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State-of-the-art VLSI circuits

• 45 nm feature size

• O(109) transistors

• O(10) km of ‘wires’

(the interconnect)

• Up to 15 layers



VLSI interconnect

• Wires are not ideal:

Resistance

Capacitance

Inductance

• Consequences:

Timing behavior

Noise

Energy consumption

Power distribution



Interconnect now dominates



Lumped-circuit paradigm

• Replace ‘pieces’ of the interconnect by RCL networks:



Need for dimension reduction
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A simple RC circuit

v(t)

i(t) R

C

• Impulse response:

i(t) =
1

R2C
exp

(
−

t

RC

)
, t ≥ 0

• In frequency domain:

I(s) =
1/R2C

s + 1/RC

(
=: H(s)

)
, s ∈ C



General case

• Impulse response:

i(t) =
N∑

i=1

ki exp(tpi), t ≥ 0

• In frequency domain:

H(s) =
N∑

i=1

ki

s − pi
, s ∈ C

• Simplest RC reduced-order model

H1(s) :=
k̃

s − p̃
≈ H(s)



Simplest RC reduced-order model

• Moment matching: Choose p̃ and k̃ such that

H1(s) = H(s) + O
(
s2

)

v(t)

i(t) R

C

• Reduced circuit: Set

R := −
p̃

k̃
and C :=

k̃

p̃2

• Elmore delay:

τ := RC, i(t) = i(0) exp

(
−

t

τ

)



AWE (Pillage and Rohrer, ‘90)

• Transfer function of RCL network:

H(s) =
N∑

i=1

ki

s − pi

• Reduced-order model via approximation

Hn(s) =
n∑

i=1

k̃i

s − p̃i
, where n ≪ N

• Moment matching: Choose the k̃i’s and p̃i’s such that

Hn(s) = H(s) + O
(
s2n

)

• AWE generates Hn via explicit moment computations



PVL (Feldmann and F., ‘94)

• Based on the classical Lanczos-Padé connection

• Write the transfer function in state-space form:

H(s) = lT
(
I−(s−s0)A

)−1
r, where A ∈ R

N×N , r, l ∈ R
N

• Run n steps of the Lanczos process (applied to A, starting

vectors r and l) to obtain n × n tridiagonal matrix Tn

• Theorem (Gragg, ‘74):

The n-th Padé approximant Hn of H is given by

Hn(s) =
(
lTr

)
eT
1

(
I − (s − s0)Tn

)−1
e1

where e1 is the first unit vector



An RCL network with mostly C’s and L’s
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The multi-input multi-output case

• Matrix-valued transfer function

H(s) = LH(I − (s − s0)A)−1R

where A ∈ CN×N , R ∈ CN×m, L ∈ CN×p

• Band Lanczos process for any m and p

Aliaga, Boley, F., and Hernández, ‘94, ‘96, and ‘00

F., ‘00, ‘03, and ‘09

• MPVL (Matrix-Padé Via Lanczos) algorithm

(Feldmann and F., ‘95)

• ‘Symmetric’ algorithm tailored to RC networks: SyMPVL

(Feldmann and F., ‘97 and ‘98)



Full chip SIV — statistics

interconnect nets 24,607

pins 91,277

total capacitors 5,413,127

cross-coupled C’s 4,955,020

grounded C’s 458,107

resistors 265,941

potential violations 602

nets in cluster 2–7

total run time 2.5 hours

SyMPVL run time 15 minutes
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RCL networks as descriptor systems

• System of linear time-invariant DAEs of the form

C
d

dt
x(t) + Gx(t) = Bu(t)

y(t) = BHx(t)

where C, G ∈ CN×N and B ∈ CN×m

• x(t) ∈ CN is the unknown vector of state variables

• m inputs, m outputs



Reduced-order models

• System of DAEs of the same form:

Cn
d

dt
z(t) + Gn z(t) = Bn u(t)

ỹ(t) = BH
n z(t)

• But now:

Cn, Gn ∈ C
n×n and Bn ∈ C

n×m

where n ≪ N



Transfer functions

• Original descriptor system:

H(s) = BH (sC + G)−1 B

• Reduced-order model:

Hn(s) = BH
n (sCn + Gn)

−1 Bn

• ‘Good’ reduced-order model

⇐⇒ ‘Good’ approximation Hn ≈ H



• Original dimension N ≈ 104−6

H(s) = BH BH
n




s C + G




−1

B

Bn

• Reduced dimension n ≪ N (n ≈ 100−2)

