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Dynamics and interactions of
micro-structure in complex fluids| "

= Dynamics of non-Newtonian fluids

= Reinforced composite
materials

* Biological locomotion

» Elastic “turbulence”

& low Re mixing
Groisman & Sternberg 00, '01, ...

B. subtilis — one and many
C. Dombrowski et al ’05, 07

= Microfluidic rectifiers I-S, phase trans -- PPM
Groisman, Enzelberger, & Quake ‘03

—¥ 9 9 Nl T N | |
microfluidic rectifier — Groisman & Quake microscale mixing — Grolsman & Steinberg




Experiments: V. Steinberg & A. Groisman
Viscoelastic fluid — Elastic “turbulence” - Efficient mixing
Rotating plates (Low Re, “High” W1)
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Mixing in micro channels

pure solvent, N=29 N=8

Arratia et al, PRL 2006
Elastic fluid instabilities near hyperbolic points
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Stokes-Oldroyd-B ( Re<<I)
 model of a “Boger” elastic fluid (normal stresses, no shear thinning)
» derives from a microscopic, dilute theory of polymer coils
« one of the standard viscoelastic flow models; Little known
about large data solutions.

—Vp +Au = —IB V- G, — f and V-u=0 | momentum and mass balance

Wi o vV — —((; — I) transport and dissipation
. . of polymer stress
10
° Gpv = D P (Vu- G,+0, 'VuT)Upper convected time derivative
t
u
T , - - T, =———
o Wi = _IO; Weissenberg number ratio of polymer relax. time ,OLF
T to flow time-scale
Gr, L1 =solvent viscosity; F = external force scale

——; coupling strength
U

7, = polymer relaxation time; G = background poly. stress

GTD _ polymer viscosity Material constant; fix to ¥

* f-Wi= —— | .
U solvent viscosity as in expts of Arratia et al




Properties:

. " ] . _ 1
(1) Has decaying "strain" energy: E—E I tr(cp -I)
E+Wi'E=28" [_“v“f +Iu'f]

(2) But lacks of scale dependent dissipation:

N

0o A A A
—E = L(k)o o T P(k)f Use the Fourier transform
ot to solve the linearized

with k=K/|K| problem
Assume linear

(3) Polymer stress tensor: G, =V <fr> —C <rr><7 Hooke’s law for

bead forces

1s s.p.d.
(4) Existence of large-data solutions 1s unknown, even in 2d

Simulations: De-aliased Fourier based spectral method;
second order time stepping.



Vorticity field for Newtonian fluid
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Thomases & Shelley PF 2007
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Background force

—2s1n Xcos 'y

2cos Xsin 'y

With Newtonian fluid
yields

SIn XCcos 'Y
u= ,
—Cos Xsin 'y

Creates hyperbolic points
in background flow
ala Arratia et al., PRL 2006

Also Berti et al ’08, Xi & Graham ‘09
Becherer, Morozov, van Saarloos 08, 09



Evolution for

1nitial stress:
G, (t = O) = |
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L.ocal Model — fix strain-rate o — determined by flow -- and advect
stress field by local straining velocity

u=(ax,—ay); g0=a;1; t—>Wi-t; e=a-Wi

¢, +eXp, —eYo, +(1-2&)p—-1=0

General solution :

(D: 1_128 + e(28—1)t H11 (Xe—gt , yegt)

Relevant solution: H, (a,b)=h(b) with h(b)~/b[" as |[b|—>

Why? Choose ( to eliminate long time t — dependence

1—2¢ 1 1-2¢ | steady states also studied
=0 = = |@ | - +C | y | & by Rallison & Hinch ‘88
t—o0
& 1-2¢ and M. Renardy ‘06
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Note € < 1 implies g > -1 so
the stress is integrable.

g =1/3 Wi, =0.5
& =1/2 Wi, =0.9

q=>1 0<gq<1l Ad<0

cusp in Divergence in
stress stress
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Mixing and Symmetry-Breaking: Thomases & Shelley 09

The SOB system 1s also unstable to symmetry-breaking;
see Poole et al 07, Xi & Graham ‘08

x 10

Full disclosure: Small amount of polymer stress diffusion added to control
gradient growth



Long-time behavior with increasing I'Vi:

relaxation to
symmetric state

. = 005

Slow relaxation |
to asymmetric state i
'“"n 200

Persistent
oscillations

= = | : :
. = — ey A
~ B /| Arratiaetal ‘06
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Smaller Wi:
symmetry breaking, little mixing

Wi=6, t=2000

Larger Wi:

« multiple frequencies
of oscillation

* robust GRS of viscoelastic flows

o well-mixed fluid outside of GRS

Need new experiments, ot '
oqe i .| S R :----.‘:-»..;'-:-
stability analyses. ) :
0 500 1000 1500 2000

time



Update:
(1) 1 of 10 simulations using random amplitude/phase initial
perturbations for polymer stress.

