Rapid influenza reinfection

Likely mechanisms and potential impacts during a pandemic

Anton Camacho, Sébastien Ballesteros, Andrea L. Graham, Fabrice Carrat & Bernard Cazelles

Department of Biology UMR 7625, UPMC-CNRS-ENS camacho@biologie.ens.fr

A two-wave epidemic on Tristan da Cunha (1971)

A two-wave epidemic on Tristan da Cunha (1971)

A two-wave epidemic on Tristan da Cunha (1971)

A simple mechanistic approach

A simple mechanistic approach

Flexible distribution of the removed period: quarantine, non-specific protection, etc.

H1: the virus mutated during the first epidemic-wave

HI: the virus mutated during the first epidemic-wave

H1: the virus mutated during the first epidemic-wave

- $\sigma \in [0, 1]$ cross-immunity
- 2-strain history-based model (Rios-Doria & Chowell 2009)

H2: two different viruses at the beginning

- no cross-immunity
- 2-virus history-based model

H3: partially-protective immunity

 $\sigma \in [0, 1]$: probability to be reinfected (Gomes et al. 2004)

H4: All-or-Nothing

α: the probability to develop long-term immunity (Mathews et al. 2007)

H5: intra-host recrudescence of infection

α: the probability to clear the viral load

H6: window-of-reinfection

1/T: the mean duration of the window of susceptibility before developing immunity

Likelihood-based inference

For a given time series: $y_{1:T} = (y_1, y_2, ..., y_T)$ and a state space model completely specified by:

$$M: \begin{cases} f(x_t|x_{t-1},\theta) & \text{the conditional transition density} \\ f(y_t|x_t,\theta) & \text{the conditional distribution} \\ & \text{of the observation process} \\ f(x_0|\theta) & \text{the initial density} \end{cases}$$

the likelihood is given by the identity:

$$f(y_{1:T}|\theta) = \prod_{t=1}^{T} f(y_t|y_{1:t-1},\theta)$$

where x_t is the unobserved Markov process, θ is the unknown vector of parameters and f(.|.) is a generic density specified by its arguments

Exploring the likelihood surface

Exploring the likelihood surface with MIF (lonides et al. 2006)

3 localmaximaI globalmaximum

Global convergence

Exploring the likelihood surface with MIF (lonides et al. 2006)

3 localmaximaI globalmaximum

Local trap:

- initial θ
- MIF parametrization

Log-likelihood profile

Parameter identifiability

Structural non-identifiability (Mutation: H1)

Structural non-identifiability between σ and $\beta_2 \Rightarrow \beta_2 = \beta_1$

Practical non-identifiability (In-Host: H5)

Model selection: Akaike information criterion

$$AIC_c = -2\mathcal{L}(\theta_{MLE}) + 2k + \frac{2k(k+1)}{T-k-1} \text{ with } k = ||\theta||$$

Model	Win	AoN	2Vi	Mut	In-Host	PPI
k	9	9	10	10	9	9
Log-Like	-112.52	-112.78	-114.75	-115.20	-117.50	-118.44
ΔAIC _c	0	0.52	7.37	8.27	9.96	11.84

Maximum likelihood parameters

Parameter	Win	AoN	
$R_0 = \beta/\nu$	10.38	11.27	
Mean latent period (days)	2.14	2.11	
Mean infectious period (days)	2.01	2.43	
Mean removed period (days)	13.58 (shape 5)	11.62 (shape 4)	
Reinfection window (days)	4.86	-	
Probability of long-term immunity	-	0.53	

Immunological support: primary influenza infection

Large pop: N = I million hab. $R_0 = I.4 (2009 pH_1N_1)$

Tristan da Cunha:

N = 284 hab.

 $R_0 \approx 11$

Large pop: N = I million hab. $R_0 = I.4 (2009 pH_1N_1)$

Tristan da Cunha:

N = 284 hab.

 $R_0 \approx 11$

Large pop: N = I million hab. $R_0 = I.4 (2009 pH_1N_1)$

Tristan da Cunha:

N = 284 hab.

Conclusion

- Maximum likelihood via Iterated Filtering (MIF, Ionides et al. 2006) is a rigorous statistical framework for parameter inference and selection based on AIC for non-linear stochastic models.
- Identifiability analysis and 95% CI via log-likelihood profile
- Rapid influenza reinfection is likely due to a combination of ecological and immunological factors:
 - I. Window-of-reinfection (Win) + high exposure
 - 2. Lack of antibody response (AoN) + re-exposure
- During a pandemic, the lack of antibody response has a greater impact than the window-of-reinfection (break of herd immunity)
- Experimental validation and accurate predictions with a more realistic large population model (heterogeneous mixing, seasonal forcing, external reintroduction, pre-existing immunity, etc.)