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Motivation

The question of whether the 3D incompressible Navier-Stokes equations
can develop a finite time singularity from smooth initial data is one of the
seven Clay Millennium Problems.

ut + (u · ∇)u = −∇p + ν∆u, ∇ · u = 0, (1)

with initial condition u(x, 0) = u0. Define vorticity ω = ∇× u, then ω is
governed by

ωt + (u · ∇)ω = ∇u · ω + ν∆ω. (2)

Note ∇u is formally of the same order as ω. Thus the vortex stretching
term ∇u · ω ≈ ω2.

So far, most regularity analysis uses energy estimates and treats the
nonlinear terms as a small perturbation to the diffusion term. The global
regularity can be obtained only for small data.
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A brief review

Global existence for small data (Leray, Ladyzhenskaya, Kato, etc).
If ‖u0‖Lp (p ≥ 3) or ‖u0‖L2‖∇u0‖L2 is small, then the 3D
Navier-Stokes equations have a globally smooth solution.

Non-blowup criteria due to J. Serrin 63, G. Prodi 59. A weak
solution u of the 3D Navier-Stokes equations is smooth on
[0,T ]× R3 provided that

‖u‖Lq
t L

p
x ([0,T ]×R3) <∞

for some p, q satisfying 3
p + 2

q ≤ 1 with 3 ≥ p ≤ ∞ and 2 ≤ q <∞.

Partial regularity theory (Caffarelli-Kohn-Nirenberg 82, F. Lin 98)
For any suitable weak solution of the 3D Navier-Stokes equations on
an open set in space-time, the one-dimensional Hausdorff measure of
the associated singular set is zero.
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Convection has been ignored in regularity analysis

Due to the incompressibility condition, the convection term does not
contribute to the energy norm of velocity or the Lp-norm of ω:

ωt + (u · ∇)ω = ∇u · ω + ν∆ω,

As a result, the convection term has been basically ignored in the
regularity analysis for the Navier-Stokes equations.

Most of the efforts have focused on formulating some kind of
scale-invariant smallness assumption on the solution so that diffusion
can control the formal quadratic nonlinear vortex stretching term.

We will demonstrate that convection actually has a stabilizing effect.
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Connection to 3D Euler Equations

The convection term and the vortex stretching term can be
reformulated as a commutator: ωt + (u · ∇)ω − (ω · ∇)u = 0.

When we consider the two terms together, we preserve the
Lagrangian structure of the solution:

ω(X (α, t), t) = Xα(α, t)ω0(α), det(Xα(α, t)) ≡ 1

where X (α, t) is the flow map: Xt = u(X , t), X (α, 0) = α.

Convection tends to severely deform and flatten the support of
maximum vorticity. Such deformation tends to weaken the
nonlinearity of vortex stretching dynamicallty.

If we ignore the convection term, the vortex stretching term may
indeed achieve the O(|ω|2) scaling dynamically and develop an
isotropic singularity in finite time.
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Local non-blowup conditions by Deng-Hou-Yu

Motivated by the earlier work of Constantin-Majda-Fefferman [96], we
proved the following localized non-blowup criterion for the 3D Euler
equations using a Lagrangian approach:

Theorem 1 (Deng-Hou-Yu, 2005 and 2006, CPDE)

Denote by L(t) the arclength of a vortex line segment Lt around the
maximum vorticity, ξ = ω/|ω|, and κ is curvature of Lt . If

1 maxLt (|u · ξ|+ |u · n|) ≤ CU(T − t)−A with A < 1;

2 CL(T − t)B ≤ L(t) ≤ C0/ maxLt (|κ|, |∇ · ξ|) with B ≤ 1− A;

then the solution of the 3D Euler equations remains regular up to T .

This theorem provides a sharper non-blowup criterion to eliminate some
of potentially candidates for 3D Euler singularities.
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Computation of Hou and Li, J. Nonlinear Science, 2006

Figure: Two slightly perturbed antiparallel vortex tubes at t=0 and t=6
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Figure: The local 3D vortex structures and vortex lines around the maximum
vorticity at t = 17.
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Maximum velocity in time
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Figure: Maximum velocity ‖u‖∞ in time using different resolutions. With
maximum velocity being bounded, the non-blowup criterion of Deng-Hou-Yu
applies with A = 0 and B = 1/2, implying no blowup at least up to T = 19.
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Dynamic depletion of vortex stretching
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Figure: Study of the vortex stretching term in time, resolution
1536× 1024× 3072. The fact |ξ · ∇u · ω| ≤ c1|ω|log |ω| plus
D
Dt
|ω| = ξ · ∇u · ω implies |ω| bounded by doubly exponential.
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Log log plot of maximum vorticity in time
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Figure: The plot of log log ‖ω‖∞ vs time, resolution 1536× 1024× 3072.
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Vorticity vector alignment

Recall that

∂

∂t
ω + (u · ∇)ω = S · ω, S =

1

2
(∇u +∇Tu).