(2) What if the number of vortex cells is increased?
(3) Now investigating in a new expt’l rig in the AML

16 counter-rotating
rotors driving a PAA
viscoelastic solution

w. Bin Liu, J. Zhang




Collective dynamics of active suspensions (bacterial baths)
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Observation: meandering jet and vortices of scale 50-100 um, speeds 50-100 um/sec in jets
Scale of B. subtilis ~ 4 um (plus tail); swimming speed 20-30 um/sec

* A complex fluid driven by dynamics of its microstructure —
many body interactions mediated by fluid.
* collective behavior leads to strong mixing.
* Role of body geometry? Emergence or role of orientational ordering?
« Competition of hydrodynamic coupling vs. attractive gradients?



Some of the experiments:

« Wu & Libchaber "00:“brownian” motion of test particles in bacterial baths.
« Dombrowski et al *04: large-scale flow structures (many body lengths).

* Kim & Breuer 04, enhanced mixing using bacteria in micro-fluidic device.
 Paxton et al, ’04, fabricated chemically-driven nano-rod-swimmers.

» Dreyfus et al, ’05, bio-mimetic swimmers driven by magnetic fields
 Short et al, 06, expts and model of Volvox swimming.

» Sokolov et al, 07, expts on concentration dependencies in thin films.

Some of the theory:

* bioconvection: Childress & Spiegel, Pedley and many others

e Simha & Ramaswamy ’02: predict instability of long-wave oriented states

» Hernandez-Ortiz et al, ’05: simulations of force-dipole suspensions show
emergence of large-scale structures

* Toner et al, ’05: models of flocking.

» Sambelashvili, Lau, & Cai 07, ordering of 2d rod locomotors by local

steric interactions

* Pedley, Ishikawa et al, interactions of squirmers (specified surface velocity)

« Saintillan & Shelley, 07, ‘08, particle simulations, kinetic theory of moving rod suspensions

» Keaveny & Maxey, 08, theory and simulations for bio-mimetic swimmers

» Kanevsky et al, ’09, simulations of interacting stress-actuated swimmers



Slender-body swimmer driven by surface stress

Saintillan & Shelley PRL 2007 , motivated by Volvox model of Short, Goldstein, et al;
(simulation of multi-V interactions by Kanevsky, Shelley, Tornberg, "08)

Surface tractions: UV(
o(s,0) -n= fo(s)t+g(s,0)n ( |

prescribed  unknown

p

Integrated traction (force per unit length):

fo) = | " (5,0) r(s)d0 = 2 fo(s)r(sIm()p + £ (5)

AN
~ ~

f|» prescribed unknown
(m(s) =1t(s) - p)

J

Force and torque balances:

L/2 L/2
F = / ds=0, T = / sp X f(s 0

L/2 L/2



Single particle flow fields
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(a) 1=0.0 (b) r=1.0
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Spatially organized instability destroys
long-range order. Predicted by
Simha & Ramaswamy 02
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Loss of global orientational order:
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order parameters:

S, =(p-2) & S,=—(3(p-7)’ -]

4 \Q\ N“:“‘*‘ e N
[
RS R e ;‘f{r;‘:—::"\\\\\\\l

._._..__H_,,,. R I T,

Emergence of large-scale dynamical flow
as in Dombrowski et al, Hernandez-Ortiz et al




A Kinetic theory for active suspensions s&s, PRL ‘08, PF <08
Pose Fokker-Planck equation for distribution function ¥ (x, P, t) of particle

center of mass x and (unit) swimming director p (rod theory, Doi & Edwards, '86) :
: : , 1
W,V o(XF)+V o(pP)=0 with devxjdsp\}' =n

w. "particle" fluxes | X = % P +u(x,t) -V, (D In ‘P)

p=(I-pp)(yE+W)p-V_(dIn¥)
Background fluid velocity:
Vag—-Au=V.X® and Veu=0
driven by active swimming stress (Kirkwood theory; Batchelor '70):
X% (x,t)= aodep\P (x,p.t)[pp—1/3]

