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Motivation

Extinction of species happens at an ever increasing rate.

Causes:
  some of specific biological nature

  some due to fluctuations:  small numbers 
  sexual reproduction: partners have to be able to meet
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  statistical mechanics applied

     to conservation ecology

What is the optimal size for a 
refuge?

From
http://www.iucnredlist.org/info/2007RL Stats Table%202.pdf. 
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Model

Die with probability:

Sexual reproducing individuals 

Move about by random walk

May reproduce when nearest neighbours: 
 

pb

pd

3.1: Research into similar models
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Figure 3.1: Two example plots in the (1+1)-dimensional simulations results with pb =

0.5 and pd = 0.07. The black plot is an average over 1, 000 runs, whereas the red plot is

the data from just one run.

sites is stored. A site is then randomly chosen from these occupied sites. No empty sites are

chosen which speeds up the process. Here, a time step is defined as the number of occupied

sites noc. Figure 3.2 shows an example of how the algorithm updates for d = 1. We let tmc

denote a single update and see that after five updates, the population has increased by one

after reaching a maximum size of four at tmc = 4.

3.1 Research into similar models

From the description of the model, we see that we have the following reactions for diffusion,

birth and death respectively for a particle A:

Aφ←→ φA, 2A+ φ −→ 3A and A −→ φ, (3.1)

where φ represents an empty site.

Many similar interacting particle systems have been, and continue to be, studied. In

most cases, the models are seen as simply that: interacting particles that do not represent

any physical quantity. General reactions of the form

nA −→ (n+ k)A, mA −→ (m− l)A (3.2)

have also been examined [133, 134, 129], but often with m,n > 1, k, l > 0 and m − l ≥ 0.

Of particular interest in recent literature has been the special case n = m with k = 1 and

0 < l ≤ n, i.e.

nA −→ (n+ 1)A, nA −→ (n− l)A. (3.3)
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dρ(t)
dt

= pb(1− pd)ρ2(t)[1− ρ(t)]− pdρ(t)

Mean field equation

ρ̄0 = 0 or ρ̄± =
1
2
[1±

√

1− 4pd

pb(1− pd)
]

pdc = pb/(4 + pb)

lim
t→∞

ρ̄(t) = ρ̄+ for pd ≤ pdc

For ρ(0) = 1
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3.2: Extinction

x

t

Figure 3.4: Space-time plots showing examples where the population survives (left)

and dies out (right) for tmax = 2, 000. A value of pb = 0.5 was used in both cases with

pd = 0.071 in the left plot and pd = 0.075 in the right.

is highly significant. Since two particles have to meet for population growth, we expect the

population density to be highly significant because, for decreasing density, the individuals

will find it increasingly hard to find another before they die. We can see this clearly from

the MF equation which shows that for ρ(t)! 1,

dρ(t)

dt
≈ −pdρ(t), (3.11)

so that the density decays exponentially for small ρ, emphasising the extinction risk for

small density. More explicitly, we can examine the stability of the steady state population

densities by plotting in Figure 3.5 a) dρ/dt versus ρ. We see that, whereas both ρ̄+ and ρ̄0

are stable, ρ̄− is unstable. This leads to the bifurcation diagram shown in Figure 3.5 b).

Due to the relative stabilities of the stationary points, we find that ρ̄− represents a threshold

population density ρt below which extinction will occur in all circumstances. In fact, from

the MF, for pd ≤ pdc , we have

lim
t→∞

ρ(t) =





0 for ρ(t) < ρt,

ρ̄+ otherwise .
(3.12)

Such a density-dependence is known as Allee effects, which will be discussed in great detail

in Chapter 5.

Having given a very brief overview of the model and how it predicts extinction of the

population under certain conditions, we proceed in the next chapter to give a more detailed

analysis of the critical behaviour. While this will be largely theoretical, we will give some

61

The spatio-temporal process
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3.2: Extinction

a) b)

ρ̄− ρ̄+

ρ̄0

ρ

dρ/dt

ρ̄+

ρ̄−

ρ̄0

pdc pd

ρ̄

Figure 3.5: a) dρ/dt versus ρ showing the (in)stability of the stationary points ρ̄+, (ρ̄−)

and ρ̄0. b) Bifurcation diagram according to the MF equation where solid lines show the

stable, and hashed lines the unstable, steady states.

ecological implications of the behaviour. Such implications will, however, be examined in

considerably more detail in Chapter 5, where we study the fluctuations in the population

density as well as the Allee effects. While non-mathematicians and physicists should not be

deterred by the next chapter, those not wanting to focus on all the intricacies of the phase

transition can proceed straight to Chapter 5.
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Density dependence of 
survival probability known as 
Allee effect.

Below           extinctionρ̄−
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 Extinction as phase 
transition 
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Figure 4.1: Steady state population densities for the MF (line) and the (1 + 1)- (+),

(2 + 1)- (×) and (3 + 1)- (•) dimensional MC simulations.

To find the steady state, we examine surviving runs only, using increasing numbers of

time steps (up to 105) as the critical point is approached. As we saw in Section 2.4.1, these

increasing time steps are required due to the diverging temporal correlation length as the

critical point is approached.

We see from the results that there is a strong indication of a first-order phase transition

in 2 + 1 and 3+ 1 dimensions and a continuous phase transition in 1 + 1 dimensions due to

the discontinuity in ρ̄s(pd) in 2+1 and 3+1 dimensions and continuity in 1+1 dimensions.

While these results are compelling, we note that, since the simulations were performed on

finite lattices and for finite times, we cannot take them to be conclusive since, in such

simulations, there is always a non-zero probability of survival for finite t even for pd > pdc .

Instead, we look for power law behaviour in ρ(t) close to the critical point. For a continuous

phase transition we expect asymptotic power law behaviour of the order parameter at the

critical point (see Section 2.4.1) of the form

ρ(t) ∝ t−δ, (4.1)

where δ = β/ν‖. We recall from Chapter 2 that in such log-log plots, positive curvature for

large t indicates the system is in the active phase whereas negative curvature implies that

the system is in the absorbing phase. A first-order phase transition will therefore be marked

by non-power law behaviour; rather, exponential decay of the order parameter for pd > pdc .

Figure 4.2 shows power law behaviour in 1+1 dimensions, whereas no power law behaviour

in 2 + 1 dimensions, for ρ(t) with different values of pd close to the critical point.
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Extinction as a phase transition
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Figure 4.1: Steady state population densities for the MF (line) and the (1 + 1)- (+),

(2 + 1)- (×) and (3 + 1)- (•) dimensional MC simulations.