Let λ1 < λ2 < λ3 be the three eigenvalues of S , λ1 + λ2 + λ3 = 0.

time |ω| λ1 θ1 λ2 θ2 λ3 θ3
16.012 5.628 -1.508 89.992 0.206 0.007 1.302 89.998
16.515 7.016 -1.864 89.995 0.232 0.010 1.631 89.990
17.013 8.910 -2.322 89.998 0.254 0.006 2.066 89.993
17.515 11.430 -2.630 89.969 0.224 0.085 2.415 89.920

18.011 14.890 -3.625 89.969 0.257 0.036 3.378 89.979
18.516 19.130 -4.501 89.966 0.246 0.036 4.274 89.984
19.014 23.590 -5.477 89.966 0.247 0.034 5.258 89.994

Table: The alignment of the vorticity vector and the eigenvectors of S around
the point of maximum vorticity with resolution 1536× 1024× 3072. Here, θi is
the angle between the i-th eigenvector of S and the vorticity vector.
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The Stabilizing Effect of Convection

Consider the 3D axi-symmetric incompressible Navier-Stokes equations

uθt + uruθr + uzuθz = ν

(
∇2 − 1

r2

)
uθ − 1

r
uruθ, (3)

ωθt + urωθr + uzωθz = ν

(
∇2 − 1

r2

)
ωθ +

1

r

(
(uθ)2

)
z
+

1

r
urωθ, (4)

−
(
∇2 − 1

r2

)
ψθ = ωθ, (5)

where uθ, ωθ and ψθ are the angular components of the velocity, vorticity
and stream function respectively, and

ur = −(ψθ)z uz =
1

r
(rψθ)r .

Note that equations (3)-(5) completely determine the evolution of the 3D
axisymmetric Navier-Stokes equations.
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Reformulation of axisymmetric Navier-Stokes equations

In [CPAM 08], Hou and Li introduced the following new variables:

u1 = uθ/r , ω1 = ωθ/r , ψ1 = ψθ/r , (6)

and derived the following equivalent system that governs the dynamics of
u1, ω1 and ψ1 as follows:

∂tu1 + ur∂ru1 + uz∂zu1 = ν
(
∂2

r + 3
r ∂r + ∂2

z

)
u1 + 2u1ψ1z ,

∂tω1 + ur∂rω1 + uz∂zω1 = ν
(
∂2

r + 3
r ∂r + ∂2

z

)
ω1 +

(
u2

1

)
z
,

−
(
∂2

r + 3
r ∂r + ∂2

z

)
ψ1 = ω1,

(7)

where ur = −rψ1z , uz = 2ψ1 + rψ1r .

Liu and Wang [SINUM07] showed that if u is a smooth velocity field,
then uθ, ωθ and ψθ must satisfy: uθ

∣∣
r=0

= ωθ
∣∣
r=0

= ψθ
∣∣
r=0

= 0. Thus
u1, ψ1 and ω1 are well defiend.

T. Y. Hou, Applied Mathematics, Caltech The interplay between computation and analysis



Stabilizing effect of convection through an exact 1D model
for the 3D Navier-Stokes equations

In [Hou-Li, CPAM, 61 (2008), no. 5, 661–697], we derived an excact 1D
model along the z-axis for the Navier-Stokes equations:

(u1)t + 2ψ1 (u1)z = ν(u1)zz + 2 (ψ1)z u1, (8)

(ω1)t + 2ψ1 (ω1)z = ν(ω1)zz +
(
u2

1

)
z
, (9)

−(ψ1)zz = ω1. (10)

Let ũ = u1, ṽ = −(ψ1)z , and ψ̃ = ψ1. The above system becomes

(ũ)t + 2ψ̃(ũ)z = ν(ũ)zz − 2ṽ ũ, (11)

(ṽ)t + 2ψ̃(ṽ)z = ν(ṽ)zz + (ũ)2 − (ṽ)2 + c(t), (12)

where ṽ = −(ψ̃)z , ṽz = ω̃, and c(t) is an integration constant to enforce
the mean of ṽ equal to zero.
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The 1D model is exact!

A surprising result is that the above 1D model is exact.

