4+ Krylov subspace =

Hy,(s) = H(s) + O ((s —s0)/), where ;> |fi/m]



SPRIM

e Let V5 be any matrix such that

K:(A,R) = RangeV,

e Recall:

C =

C; 0 O]
0 Cr O

0 0 0

T ©
0 0
0 0




SPRIM, continued

e Partition V5 accordingly:

_V(l)_

N n
v

oForl=1,2,3: |
If Ranng“) < n, replace Vg“) by matrix of full column rank



SPRIM, continued

e Set

vy
0
0

e Block structure is preserved:

Cn

_~1
0
0

0
Co
0

0
)
0

7Gn

0
v

n

0

e K;(A,R) =RangeV; C RangeV,

0
0

B; 0]
0 O
0 Bj)

Padé-type property!



An RCL network with mostly C’s and L’s

Exact and models corresponding to n = 90



An RCL network with mostly C’s and

35
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Exact and models corresponding to n = 90



A package example

— — — PRIMA model
SPRIM model

1010
Frequency (Hz)

Exact and models corresponding to n = 128



A package example

— — — PRIMA model
SPRIM model

1010
Frequency (Hz)

Exact and models corresponding to n = 128



Padeé-type property

e So far, we only know that both PRIMA and SPRIM produce
Padé-type reduced-order models with

H,(s) =H(s) + O ((s —s0)?), where q2> |n/m]|
e Can we say more in the case of SPRIM?

e Easy in the case of no third subblock Vf,({o’)
(F. '05)

e General case: J-Hermitian linear dynamical systems
(F. '08)



J-Hermitian systems

e Recall:
d
Cax(t)—l—(}x(t)zBu(t)
y(t) = BPx(t)
where
C; 0 O] [ G1 Go G3
C = 0 C2 ) ; G = _G|2—| 0 0 )
0 0 O -G 0 o

e C and G are J-Hermitian:

JC=cCcHJ and JG:GHJ, where J:




J-Hermitian systems, continued

e [ he input-output matrix B satisfies

Range(J B) = Range(B)



Jno-Hermitian property of SPRIM models

e [ he SPRIM models
d

y(t) = By z(t)
preserve the structure of C,, G,, By

e T herefore, C,, and G,, are J,-Hermitian with

I
Jpo: =10 -1 O and Range(J,B,) = Range(B;)
0O 0 -1

e Moreover, the projection matrix V, satisfies



Padeé-type property

e Theorem (F., '08)

For J-Hermitian systems and real expansion points sg, the
n-th SPRIM model is J,-Hermitian and satisfies

H,(s) = H(s) + O ((s - so)fi) . where §>2|a/m|

e [ wice as accurate as PRIMA!
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Using restarts (with Efrem Rensi)

e [0 obtain a Padé-type property, we need to generate a matrix
V5 such that

Kﬁ(A,R) — RaHQQVﬁ
e Use suitable variant of the Arnoldi process
e But: prohibitive for large n

e Remedy: (thick) restarts



uUsing restarts, continued

e Motivated by recent work by Eiermann et al.
e Restart after each cycle of » Arnoldi steps

e EXxtract ‘good’ eigenvector information Y from the last batch
of r Arnoldi vectors

e Use the columns of Y as the first vectors in the next cycle

e At each restart allow for changing expansion point:

A(sp) =—-(s0C+G) ! C AGo)=-(5C+G)tC



Single vs. multiple expansion points

r=100,K=1,1 =0
min

— — — actual
approx (rel diff=4.576e-005)

Single point — no restarts 3 points — thick restarts



Outline

e Motivation

e From AWE to PVL

e Descriptor systems

e Preserving RCL structures

e SPRIM

e Using restarted Krylov subspace methods

e Concluding remarks



Concluding remarks

e Practical use of Krylov subspace-based dimension reduction
was motivated by need to handle large-scale RCL networks

e Lead to the development of new Krylov subspace methods

e How to avoid the need to store N x n dense matrix in
projection methods?

e Krylov subspace methods with thick restarts?

e Use with multiple expansion points?