To find the steady state, we examine surviving runs only, using increasing numbers of

time steps (up to 105) as the critical point is approached. As we saw in Section 2.4.1, these

increasing time steps are required due to the diverging temporal correlation length as the

critical point is approached.

We see from the results that there is a strong indication of a first-order phase transition

in 2 + 1 and 3+ 1 dimensions and a continuous phase transition in 1 + 1 dimensions due to

the discontinuity in ρ̄s(pd) in 2+1 and 3+1 dimensions and continuity in 1+1 dimensions.

While these results are compelling, we note that, since the simulations were performed on

finite lattices and for finite times, we cannot take them to be conclusive since, in such

simulations, there is always a non-zero probability of survival for finite t even for pd > pdc .

Instead, we look for power law behaviour in ρ(t) close to the critical point. For a continuous

phase transition we expect asymptotic power law behaviour of the order parameter at the

critical point (see Section 2.4.1) of the form

ρ(t) ∝ t−δ, (4.1)

where δ = β/ν‖. We recall from Chapter 2 that in such log-log plots, positive curvature for

large t indicates the system is in the active phase whereas negative curvature implies that

the system is in the absorbing phase. A first-order phase transition will therefore be marked

by non-power law behaviour; rather, exponential decay of the order parameter for pd > pdc .

Figure 4.2 shows power law behaviour in 1+1 dimensions, whereas no power law behaviour

in 2 + 1 dimensions, for ρ(t) with different values of pd close to the critical point.
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Discontinuous change for d> 1

Continuous change for d = 1            look for            ρ(t) ∝ t−δ

A. Windus and H.J. Jensen, 
Phase transitions in a lattice population model. 
J Phys A, 40, 2287-2297 (2007).

d=1:
Exponents consistent with 
Directed Percolation class
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Figure 4.2: a) Log-log plots showing power law behaviour at the critical point for the

(1+1)-dimensional model (middle black line) and non-power law behaviour for the off

critical points. The black lines represent (from top to bottom) pd = 0.071654, 0.071754

and 0.071854. The red line represents the gradient -0.159 as a guide for the eye. b)

Non-power law behaviour for various values of pd close to the critical point for the 2 + 1

dimensional model. The exponential decay for the super-critical values are shown in the

inset. The 3 + 1 dimensional case is very similar. Information on how the critical points

were found are detailed later in this chapter.

Due to phase co-existence that occurs in first-order phase transitions, one further way

to examine whether or not a model exhibits such a phase transition is by the presence of

hysteresis [140,142] through a change in the control parameter, pd. Here, and indeed in the

cases cited, the absorbing state hinders the manifestation of hysteresis effects. To remove

this problem, we introduce spontaneous particle creation, φ −→ A at rate κ# 1 to remove

the absorbing state. Since κ is small, the inclusion should have a negligible influence on the

ordering mechanism and therefore on the qualitative nature of the transition observed. We

see in Figure 4.3 that, while we see clear hysteresis loops in 2 + 1 and 3 + 1 dimensions,

no such hysteresis occurs in 1+ 1 dimensions, confirming our earlier observations. We later

examine the first-order phase transitions in Section 4.2 after studying the continuous phase

transition in 1 + 1 dimensions.
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Continuous transition: Algebraic indicator 
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4.1: Continuous phase transition
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Figure 4.3: Hysteresis loop for the a) (2+1)- (inset) and (3+1)-dimensional models and

b) no hysteresis occurring in the (1+1)-dimensional model. The ticks show pd increasing

(×) and decreasing (+).

4.1 Continuous phase transition: d = 1

4.1.1 Time-dependent behaviour

Having established the order of the phase transition in the different dimensions, we focus

in this section on the (1 + 1)-dimensional case. Since the model shows a continuous phase

transition, we must ask ourselves to which universality class it belongs. By Grassberger and

Janssen’s conjecture (see page 48), we would expect it to belong to the universality class of

DP. We investigate this now by looking at the critical exponents and the scaling functions

in turn.

Critical exponents

One method of finding the critical exponents is through steady state simulations. Using

Equation (2.10), we can produce log-log plots of, for example, the steady state population

density against (pdc − pd). The value of the gradient will then give us a value for β.

However, as we saw in Section 2.4, finding the critical exponents in this way is notoriously

hard due to critical slowing down, finite size effects, large fluctuations and the difficulties

that arise in finding the critical point. A much more effective method is to use time-

dependent simulations, which have proved to be a very efficient way of determining the

critical exponents and the critical point for models exhibiting absorbing phase transitions

[102]. Using this method, the time-evolution of the model is observed up to some time tmax,

66

Discontinuous transition: hysteresis 
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Continuous transition in d = 1
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4.1: Continuous phase transition
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Figure 4.4: Plots of a) η(t) and b) δ(t) up to t = 106. From top to bottom, pd =

0.071746, 0.071754 (red) and 0.071762. Plots c) and d) show the same but only up to

t = 104 and with pd = pdc = 0.071754 only. The insets show the plots of n(t) and P (t)

with the hashed lines showing the gradients of η and δ respectively.

and, again, similarly for n(t). Therefore, if we plot δ(t) versus t−1, we have that the critical

exponent δ is given by the intercept with the y axis and any curvature would indicate a

correction-to-scaling exponent less than 1.

We plot in Figures 4.4 a) and b) η(t) and δ(t) versus 1/t for t up to 106 and over 105

runs for three different values of pd. We find that the data is in fact very noisy, leading

to inaccurate results for the critical exponents. However, it is clear that the gradient in-

creases for pd = 0.071746 and decreases for pd = 0.071762 for large t whereas we have

an approximately straight line for pd = 0.071754. This is especially true for η(t). This

therefore gives a value of pdc = 0.071754± 0.000004. We plot in Figures 4.4 c) and d) η(t)

and δ(t) for pd = 0.071754 but this time to t = 104 and over 2.5 × 106 runs to improve

the accuracy of the results. From this plot we can obtain the values η = 0.314 ± 0.002

and δ = 0.160 ± 0.002 by extrapolation, which are in agreement with the best currently

known DP values of η = 0.313686 and δ = 0.159464 [150]. Due to the large amounts of runs

68

pd = pdc

P (t) ∼ t−τ

n(t) ∼ tη

η = 0.314± 0.002
δ = 0.160± 0.00.2

η = 0.313686
δ = 0.159464
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First order in d  ≧  2

Histogram indicators

4.2: First-order phase transitions

a) b)
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Figure 4.8: a) Normalised histogram, N ′(ρ) for different population densities in the

(1+1)-dimensional (left) and (2+1)-dimensional (right) cases showing the results at the

critical point for a continuous and first-order phase transition respectively. b) Example

of output at the critical point pdc with pdc − 0.001 (top) and pdc +0.001 (bottom) in the

(2+1)-dimensional case.

phase transition, however, due to the power law behaviour ρ(t) ∝̄ t−δ, we expect N(ρ̄0)# 1

at the critical point with N(ρ̄0) > 0 only because of the finite size effects. These predictions

are confirmed in Figure 4.8 a), where we plot the histogram at the critical points for both

the 1 + 1 and 2 + 1 dimensional cases.