Pushers: o, <0; Pullers: o, >0

Important d'less parameters: U, -1, o, > a=0(1), L— L/I,



A usetul special case

Neglecting diffusion, consider a locally aligned suspension:
¥ (x,p.t)= C(x,t)&(p —n(x,t))
Setting D=d=0 The full kinetic equations reduce exactly to:

" oc
E+on((n+u)c) =0

Z_?+ (n + u).vxn = (I -nn)VXun (preserves nen = 1)
-

with V _q-Viu=-V % V eu=0

and particle

extra stress X’ =ac(xt)(nn—-1/3)



Stability analysis II: uniform 1sotropic case

A nearly 1sotropic uniform suspension:

¥(x.p.t) =$[l+g\?k (p)e‘<“'x+ﬁt)}

Derive relation:

~ Siay K- P ~
W, =— -F| ¥ 1
“ 27 A+ik- p+Dk2p [ k] 1)

where
F[\Pk] = (I—lA(lA()J‘dSp.p'(lA(-p')qfk (p')
Applying F operator to (1), and evaluation of the integral,

yields the eigenvalue relation:

W20 Sa (- ogd |1 w a=-i(240K) K



a =—1 (pushers), y=I (rods), D=0

0.5 0.7
0.6
" A A
Re | Im
U 0.4
w1 WR
0.2 4 0.3 1
0.2
0.1
0.1 1
0.0 : ‘ 1 ' 0.0 : : ‘ ‘
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
k k

Suspensions of pushers are unstable at long wavelengths.

pullers are stable
(eigen-solutions do not describe small-scale behavior - Hohenegger & Shelley "09)

. . . N 1 _ no concentration fluctuations
Eigenfunctions: €, = j ds, W, (p)=0

in linear theory.

SN active stress eigen-modes are
S8 =Kk, +k k

shear-stresses.
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t =95

velocity field

90

t

Long-time dynamics
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= The concentration bands are located inside shear layers.

= These shear layers become unstable, leading to the formation of vortices and to the

break-up of the bands, which then reform in the transverse direction.



0 0

N v
Configurational entropy: {S = _[ dv, j ds, [‘P_j In (‘P_j
>0; =0 only for ¥ =¥,

dS 3 a
— :a\PojdVXE:Z —qj—ojdVdeSp\P[D‘Vxln\P‘2+d‘Vplnqu}

dt

But ... from the momentum equations:

Pa(t):jdVXE:Za :ZjdVXE:E

rate of viscous dissipation balances the

active power input P, (t) of the swimmers

N dS: —6 J-dvx
dt a¥,

E| —Tiojdvxjdsp\{f[D V,In¥[ +d|V, ln‘PH

Pullers («>0): fluctuations, as measured by S, will dissipate.
Pushers (a < 0): the input power increases fluctuations,

until limited by diffusive processes.



P a(t) _total entropy
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Active swimmer power density:
p(x,t)= —jdp(apTE(x,t)p)‘P(x,p,t); P.(t)= J.de p(x.t)

For P, (t) to be positive w. <0, expect p to be aligned with extensional axis of E

(@) p(x) (b) Amax (x)

S

1.40




Mixing by active suspensions

Efficient convective fluid
mixing 1s achieved by
stretching and folding of fluid
elements during the formation
and break-up of the
concentration bands.

After approximately 4 cycles,
good mixing is achieved in the
suspension.

From Mathew et al '07:

mixing norm": || S ||H_1/2

ol -

Pushers, =3 x 10~
mmmmm Pushers, d=6 x 107
e o+ Pullers, d =3 %107
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Conclusions

= Aligned suspensions of swimming rods destabilize as a result of hydrodynamic
interactions.

" The chaotic flow fields arising in suspensions of swimming rods are dominated
locally by near uniaxial extensional (pushers) and compressional (pullers) flows.

= At steady state, particle orientations show a clear correlation at short length
scales owing to the disturbance flow and to hydrodynamic interactions. This
correlation results in an enhancement (or decrease) of the mean particle
swimming speed.

* Dynamics in thin liquid films are characterized by a strong particle migration
towards the gas/liquid interfaces.

» Kinetic theory predicts instabilities for both aligned and isotropic suspensions.
In the isotropic case, the instability is driven by the particle shear stress.

* Non-linear simulations show that active suspensions evolve toward non-
uniform distributions as a result of these instabilities. More precisely, the shear
stress instability causes the local polar alignment of the particles, which in turn
results in the formation of concentration inhomogeneities.