Hn(s) = BH
n


 s Cn + Gn




−1

Bn



Padé approximation

• Choose expansion point s0 ∈ C such that the matrix s0 C+G

is nonsingular

• Cn, Gn ∈ Cn×n, Bn ∈ Cn×m are such that

Hn(s) = H(s) + O
(
(s − s0)

q(n)
)

and q(n) is maximal

• q(n) ≥ 2

⌊
n

m

⌋
with equality in the ‘generic’ case



Padé-type approximation

• Padé approximants have undesirable properties in general

• Remedy: relax approximation property

• Cn, Gn ∈ Cn×n, Bn ∈ Cn×m are such that

Hn(s) = H(s) + O
(
(s − s0)

q̃(n)
)

where q̃(n) is no longer maximal

• Typical: q̃(n) ≥

⌊
n

m

⌋
with equality in the ‘generic’ case



Reduction to one matrix

• Transfer function:

H(s) = BH (sC + G)−1 B = BH
(
s0 C + G + (s − s0)C

)−1
B

• Set

A := − (s0 C + G)−1 C and R := (s0 C + G)−1 B

• Rewriting H gives

H(s) = BH (I − (s − s0)A)−1 R



Krylov subspaces and Padé

• Expanding about s0 gives

H(s) = BH (I − (s − s0)A)−1 R

=
∞∑

i=0

BH
(
Ai R

)
(s − s0)

i

=
∞∑

i=0

((
AH

)i
B

)H
R (s − s0)

i

• Right and left block Krylov sequences:

[
R AR · · · AiR · · ·

]
and

[
B AH B · · ·

(
AH

)i
B · · ·

]
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Problem of structure preservation

• Any RCL network is stable, passive, . . .

• Reduced-order model should be stable, passive, . . .

• More difficult problem:

Reduced-order model of an RCL network should be

synthesizable as an RCL network

• Padé reduced-order models are not even stable in general!



Preservation of RCL structure



General RCL network equations

• System of linear time-invariant DAEs of the form

C
d

dt
x(t) + Gx(t) = Bu(t)

y(t) = BHx(t)

where

C =




C1 0 0

0 C2 0

0 0 0


 , G =




G1 G2 G3

−GH
2 0 0

−GH
3 0 0


 , B =




B1 0

0 0

0 B2




• Moreover:

C � 0 and G + GH � 0

(This implies passivity!)



Dimension reduction via projection

• PRIMA

Passive Reduced Interconnect Macromodeling Algorithm

(Odabasioglu, ’96; Odabasioglu, Celik, and Pileggi, ’97)

• SPRIM

Structure-Preserving Reduced Interconnect Macromodeling

(F., ’04 and ’09)

• PRIMA and SPRIM satisfy a Padé-type property:

Hn(s) = H(s) + O
(
(s − s0)

j
)

for some j = j(n)



PRIMA does not preserve RCL structure

• Structure of the data matrices:

C =




C1 0 0

0 C2 0

0 0 0


 , G =




G1 G2 G3

−GH
2 0 0

−GH
3 0 0


 , B =




B1 0

0 0

0 B2




• Structure of PRIMA reduced-order matrices:

Cn = , Gn = , Bn =



SPRIM does preserve RCL structure

• Structure of SPRIM reduced-order matrices:

Cn =




C̃1 0 0

0 C̃2 0

0 0 0


 , Gn =




G̃1 G̃2 G̃3

−G̃H
2 0 0

−G̃H
3 0 0


 , Bn =




B̃1 0

0 0

0 B̃2




• Padé-type property:

Hn(s) = H(s) + O
(
(s − s0)

j
)

with j the same integer as for PRIMA

• For SPRIM, we even have j ⇒ 2j. Why?



An RCL network with mostly C’s and L’s
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Projection-based reduction

• Let Vn ∈ CN×n be any matrix with full column rank n

• Use Vn to explicitly project the data matrices of

C
d

dt
x(t) + Gx(t) = Bu(t)

y(t) = BHx(t)

onto the subspace spanned by the columns of Vn



Projection-based reduction, continued

• Resulting reduced-order model

Cn
d

dt
z(t) + Gn z(t) = Bn u(t)

ỹ(t) = BH
n z(t)

where

Cn = VH
n CVn, Gn = VH

n GVn, Bn = VH
n B

• Passivity is preserved:

C � 0, G + GH � 0 ⇒ Cn � 0, Gn + GH
n � 0



Projection + Krylov

• Choose an expansion point s0 ∈ C and re-write the original

transfer function:

H(s) = BH (sC + G)−1 B

= BH (I − (s − s0)A)−1 R

where

A := −
(
s0 C + G

)−1
C and R :=

(
s0 C + G

)−1
B

• Block Krylov sequence:

R,AR, A2R, . . . ,AiR, . . .