To carry out the simulations, we ran the model beginning from a fully-occupied lattice

up to some tmax time steps. At regular time intervals, we recorded the population density,

enabling us to plot the histogram after numerous independent runs had been made. If the

population went extinct at t < tmax, we recorded a population density of zero and then

exited the program. To find the critical point, we began with an initial seed for the random

number generator. The simulation was then repeated over a number of independent runs.

The height of the two peaks was measured and the value of pd altered according to the

relative size of the two peaks, indicating a sub- or super-critical death rate. Using the same

initial seed, an iterative procedure produced a value for pdc(L). This procedure was repeated

using different seeds and the average value for pdc(L) was taken.

There is, however, a clear difference between this approach and Lee and Kosterlitz’s

original method for equilibrium phase transitions. In equilibrium, the system can change

from one phase to the other. Here, however, the system can only move from the active to the

absorbing state and not vice versa. Equality in the size of the peaks may well then provide a

false picture of criticality since the population density can fluctuate around ρ̄+ but certainly
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4.2: First-order phase transitions
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Figure 4.9: Histogram of population density for different number of time steps at a)

a first-order phase transition and b) a continuous phase transition. In both cases, from

right to left, t = 100, 200, 400, 800, 1600, 3200, 6400 and 12800.

not around ρ̄0. Therefore, we anticipate the method to have a strong L-dependence. If we

extrapolate the results as L → ∞, we would then expect to obtain an accurate result for

the critical point since the fluctuations vanish in the thermodynamic limit.

Before testing our approach for finding the critical point with another, we first examine

the sensitivity of the method to pd and its dependence on the value of tmax. To examine

the former, for a fixed L, we obtain pdc(L) in Figure 4.8 b) by finding the value of pd that

equates the size of the two peaks. We then examine the histograms with pdc(L)±0.001. The

difference we observe in the size of the two peaks by using these different values shows the

sensitivity to pd. To examine the tmax-dependence, we plot in Figure 4.9 various histograms

for different values of tmax for both continuous and first-order phase transitions. While the

dependence is large for small tmax, for tmax > 3, 200, the difference in the results is negligible.

When using this method, then, if we ensure that tmax ≥ 104 to guarantee that the finite

number of time steps used does not affect the results, we expect accurate results for pdc due

to the sensitivity of the histograms to pd. We now use the method to find the value of pdc

for our model in 2+1 dimensions. We plot the results for the different values of L in Figure

4.10 a) and extrapolate as L → ∞ to find the critical point. From the figure, the critical

point is found to be pdc = 0.0973± 0.00005.

To test the accuracy of our approach, we compare it with another that is used to find

the critical point at first-order phase transitions. This method examines the dynamics of an

initially straight interface between the two phases. In the subcritical regime, the interface

will grow in the direction of the inactive phase, and vice versa in the supercritical regime.
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4.2: First-order phase transitions
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Figure 4.10: L-dependent critical point in 2+1 dimensions for a) our histogram method

and b) the interface method. In a) the red hashed line shows the line of best fit, extrap-

olating to the thermodynamic limit and in b), it shows the mean value of pd1 (top) and

pd2 (bottom).

At the critical point, then, neither phase ‘wins’ in the long-term limit [117]. For finite L,

there exits a pd1 such that for pd < pd1 , the active state always wins, and a pd2 such that

for pd > pd2 , the inactive state always wins. For pd1 < pd < pd2 , both phases appear with

non-zero probability. The size of this interval decreases with system size so that a well

defined transition point pdc exists in the thermodynamic limit.

In practice, we carry out these simulations by beginning with only the middle half of

the lattice containing active sites; the rest being empty. An example can be seen in Figure

4.11 where we show snapshots of the population at various time intervals for both sub- and

supercritical values of pd. We plot the results for this method using our model in Figure 4.10.

Again, extrapolating the results to the thermodynamic limit, the method predicts pdc =

0.096(3). The two methods then differ by only 0.001 showing good agreement. However, as

Figure 4.10 shows, whereas the extrapolation of the results to the thermodynamic limit was

straightforward using our histogram method due to the linear behaviour, using the interface

method no such behaviour in the plots against 1/n was observed. We therefore expect our

method to produce the value of the critical point with greater precision due to the more

accurate extrapolations that can be obtained from this linear behaviour.

In contrast to the time-dependent simulations that we carried out for the continuous

phase transitions, this technique is hampered by finite size effects in both space and time.

While these have been minimised by using large time scales and extrapolating the results for

infinite L, such a technique is unlikely to give as accurate values for the critical parameters
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Interface Method
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Between one and two 
dimensions
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Does the change in the nature of transition occur
for d between 1 and 2 dimensions?
 

Fractals of different fractal mass dimensions

4.3: The transition from continuous to first-order behaviour

as the time-dependent simulation results. While in both cases the accuracy of the results

is limited only by computer time, much greater effort is required to obtain the accuracy

using our method, or indeed any other method that has been used to obtain the critical

parameters in first-order phase transitions.

4.3 The transition from continuous to first-order behaviour: 1 < d < 2

We have seen how our model displays a continuous (and DP) phase transition in 1+1

dimensions, but a first-order transition in higher dimensions. We investigate in this section

at what dimension the change in order of the phase transition occurs. We examine the

model, therefore, on lattices with fractal dimensions 1 < df < 2. While the main focus will

be on the order of the phase transitions, since the critical point as well the critical exponents

(see Table 2.1 on page 51) depend upon the dimensionality of the system, these will also be

examined.

Sierpinski carpets have been widely used to provide a generic model of fractals to study

physical phenomena in fractal dimensions (see for example [153,154,155,156,157,158]). They

are formed by dividing a square into l2 sub-squares and removing (l2 − Noc) of these sub-

squares from the centre [159]. This procedure is then iterated on the remaining subsquares

and repeated κ times. As κ → ∞, a fractal structure denoted by SC(l2, Noc) is formed.

For finite κ, however, we denote the structure SC(l2, Noc,κ) which has N = Nκoc sites. The

Hausdorff fractal dimension of the structure as κ → ∞ is then df = ln(Noc)/ ln(l). Using

different values of l and Noc enable us to use lattices of different fractal dimension df where

1 < df < 2. Examples of such lattices are given in Figure 4.12.