Theorem 3. Let u1, ψ1 and ω1 be the solution of the 1D model
(8)-(10) and define

uθ(r , z , t) = ru1(z , t), ωθ(r , z , t) = rω1(z , t), ψθ(r , z , t) = rψ1(z , t).

Then (uθ(r , z , t), ωθ(r , z , t), ψθ(r , z , t)) is an exact solution of the
3D Navier-Stokes equations.

Theorem 3 tells us that the 1D model (8)-(10) preserves some essential
nonlinear structure of the 3D axisymmetric Navier-Stokes equations.
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Energy method does not work for the 1D model!

A standard energy estimate for the 1D model would give we get

1

2

d

dt

∫ 1

0

ũ2dz = −3

∫ 1

0

(ũ)2ṽdz − ν

∫ 1

0

ũ2
zdz ,

1

2

d

dt

∫ 1

0

ṽ2dz =

∫ 1

0

ũ2ṽdz − 3

∫ 1

0

(ṽ)3dz − ν

∫ 1

0

ṽ2
z dz .

One can obtain essentially the same result for the corresponding
reaction-diffusion model by dropping convection and c(t):

(ũ)t = ν(ũ)zz − 2ṽ ũ, (ṽ)t = ν(ṽ)zz + (ũ)2 − (ṽ)2, (13)

which admits finite time blowup solutions.

It is not clear how to control the nonlinear vortex stretching like
terms by the diffusion terms, unless we assume∫ T

0

‖ṽ‖L∞dt <∞, t ≤ T .
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Global Well-Posedness of the full 1D Model

Theorem 4. Assume that ũ(z , 0) and ṽ(z , 0) are in Cm[0, 1] with m ≥ 1
and periodic with period 1. Then the solution (ũ, ṽ) of the 1D model will
be in Cm[0, 1] for all times and for ν ≥ 0.

Proof. The key is to obtain a priori pointwise estimate for the Lyapunov
function ũ2

z + ṽ2
z . Differentiating the ũ and ṽ -equations w.r.t z , we get

(ũz)t + 2ψ̃(ũz)z − 2ṽ ũz = −2ṽ ũz − 2ũṽz + ν(ũz)zz ,

(ṽz)t + 2ψ̃(ṽz)z − 2ṽ ṽz = 2ũũz − 2ṽ ṽz + ν(ṽz)zz .

Note that the convection term contributes to stability by cancelling
one of the nonlinear terms on the right hand side. This gives

(ũz)t + 2ψ̃(ũz)z = −2ũṽz + ν(ũz)zz , (14)

(ṽz)t + 2ψ̃(ṽz)z = 2ũũz + ν(ṽz)zz . (15)
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Multiplying (14) by 2ũz and (15) by 2ṽz , we have

(ũ2
z )t + 2ψ̃(ũ2

z )z = −4ũũz ṽz + 2νũz(ũz)zz , (16)

(ṽ2
z )t + 2ψ̃(ṽ2

z )z = 4ũũz ṽz + 2νṽz(ṽz)zz . (17)

Now, we add (16) to (17). Surprisingly, the nonlinear vortex
stretching-like terms cancel each other. We get(

ũ2
z + ṽ2

z

)
t
+ 2ψ̃

(
ũ2

z + ṽ2
z

)
z

= 2ν (ũz(ũz)zz + ṽz(ṽz)zz) .

Moreover we can rewrite the diffusion term in the following form:(
ũ2

z + ṽ2
z

)
t
+ 2ψ̃

(
ũ2

z + ṽ2
z

)
z

= ν
(
ũ2

z + ṽ2
z

)
zz
− 2ν

[
(ũzz)

2 + (ṽzz)
2
]
.

Thus, (ũ2
z + ṽ2

z ) satisfies a maximum principle for all ν ≥ 0:

‖ũ2
z + ṽ2

z ‖L∞ ≤ ‖(ũ0)
2
z + (ṽ0)

2
z‖L∞ .

T. Y. Hou, Applied Mathematics, Caltech The interplay between computation and analysis



Construction of a family of globally smooth solutions

Theorem 5. Let φ(r) be a smooth cut-off function and u1, ω1 and ψ1 be
the solution of the 1D model. Define

uθ(r , z , t) = ru1(z , t)φ(r) + ũ(r , z , t),

ωθ(r , z , t) = rω1(z , t)φ(r) + ω̃(r , z , t),

ψθ(r , z , t) = rψ1(z , t)φ(r) + ψ̃(r , z , t).