Projection + Krylov, continued

• n̂-th block Krylov subspace:

Kn̂(A,R) := colspann̂

[
R AR A2R · · ·

]

• Choose the projection matrix Vn such that

Kn̂(A, R) ⊆ RangeVn

• Projection + Krylov subspace = Padé-type approximant:

Hn(s) = H(s) + O
(
(s − s0)

j
)

, where j ≥ ⌊n̂/m⌋



SPRIM

• Let V̂n̂ be any matrix such that

Kn̂(A, R) = Range V̂n̂

• Recall:

C =




C1 0 0

0 C2 0

0 0 0


 , G =




G1 G2 G3

−GH
2 0 0

−GH
3 0 0


 , B =




B1 0

0 0

0 B2






SPRIM, continued

• Partition V̂n̂ accordingly:

V̂n̂ =




V
(1)
n̂

V
(2)
n̂

V
(3)
n̂




• For l = 1,2,3:

If RankV
(i)
n̂ < n̂, replace V

(i)
n̂ by matrix of full column rank



SPRIM, continued

• Set

Vn =




V
(1)
n 0 0

0 V
(2)
n 0

0 0 V
(3)
n




• Block structure is preserved:

Cn =




C̃1 0 0

0 C̃2 0

0 0 0


 , Gn =




G̃1 G̃2 G̃3

−G̃H
2 0 0

−G̃H
3 0 0


 , Bn =




B̃1 0

0 0

0 B̃2




• Kn̂(A,R) = RangeVn̂ ⊆ RangeVn ⇒ Padé-type property!
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A package example

10
9

10
10

10
11

10
0

10
1

10
2

10
3

10
4

Frequency (Hz)

ab
s(

H
8,

1)

 

 

Exact

PRIMA model

SPRIM model

Exact and models corresponding to n̂ = 128



A package example
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Padé-type property

• So far, we only know that both PRIMA and SPRIM produce

Padé-type reduced-order models with

Hn(s) = H(s) + O ((s − s0)
q) , where q ≥ ⌊n̂/m⌋

• Can we say more in the case of SPRIM?

• Easy in the case of no third subblock V
(3)
n

(F. ’05)

• General case: J-Hermitian linear dynamical systems

(F. ’08)



J-Hermitian systems

• Recall:

C
d

dt
x(t) + Gx(t) = Bu(t)

y(t) = BHx(t)

where

C =




C1 0 0

0 C2 0

0 0 0


 , G =




G1 G2 G3

−GH
2 0 0

−GH
3 0 0


 , B =




B1 0

0 0

0 B2




• C and G are J-Hermitian:

JC = CHJ and JG = GHJ, where J :=




I 0 0

0 −I 0

0 0 −I






J-Hermitian systems, continued

• The input-output matrix B satisfies

Range(JB) = Range(B)



Jn-Hermitian property of SPRIM models

• The SPRIM models

Cn
d

dt
z(t) + Gn z(t) = Bn u(t)

y(t) = BH
n z(t)

preserve the structure of Cn, Gn, Bn

• Therefore, Cn and Gn are Jn-Hermitian with

Jn :=




I 0 0

0 −I 0

0 0 −I


 and Range(Jn Bn) = Range(Bn)

• Moreover, the projection matrix Vn satisfies

JVn = Vn Jn



Padé-type property

• Theorem (F., ’08)

For J-Hermitian systems and real expansion points s0, the

n-th SPRIM model is Jn-Hermitian and satisfies

Hn(s) = H(s) + O
(
(s − s0)

q̃
)

, where q̃ ≥ 2 ⌊n̂/m⌋

• Twice as accurate as PRIMA!
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Using restarts (with Efrem Rensi)

• To obtain a Padé-type property, we need to generate a matrix

V̂n̂ such that

Kn̂(A, R) = Range V̂n̂

• Use suitable variant of the Arnoldi process

• But: prohibitive for large n̂

• Remedy: (thick) restarts



Using restarts, continued

• Motivated by recent work by Eiermann et al.

• Restart after each cycle of r Arnoldi steps

• Extract ‘good’ eigenvector information Y from the last batch

of r Arnoldi vectors

• Use the columns of Y as the first vectors in the next cycle

• At each restart allow for changing expansion point:

A(s0) = − (s0 C + G)−1 C ⇒ A(s̃0) = − (s̃0 C + G)−1 C



Single vs. multiple expansion points
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Concluding remarks

• Practical use of Krylov subspace-based dimension reduction

was motivated by need to handle large-scale RCL networks

• Lead to the development of new Krylov subspace methods

• How to avoid the need to store N × n dense matrix in

projection methods?

• Krylov subspace methods with thick restarts?

• Use with multiple expansion points?