SC(92, 32, 3) SC(52, 16, 4) SC(42, 12, 4) SC(32, 8, 5)

Figure 4.12: Pictures of Sierpinski carpets of various fractal dimensions. Although a

finite value of κ was used in each case, we give the approximate fractal dimensions as (from

left to right) df $ log(32)/ log(9) = 1.5573, log(16)/ log(5) = 1.7227, log(12)/ log(4) =

1.7925 and log(8)/ log(3) = 1.8928 (all to 4 decimal places).
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Change in order of phase transition on fractal lattice. 
Physica A 388, 3107 (2009)
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4.3: The transition from continuous to first-order behaviour

Continuous phase transition: First-order phase transition:

df ! log(16)/ log(5) df ! log(8)/ log(3)

10
3

10
4

10
5

10
6

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

t

P
(t
),
n
(t
)

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8
x 10

-3

ρ

N(ρ)

Figure 4.13: Results and snapshots of the simulations for the continuous (left) and

first-order (right) phase transitions. For the continuous phase transition, we have used a

single seed and we see the resulting power law behaviour along the hashed lines. For the

first-order phase transition we began the simulations from a fully-occupied lattice and

we observe the double-peaked structure in the histogram of population density.

independent runs over which the simulations were run to 2.25× 108. The simulations took

over three months of computer time for each parameter value. As the crossover in the order

of transition is approached, these corrections to scaling are likely to increase further in size.

This, then, represents a further challenge in obtaining accurate values for the critical points

and exponents as df → dfc .

From the other end of the interval 1 < df < 2, for df ! 1.8928, no power law behaviour

was seen. Instead, we observed a double-peaked structure in the histogram of population

density. To increase the size of our lattice, we increased the value of κ and found the

value of pdc for each case. Extrapolating the results for infinite system size, we obtained an

approximation for the critical point as shown in Figure 4.14 c).

For df ! 1.7925, the histogram plots do not show the double-peaked structure close to

the critical point. Plots of n(t) and P (t) appear to show power law behaviour, but with

very large corrections to scaling. The plots shown in Figure 4.14 d) required more than

80

Change in nature of transition appears to 
happen for d ≃ 1.7 

Wednesday, 13 January 2010



  

 

Henrik Jeldtoft Jensen                                                 Imperial College London

Scaling relation for df < dc

η + 2δ = d/z → η + 2δ = df/z

Measure η and δ in simulations from

and estimate z from zscaling =
df

η + 2δ

compare with the directly measured value of z from

R2(t)∝̄ t2/z

P (t) ∝̄ t−δ

n(t) ∝̄ tη
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Behaviour below and above d=1.7

Change from 
continuous to 
discontinuous 
transition at 
about df = 1.7
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Conservation ecology

Size of refuge

http://www.associatedcontent.com/
image/16036/china_endangered_species_hunt.htm

From
http://www.iucnredlist.org/info/2007RL Stats Table%202.pdf. 
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Conservational implications of the model

  Analytic analysis of population dynamics equations like

       conclude the existence of a threshold habitat size above which          
       extinction won’t occur. 
 

  We find that size dependence is more subtle and strongly   
      influenced by the existence of a critical point. 
      Fluctuations important.

∂ρ(x, t)
∂t

= µρ− ρ2 + D∇2ρ

A. Windus and H.J. Jensen
Allee Effects and Extinction in a Lattice Model. 
Theo. Popul. Biol. 72, ,459-467 (2007).
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Conservational implications of the model
   The need to find a mate introduces a direct density effect.

  

 

5.2: Allee effects
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Figure 5.5: a) The average population density of the surviving runs only. b) The

average population density of all the runs (solid line) and the survival probability P (t)

(hashed line), i.e. the probability that extinction has not occurred up to time t. c) Plot

showing the recovery of the population density for the surviving runs only after a disease

breakout at t = 3000 due to the re-sizing of the lattice. The lattice is returned to how it

was originally at t = 6000 and the population recovers its original size.

Here, then, the observed time delay of approximately 40 time steps, with pd = 0.093,

corresponds to approximately four lifetimes. In general, the delay presents an opportunity

to act in order to increase the probability of survival.

According to our model, in order to reduce the probability of extinction in such a case, the

population density must be increased beyond ρt. This has important ecological implications

since it shows that the probability of extinction can be decreased not only by increasing the

population (which is of course not always possible), but also by a decrease in habitat size

for a fixed population.

To test whether this hypothesis holds, we simulate this again using pd = 0.093 but with

ρε = ρt = 0.14 so that the probability of survival is negligible. Now, however, once the
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a) b)
Increase       to 1 at

      briefly to let 

population density

drop to 

pd

tk

Most run did result
in extinction !

Exploit time delay !

Reduce area
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ρε = ρ̄−
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5.2: Allee effects

a) b)
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Figure 5.6: a) How the probability of survival changes with different reductions in

habitat area, ∆A for ρε = ρt = 0.05 (!), 0.08 (♦), 0.11 ("), 0.14 (◦) and 0.17 ($).
The corresponding values of pd were 0.089, 0.091, 0.092, 0.093 and 0.094 respectively. b)

How the probability of survival changes with reductions in habitat size, ∆A, for different

initial values L = 26 (!), 32 (♦), 38 ("), 44 (◦) and 50 ($) with ρε = ρt = 0.11.

population density has been reduced, the area covered by the lattice is halved. This is

achieved by halving the linear length of the lattice in one dimension. The organisms in the

half that is removed are randomly relocated in the remaining half, therefore doubling the

population density. Once the population has recovered and stabilised, the lattice is returned

to its original size. Figure 5.5 c) shows the recovery of the population once the lattice size

has been reduced. With tmax = 9, 000, the probability of survival increases substantially

from 0.004 to 0.278.

We expect there to be an optimal habitat reduction size: too large a reduction and the

population will be in danger from the large fluctuations associated with smaller habitat or

population sizes, but if the reduction is too small the density will not be increased sufficiently.

This is confirmed in Figure 5.6 a), where we plot the probability of survival Ps up to some

tmax against the proportional reduction in area A for different values of ρt. We define this

proportional reduction in area ∆A to be ∆A = 1−Anew/Aold. Again, a 2 dimensional lattice

with an initial value L = 30 was used and Ps measured with tmax = 4, 000. An optimal

value of ∆A clearly exists in each case.

From Figure 5.6 a), we see that the greatest value of Ps is achieved with ρε = 0.11.