Then there exists a family of globally smooth functioons ũ, ω̃ and ψ̃ such
that uθ, ωθ and ψθ are globally smooth solutions of the 3D
Navier-Stokes equations with finite energy.
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A New 3D Model for NSE, [Hou-Lei, CPAM, 09]

Recall the reformulated 3D Navier-Stokes equations:
∂tu1 + ur∂ru1 + uz∂zu1 = ν

(
∂2

r + 3
r ∂r + ∂2

z

)
u1 + 2u1ψ1z ,

∂tω1 + ur∂rω1 + uz∂zω1 = ν
(
∂2

r + 3
r ∂r + ∂2

z

)
ω1 +

(
u2

1

)
z
,

−
(
∂2

r + 3
r ∂r + ∂2

z

)
ψ1 = ω1,

(18)

where ur = −rψ1z , uz = 2ψ1 + rψ1r . Our 3D model is derived by simply
dropping the convective term from (18):

∂tu1 = ν
(
∂2

r + 3
r ∂r + ∂2

z

)
u1 + 2u1ψ1z ,

∂tω1 = ν
(
∂2

r + 3
r ∂r + ∂2

z

)
ω1 + (u2

1)z ,

−
(
∂2

r + 3
r ∂r + ∂2

z

)
ψ1 = ω1.

(19)

Note that (24) is already a closed system, and u1 = uθ/r characterizes
the axial vorticity near r = 0.
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Properties of the 3D Model [Hou-Lei, CPAM, 09]

This 3D model shares many important properties with the axisymmetric
Navier-Stokes equations.

First of all, one can define an incompressible velocity field in the model
equations (24).

u(t, x) = ur (t, r , z)er + uθ(t, r , z)eθ + uz(t, r , z)ez , (20)

uθ = ru1, ur = −rψ1z , uz = 2ψ1 + rψ1r , (21)

where x = (x1, x2, z), r =
√

x2
1 + x2

2 . It is easy to check that

∇ · u = ∂ru
r + ∂zu

z +
ur

r
= 0, (22)

which is the same as the Navier-Stokes equations.
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Properties of the 3D Model–continued

Our model enjoys the following properties ([Hou-Lei, CPAM-09]):

Theorem 6. Energy identity. The strong solution of (24) satisfies

1

2

d

dt

∫ (
|u1|2 + 2|Dψ1|2

)
r3drdz +

∫ (
|Du1|2 + 2|D2ψ1|2

)
r3drdz = 0,

which has been proved to be equivalent to that of the Navier-Stokes
equations. Here D is the first order derivative operator defined in R5.

Theorem 7. A non-blowup criterion of Beale-Kato-Majda type. A
smooth solution (u1, ω1, ψ1) of the model (24) for 0 ≤ t < T blows up at
time t = T if and only if∫ T

0

‖∇ × u‖BMO(R3)dt = ∞,

where u is defined in (20)-(21).
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Properties of the 3D Model–continued

Theorem 8. A non-blowup criterion of Serrin-Prodi type. A weak
solution (u1, ω1, ψ1) of the model (24) is smooth on [0,T ]× R3 provided
that

‖uθ‖Lq
t L

p
x ([0,T ]×R3) <∞ (23)

for some p, q satisfying 3
p + 2

q ≤ 1 with 3 < p ≤ ∞ and 2 ≤ q <∞.

Theorem 9. An analog of Caffarelli-Kohn-Nirenberg partial
regularity result [Hou-Lei, CMP-09]. For any suitable weak solution of
the 3D model equations (24) on an open set in space-time, the
one-dimensional Hausdorff measure of the associated singular set is zero.
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Potential singularity formation of the 3D model

It is interesting to study the invicsid model.
∂tu1 = 2u1ψ1z ,

∂tω1 = (u2
1)z ,

−
(
∂2

r + 3
r ∂r + ∂2

z

)
ψ1 = ω1.

(24)

If we let v = log(u2
1), then we can further reduce the 3D model to the

following nonlocal nonlinear wave equation:

vtt = 4
(
(−∆)−1ev

)
zz
, (25)

where −∆ = −
(
∂2

r + 3
r ∂r + ∂2

z

)
, and

∫
ev r3drdz ≤ C0. Note that

(−∆)−1 is a positive operator. This is a nonlinear nonlocal hyperbolic
equation along the z-direction.
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Numerical evidence for a potential finite time singularity

Innitial condition we consider in our numerical computations is given by

u1(z , r , 0) = (1 + sin(4πz))(r2 − 1)20(r2 − 1.2)30, (26)

ψ1(z , r , 0) = 0, (27)

ω1(z , r , 0) = 0. (28)