Smaller values of ρε result in smaller populations, which, from Section 5.1, are at greater

risk of extinction from fluctuations. Since in Figure 5.6 a) ρε = ρt, larger values of ρε are

associated with larger values of pd. Again, from Section 5.1, these populations are also at
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Survival probability and habitat size
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Mixture of asexual and sexual 
reproduction

All bacteria and viruses exhibit asexual 
reproduction. Fungi and Oomycetes can 
be asexual, sexual, or exhibit a mixture of 
both types of reproduction.

Darryl Stubbs 

http://en.wikipedia.org/wiki/Oomycete
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Tricritical behaviour

Generalised model.
      asexual reproduction to occur with rate 
      sexual reproduction as before occur with  

6.3: Our models

0
0

pd

k

pb

Continuous phase transition at k = pd
1−pd

First-order phase transition at k = −pb + 2
√
pbpd
1−pd

Tricritical point

Population density dependence

SURVIVAL

EXTINCTION

k = pd
1−pd

Figure 6.2: MF phase diagram showing the first-order and continuous phase transition

lines. The tricritical point is also shown as well as the density-dependent region.

In the region where both phases are possible, the long-term state of the system depends

on the population density. As we saw for the k = 0 case in previous chapters, we have the

threshold population density ρt = ρ̄−. So, for

k < k∗ and
k

1 + k
< pd ≤

(k + pb)2

4pb + (k + pb)2
, (6.48)

lim
t→∞

ρ(t) =





ρ̄+ if ρ(t) ≥ ρt,

0 otherwise.
(6.49)

Figure 6.3 shows how the magnitude of the critical population density varies across the

region. We see that for a fixed k, its value increases with pd, becoming a maximum at

pd = pdc . We note that to the left of the region, the system will always be in the active

state, whereas to the right, the system will be in the inactive state. These outcomes are

then independent of the population density.

As we have seen in previous chapters, we expect at least the quantitative details of the

model to differ from the MF predictions when we examine the model by simulations. We

examine the critical behaviour from the numerical simulations in Section 6.5 after we study

the relative rates of sexual and asexual reproduction.

109

6.4: The relative rates of sexual and asexual reproduction

pd

k

k∗

p∗d

Figure 6.3: Plot showing how the value of the threshold population density varies across

the density-dependent region. The darker the shade, the greater the value.

6.4 The relative rates of sexual and asexual reproduction

From the MF equation (6.8), we have that the rate of asexual reproduction is proportional

to

k(1− pd)ρ(1− ρ), (6.50)

and that of sexual reproduction proportional to

pb(1− pd)ρ2(1− ρ). (6.51)

At the steady state then, we have equality in the number of asexual and sexual reproductions

if

k = pbρ̄. (6.52)

For k > pb, there is clearly no equality since 0 ≤ ρ̄ ≤ 1. For k ≤ pb, however, we have

equality if

k = pbρ̄+ (6.53)

=
pb
2



1− k
pb
+

√(
k

pb
− 1
)2
+
4

pb

(
k − pd
1− pd

)

 . (6.54)
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Relative rates of sexual asexual reproduction

Population structure at criticality. 
For k=0.17 asexual rate = sexual rate

6.4: The relative rates of sexual and asexual reproduction

Initial snapshot Density Asexual Sexual

distribution reproduction rate reproduction rate

Figure 6.5: Plots of initial snapshots and average density distribution and relative

reproduction rates over 50 time steps for (from top to bottom) k = 0.05, 0.17 and 1.0.

The lighter colours indicates the greater probability for the latter three pictures in each

row.

It is interesting to note how the density dependence causes the equality line to take a

quadratic form. For 4pb/(9 + 4pb) ≤ pd ≤ pb/(2 + pb), the rate of asexual reproduction is

greater for

k >
pb
2

(

1 +

√

1− 2pd
pb(1− pd)

)

(6.62)

due to the asexual reproduction rate k being sufficiently high. We also, however, have a

greater rate for

− pb + 2
√
pbpd
1− pd

≤ k < pb
2

(

1−

√

1− 2pd
pb(1− pd)

)

(6.63)

due to the steady state density being sufficiently low so that asexual reproductions are

actually more common.

From the MC simulations, the equality line meets the critical line at k = 0.17 ± 0.005.

This marks the unique critical point at which the rates of both reproduction types are equal.

At criticality, then, for k > 0.17, the rate of asexual reproduction is higher, whereas the rate

of sexual reproduction is greater for k < 0.17. This is significantly lower than what we might

112

Sexual reproduction favoured
 in the denser areas

Concentrate on 2+1
dimensions
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6.5: Criticality
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Figure 6.6: Phase diagram for the MF (lines) and simulation results (×). The

red lines/markers show the critical points and the area in between the blue and red

lines/markers shows the density-dependent region. The inset illustrates a zoomed-in

region for the MC results only.

0.12 < k < 0.14, giving an approximation for the tricritical point k∗.

In what follows, we will certainly not go into as much detail examining the critical

behaviour as we did in Chapter 4. However, we hope to give more of a flavour of this

behaviour, examining some, but not all, of the critical exponents.

6.5.1 The continuous phase transitions: k > k∗

Examining first the dynamical exponents, we again seek power law behaviour for the popu-

lation size n(t) and the survival probability P (t). We plot in Figure 6.7 a) such power law

behaviour for three values of k > k∗. The simulations were run, as before, with different

values of pd for a fixed k until a straight line in the log-log plot of the data was observed.

Having found the critical point, we measured the gradient to give the values of η and δ

respectively. All three plots show DP values of η = 0.230 and δ = 0.451.

We examine now the steady states, initially from the MF. Since we are in the continuous
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Cluster geometry ans survival probability in systems driven by 
reaction diffusion dynamics 
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Improved Mean Field

Cluster approximation

in one dimension

6.6: The cluster approximation method

Reaction ∆n• Probability

• −→ ◦ −1 pdP• = pdρ

•◦ −→ ◦• 0 1
2(1− pd)P•P◦ =

1
2(1− pd)ρ(1− ρ)

◦• −→ •◦ 0 1
2(1− pd)P◦P• =

1
2(1− pd)ρ(1− ρ)

•◦ −→ •• +1 1
2(1− pd)kP•P◦ =

1
2(1− pd)kρ(1− ρ)

◦• −→ •• +1 1
2(1− pd)kP◦P• =

1
2(1− pd)kρ(1− ρ)

• • ◦ −→ • • • +1 1
2(1− pd)pbP

2
•P◦ =

1
2(1− pd)pbρ

2(1− ρ)

◦ • • −→ • • • +1 1
2(1− pd)pbP◦P

2
• =

1
2(1− pd)pbρ

2(1− ρ)

Table 6.2: Reactions for the 1-site approximation.

as before. Here, we note that the diffusion terms do not appear in the 1-site approximation

equation since diffusion does not change the number of single-occupied sites. In the later

approximations, we will see that diffusion does come into the equations.