A second order finite difference discretization is used in space, and the
classical fourth order Runge-Kutta method is used to discretize in time.
We use the following coordinate transformation along the r -direction to
achieve the adaptivity:

r = f (α) ≡ α− 0.9 sin(πα)/π. (29)

We use an effective resolution up to 40963 for the 3D problem.
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‖u1‖∞ as a function of time over the interval [0, 0.021],
the viscous model with ν = 0.001.
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log(log(‖u1‖∞)) as a function of time over the interval
[0, 0.021], the viscous model with ν = 0.001.
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A 3D view of u1 at t = 0.02.
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A 3D view of u1 at t = 0.021.
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Asymptotic blowup rate: ‖u1‖∞ ≈ C
(T−t) , with

T = 0.02109 and C = 8.20348.
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Asymptotic blowup fit: ‖u1‖−1
∞ ≈ (T−t)

C , with limiting
values T = 0.021083 and C = 8.1901.
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Convergence study of ‖u1‖∞ in time.
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Convergence study of u1 at r = 0 and t = 0.021
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Local alignment of u1 and ψ1z at t = 0.02. Recall
(u1)t = 2u1ψ1z + ν∆u1, (ω1)t = (u2

1)z + ν∆ω1.
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Local alignment of u1 and ψ1z at t = 0.021.
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Stabilizing effect of convection.

To study the stabilizing effect of convection, we add the convection term
back to the 3D model and solve the Navier-Stokes equations using the
solution of the 3D model at t = 0.02 as the initial condition.
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Depletion of vortex stretching due to convection
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Depletion of vortex stretching due to convection
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Contours of initial data for u1.
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Contours of u1 at t = 0.021, solution of full NSE.
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Contours of u1 at t = 0.0235, solution of full NSE.
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Recent theortical progress for the 3D model

Theorem 10. [Hou-Shi-Wang, 09]. Consider the 3D inviscid model{
ut = 2uψz , ωt = (u2)z ,

−
(
∂2

x + ∂2
z

)
ψ = ω, 0 ≤ x ≤ 1, 0 ≤ z ≤ 1,

(30)

with boundary condition ψ = 0 at x = 0, 1, z = 1, and
(α∂ψ∂z + ψ)|z=0 = 0 for some 0 < α < 1. If the initial conditions, u0 and
ψ0, are smooth, satisfying u0 = 0 at z = 0, 1, and∫ 1

0

∫ 1

0

log(u0)φ(x , z)dxdz ≥ 0,

∫
(ψ0)zφ(x , z)dxdz > 0, (31)

where φ(x , z) = sin(x) cosh(α(1− z)), then the 3D inviscid model must
develop a finite time singularity. Moreover, if the ω-equation is viscous
and ω satisfies the same boundary condition as ψ, then the 3D model
with partial viscosity must develop a finite time singularity.
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Recent theortical progress for the 3D model-continued

Theorem 11. [Hou-Shi-Wang, 09]. Consider the 3D inviscid model{
ut = 2uψz , ωt = (u2)z ,

−
(
∂2

x + ∂2
z

)
ψ = ω, 0 ≤ x ≤ 1, 0 ≤ z ≤ 1,

(32)

with boundary condition ψ = 0 at x = 0, 1, z = 1, and ψz |z=0 = 0.
Assume that the initial condition, u0 and ψ0, are smooth, satisfying
u0 = 0 at z = 0, 1, and∫ 1

0

∫ 1

0

log(u0)φdxdz ≥ 0,

∫ 1

0

∫ 1

0

(ψ0)zφdxdz > 0, (33)

where φ(x , z) = sin(x) cosh(α(1− z)) for some 0 < α < 1. Then the 3D
inviscid model must develop a finite time singularity provided that∫ 1

0

sin(x) (ψ|z=0(t)− ψ0|z=0) dx ≤ C0

∫ 1

0

∫ 1

0

(ψ0)zφdxdz , (34)

as long as the solution remains regular, where C0 < (1− α2)/ cosh(α).
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Concluding Remarks

Our study shows that convection could play an important role in the
dynamic depletion of the nonlinear vortex stretching.

By neglecting the convection term, we contruct a new 3D model
which shares almost all properties of the Navier-Stokes equations,
but could develop finite time singularities.

This seems to suggest that one should take advantage of the
stabilizing effect of convection in an essential way in our global
regularity analysis of the 3D NSE.

Convection tends to severely deform and flatten the support of
maximum vorticity, which could weaken and eventually deplete the
nonlinear vortex stretching.

The current methods based on energy estimates seem too crude to
capture the stabilizing effect of convection. A more localized
analytic method may be required to study the global regualrity or
blowup of 3D NSE.
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