6.6.2 The 2-site approximation

As we derived in Equations (6.82-6.87), for the pair-approximation we have two independent

variables which we choose to be the particle density ρ(t) = P•(t) and the pair density

c(t) = P••(t). We introduce the notation d(t) = P•◦(t) = ρ(t) − c(t) and e(t) = P◦◦(t) =

1 − 2ρ(t) + c(t). As for the site reactions, we consider the reactions which change the

number of occupied sites n• and the number of pairs of sites n••. The results are listed in

Table 6.3 along with their probabilities of occurring given the particle configuration. Here,

a greater number of particles need to be considered. If we take diffusion, for example, as

shown below, the value of sites 2 and 3 will change as the particle at site 2 moves to site 3.

This, however, affects the pairs (1,2), (2,3) and (3,4), so four sites need to be considered.

Similarly, if the particle at site 2 dies, this only affects the pairs (1,2) and (2,3) and only

three sites need be looked at. To calculate the probabilities, we remind the reader that for

the pair-approximation we investigate pairs of particles with an overlap of one. Ps1s2s3s4 is

123
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Cluster approximation method
6.6: The cluster approximation method

Reaction ∆n• ∆n•• Probability

• • • −→ • ◦ • −1 −2 pdc
2/ρ

• • ◦ −→ • ◦ ◦ −1 −1 pdcd/ρ ×2

◦ • ◦ −→ ◦ ◦ ◦ −1 0 pdd
2/ρ

• • ◦◦ −→ • ◦ •◦ 0 −1 1
2(1− pd)(1− k)cde/ρ(1− ρ) ×2

◦ • ◦• −→ ◦ ◦ •• 0 +1 1
2(1− pd)(1− k)d

3/ρ(1− ρ) ×2

• ◦ ◦ −→ • • ◦ +1 +1 1
2(1− pd)kde/(1− ρ) ×2

• ◦ • −→ • • • +1 +2 1
2(1− pd)kd

2/(1− ρ) ×2

• • ◦◦ −→ • • •◦ +1 +1 1
2(1− pd)pbcde/ρ(1− ρ) ×2

• • ◦• −→ • • •• +1 +2 1
2(1− pd)pbcd

2/ρ(1− ρ) ×2

Table 6.3: Reactions for the 2-site approximation. This time, reactions such as ••◦• −→

• ◦ •• for which ∆n• = ∆n•• = 0 have been ignored. A symmetry factor arising from

the parity symmetry has also been included (right column) rather than writing both

equations down.

then approximated by

Ps1s2s3s4 = Ps1s2
Ps2s3
Ps2

Ps3s4
Ps3
, (6.90)

so that, for example,

P••◦◦ = P••
P•◦
P•

P◦◦
P◦
=

cde

ρ(1− ρ) . (6.91)

We note that whereas diffusion of the particles did not feature at all in the 1-site ap-

proximation, it does appear in the 2-site approximation since n•• can be affected (see rows

four and five in Table 6.3). This gives equations

dρ

dt
= (1− pd)pb

c(ρ− c)
ρ

− pdρ+ (1− pd)k
d(d+ e)

(1− ρ)

= (1− pd)
(ρ− c)(pbc+ kρ)

ρ
− pdρ, (6.92)

dc

dt
= (1− pd)

(ρ− c)
(
(1− k)(ρ2 − c) + pbc(1− c)

)

ρ(1− ρ) − 2pdc

+ (1− pd)k
(ρ− c)(1− c)
(1− ρ)

= (1− pd)
(ρ− c)

[
(1− k)(ρ2 − c) + (1− c)(kρ+ pbc)

]

ρ(1− ρ) − 2pdc, (6.93)

where we have used such relations as d + e = 1 − ρ. We notice that, if we again make the

assumption that all the sites are independent so that c = ρ2, we return to our original MF
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Wednesday, 13 January 2010



  

 

Henrik Jeldtoft Jensen                                                 Imperial College London

6.6: The cluster approximation method

Reaction ∆n••• ∆n••◦ ∆n•◦◦ ∆n•◦• Probability

◦ ◦ • ◦ ◦ −→ ◦ ◦ ◦ ◦ ◦ 0 0 −1 0 pdz
2w/d2

◦ ◦ • ◦ • −→ ◦ ◦ ◦ ◦ • 0 0 0 −1 pdzvw/d
2 ×2

◦ ◦ • • ◦ −→ ◦ ◦ ◦ • ◦ 0 −1 0 0 pdy
2z/cd ×2

◦ ◦ • • • −→ ◦ ◦ ◦ • • −1 0 0 0 pdxyz/cd ×2
◦ • • ◦ • −→ ◦ • ◦ ◦ • 0 −1 1 −1 pdy

2v/cd ×2
◦ • • • ◦ −→ ◦ • ◦ • ◦ −1 −1 0 1 pdxy

2/c2

◦ • • • • −→ ◦ • ◦ • • −2 0 0 1 pdx
2y/c2 ×2

• ◦ • ◦ • −→ • ◦ ◦ ◦ • 0 0 1 −2 pdv
2w/d2

• ◦ • • • −→ • ◦ ◦ • • −1 0 1 −1 pdxyv/cd ×2
• • • • • −→ • • ◦ • • −3 1 0 1 pdx

3/c2

◦ ◦ • ◦ ◦• −→ ◦ ◦ ◦ • ◦• 0 0 −1 1 1
2(1− pd)(1− k)z

3w/d2e ×2
◦ ◦ • ◦ •◦ −→ ◦ ◦ ◦ • •◦ 0 1 0 −1 1

2(1− pd)(1− k)zvw
2/d3 ×2

◦ ◦ • ◦ •• −→ ◦ ◦ ◦ • •• 1 0 0 −1 1
2(1− pd)(1− k)yzvw/d

3 ×2
◦ • • ◦ ◦◦ −→ ◦ • ◦ • ◦◦ 0 −1 0 1 1

2(1− pd)(1− k)y
2zu/cde ×2

◦ • • ◦ ◦• −→ ◦ • ◦ • ◦• 0 −1 −1 2 1
2(1− pd)(1− k)y

2z2/cde ×2
◦ • • ◦ •• −→ ◦ • ◦ • •• 1 −1 0 0 1

2(1− pd)(1− k)y
3v/cd2 ×2

• ◦ • ◦ ◦◦ −→ • ◦ ◦ • ◦◦ 0 0 1 −1 1
2(1− pd)(1− k)zuvw/d

2e ×2
• ◦ • ◦ •◦ −→ • ◦ ◦ • •◦ 0 1 1 −2 1

2(1− pd)(1− k)v
2w2/d3 ×2

• ◦ • ◦ •• −→ • ◦ ◦ • •• 1 0 1 −2 1
2(1− pd)(1− k)yv

2w/d3 ×2
• • • ◦ ◦◦ −→ • • ◦ • ◦◦ −1 0 0 1 1

2(1− pd)(1− k)xyzu/cde ×2
• • • ◦ ◦• −→ • • ◦ • ◦• −1 0 −1 2 1

2(1− pd)(1− k)xyz
2/cde ×2

• • • ◦ •◦ −→ • • ◦ • •◦ −1 1 0 0 1
2(1− pd)(1− k)xyvw/cd

2 ×2
◦ • ◦ ◦ ◦ −→ ◦ • • ◦ ◦ 0 1 0 0 1

2(1− pd)kzuw/de ×2
◦ • ◦ ◦ • −→ ◦ • • ◦ • 0 1 −1 1 1

2(1− pd)kz
2w/de ×2

◦ • ◦ • ◦ −→ ◦ • • • ◦ 1 1 0 −1 1
2(1− pd)kvw

2/d2 ×2
◦ • ◦ • • −→ ◦ • • • • 2 0 0 −1 1

2(1− pd)kyvw/d
2 ×2

• • ◦ ◦ ◦ −→ • • • ◦ ◦ 1 0 0 0 1
2(1− pd)kyzu/de ×2

• • ◦ ◦ • −→ • • • ◦ • 1 0 −1 1 1
2(1− pd)kyz

2/de ×2
• • ◦ • ◦ −→ • • • • ◦ 2 0 0 −1 1

2(1− pd)kyvw/d
2 ×2

• • ◦ • • −→ • • • • • 3 −1 0 −1 1
2(1− pd)ky

2v/d2 ×2
• • ◦ ◦ ◦ −→ • • • ◦ ◦ 1 0 0 0 1

2(1− pd)pbyzu/de ×2
• • ◦ ◦ • −→ • • • ◦ • 1 0 −1 1 1

2(1− pd)pbyz
2/de ×2

• • ◦ • ◦ −→ • • • • ◦ 2 0 0 −1 1
2(1− pd)pbyvw/d

2 ×2
• • ◦ • • −→ • • • • • 3 −1 0 −1 1

2(1− pd)pby
2v/d2 ×2

Table 6.4: All reactions for the triplet approximation, where at least one of ∆n•••,

∆n••◦, ∆n•◦◦ or ∆n•◦• is non-zero.

127

Wednesday, 13 January 2010



  

 

Henrik Jeldtoft Jensen                                                 Imperial College London

6.6: The cluster approximation method
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Figure 6.11: Numerical results for a) the critical point for various values of k and

b) the steady state population density at k = 0 . The red line shows the original MF

approximation (n = 1) and the crosses (from right to left) the n = 2, 3, 4 and 5. The

black circles illustrate the MC results. c) The approximation for pdc for k = 1 for the

different values of n. The red circle shows the MC value with the red hashed line giving

an extrapolation through the points for n = 4 and n = 5.

with the order of the approximation. The n = 5 case, for example, required 13 independent

variables with over 1,100 reactions. We therefore had to write a program that considered all

the possible reactions, evaluated the probability of each, and then outputted the equations

for the independent variables.

The results of the approximations and simulation results for the critical points and

steady state population density for k = 0 are shown in Figures 6.11 a) and b) respec-

tively. We clearly see how the increase in order of the approximations gives a more accurate

approximation for the behaviour of the model to the numerical simulation results. In partic-

ular, for k = 1, we show in Figure 6.11 c) the approximated values for pdc against 1/n. An

extrapolation of the results as n→∞ shows excellent agreement with the MC value. Unfor-

tunately, at the first-order phase transition, when the number of real steady state solutions
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Behaviour for increasing n
Location of tricritical point - no good agreement
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Geometrical structure of 
population

Simulations

7.1: The geometry of the individual clusters
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Figure 7.4: a) Space-time plots of a critical cluster beginning with two adjacent particles

at the centre of an otherwise empty lattice for k = 1 (left) and k = 0 (right). b) The

number of boxes N(ε2⊥, ε‖) of volume ε
2
⊥ε‖ needed to cover all of the occupied sites for

k = 1 (blue) and k = 0 (green). The hashed line shows the DP value Df = 2.204.

exponential decay in P (nc) for parameter values on the continuous phase transition line

in Figure 7.3 b), we see a local peak in the histogram for large nc at the first-order line.

Further differences are seen when, in the next section, we examine the survival probabilities

of these clusters, which also depend greatly on the value of k.

7.1.2 Time-evolution of the clusters

Having examined the individual clusters at an instant in time, we turn now to study how

they evolve in time. Clearly, the size of a cluster will change and new clusters may form

from the original. Due to the lack of any spatial or temporal scales at continuous phase

transitions, we expect the structure to be both spatially and temporally invariant to scaling

for k > k∗ as we have seen many times before. The system at criticality, then, is self-similar

and so we predict it will be fractal. Figure 7.4 a) shows the space-time plot for a system

beginning with two adjacent particles for k = 1 and pd = pdc = 0.41626. Its fractal structure

is clear, particularly when seen in contrast to the non-fractal plot also given for k = 0 and

pd = pdc = 0.0973.

We calculate the fractal dimension Df = df + 1 by finding the number N of (2 + 1)-

dimensional boxes of linear length ε⊥ and ε‖ in space and time respectively needed to cover

all occupied sites. We expect N to scale as [197]

N (ε2⊥, ε‖) ∝̄ ε
−Df
⊥ , (7.3)
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Properties of individual clusters
7.1: The geometry of the individual clusters

Figure 7.2: Picture of how the different clusters are taken from the original lattice and

one by one are placed at the centre of a sufficiently large lattice.
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Figure 7.3: Histograms of a) Rg and |ri − rm|2 (inset) for clusters of size 20 and b)

cluster size. In both plots we have k = 0 (blue), k = 0.12 (green) and k = 1 (red) and in

a) only, the randomly formed clusters given by the hashed, black line.

The radius of gyration Rg for a cluster is then given by

Rg =
1

nc

nc∑

i=1

|ri − rm|2. (7.2)

We examined both Rg and the squared distances of each individual from the centre of

mass of these clusters and compared these with clusters that had been randomly generated.

These random clusters were formed by placing each new individual at a nearest neighbouring

site of a randomly chosen individual. The results for the different values of k are shown in

Figure 7.3 a). We see that the histograms seem independent of k and are collectively in

contrast to the randomly formed clusters.

While the structures of the individual clusters appear to be independent of k, in contrast,

the probability of there being a cluster of size nc depends greatly on k. Although there is
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Time-evolution of individual clusters7.1: The geometry of the individual clusters
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Figure 7.4: a) Space-time plots of a critical cluster beginning with two adjacent particles

at the centre of an otherwise empty lattice for k = 1 (left) and k = 0 (right). b) The

number of boxes N(ε2⊥, ε‖) of volume ε
2
⊥ε‖ needed to cover all of the occupied sites for

k = 1 (blue) and k = 0 (green). The hashed line shows the DP value Df = 2.204.

exponential decay in P (nc) for parameter values on the continuous phase transition line

in Figure 7.3 b), we see a local peak in the histogram for large nc at the first-order line.

Further differences are seen when, in the next section, we examine the survival probabilities

of these clusters, which also depend greatly on the value of k.

7.1.2 Time-evolution of the clusters

Having examined the individual clusters at an instant in time, we turn now to study how

they evolve in time. Clearly, the size of a cluster will change and new clusters may form

from the original. Due to the lack of any spatial or temporal scales at continuous phase

transitions, we expect the structure to be both spatially and temporally invariant to scaling

for k > k∗ as we have seen many times before. The system at criticality, then, is self-similar

and so we predict it will be fractal. Figure 7.4 a) shows the space-time plot for a system

beginning with two adjacent particles for k = 1 and pd = pdc = 0.41626. Its fractal structure

is clear, particularly when seen in contrast to the non-fractal plot also given for k = 0 and

pd = pdc = 0.0973.

We calculate the fractal dimension Df = df + 1 by finding the number N of (2 + 1)-

dimensional boxes of linear length ε⊥ and ε‖ in space and time respectively needed to cover

all occupied sites. We expect N to scale as [197]

N (ε2⊥, ε‖) ∝̄ ε
−Df
⊥ , (7.3)
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7.1: The geometry of the individual clusters
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Figure 7.5: a) Plot of survival probability (for tmax = 200) against initial cluster size

for (from bottom to top) k = 0, 0.12 and 1. Relatively small cluster sizes were used since

clearly Ps → 1 as cluster size → ∞. The inset shows Ps against population size, where

the population increases with probability p and decreases by probability q as outlined in

the text. The red hashed line shows true linear behaviour with gradient 0.0074. Equal

values p = q = 0.1502195 were used with tmax = 1000. b) The number of births (solid

line) and deaths (hashed line) per individual per time step for (from bottom to top)

k = 0, 0.12 and 1. The inset shows how, for k = 1, the position of the crossover for Bi(n)

and Di(n), nc diverges to infinity with power law behaviour as tmax → ∞. The hashed

line gives the gradient 0.576.

Bi(n) for k = 0 but a negative influence for k = 1. At k = k∗, for sufficiently large population

sizes, Bi(n) is independent of the population size. In fact, for n > 40, Bi(n) ≈ Di(n). The

plots in Figure 7.5 b) appear to show the systems out of criticality since we would expect

Di(n) = Bi(n) as n → ∞ at criticality. In particular, the results for k = 1 apparently

illustrate a typical population size due to the crossover of Di(n) and Bi(n) at some n = nt,

seemingly contradicting the scale-free nature one would expect to observe at criticality. We

find, however, these effects are a result of the finite tmax used1. In all cases, Bi(n)→ Di(n)

as tmax → ∞ and n → ∞ as shown in the inset in Figure 7.5 b) for k = 1. For finite tmax
and a sufficiently large population size, however, it is only at the tricritical point that there

is equality in the number of births and deaths per individual per time step.

We examine now whether it is this equality in the number of births and deaths that

results in the observed linear relationship between initial cluster size and Ps. We simplify our

model by considering the macroscopic population size n(t) only and ignoring the microscopic

1We note at this asymptotic limit that although Bi(n) > Di(n) leads to a growing population, the density

is still zero in the thermodynamic limit.
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7.2: The geometry of the whole population

k = 0, pd = pdc = 0.0973
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Figure 7.9: For two values of k (k = 0 and k = 1), we plot (from top to bottom)

histograms of cluster size nc and distance between clusters r, and a typical snapshot of

the population. For each value of k, we have combined all the population distributions

whose survival probability Ps fell within the same range. We show both the highest and

the lowest ranges of Ps for each value of k. A 128×128 lattice was used with ρε = 64/1282.
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7.2: The geometry of the whole population
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Figure 7.9: For two values of k (k = 0 and k = 1), we plot (from top to bottom)

histograms of cluster size nc and distance between clusters r, and a typical snapshot of

the population. For each value of k, we have combined all the population distributions

whose survival probability Ps fell within the same range. We show both the highest and

the lowest ranges of Ps for each value of k. A 128×128 lattice was used with ρε = 64/1282.
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Cluster size and survival

Purely sexual: 
population consisting of 
few large clusters best

Purely asexual: 
population consisting of 
many small clusters best
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Cluster size and survival

At k=0.2 no significant 
dependence on cluster 
distribution

Situation different 
for k>0.2:
small well separated 
clusters best

   

7.2: The geometry of the whole population
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Figure 7.10: Histograms of cluster distribution for different ranges of Ps along with

various snapshots of the population distributions for k = 0.2 and pd = pdc = 0.18888.

With tmax = 500, the top three snaphots had survival probabilities (from left to right)

0.42, 0.42 and 0.46 and the bottom three had probabilities 0.75, 0.75 and 0.76. We see

no real difference between the cluster distributions for those that had a better chance of

survival against those that had the worst, as verified by the collapsed histograms.

Figure 7.11: Snapshots of the population distribution at times (from left to right) t1,

t2 and t3 from Figure 7.6.

with the spatial structure of the population.

As a general rule-of-thumb, then, we say that for k > 0.2, populations have a better

chance of survival if they belong to small clusters that are separated by large distances.

For k < 0.2, however, this structure results in a low chance of survival since the population

has a greater probability of survival if it is grouped together in a single, large cluster. To

demonstrate this principle we return to the data from Figure 7.6 which was obtained with

k = 1. Snapshots of the population at times t1, t2 and t3 are shown in Figure 7.11. We see

that where the population is more sparsely distributed, the population recovers in the short-

term, whereas it dies out shortly after t3 when the population is more densely distributed.
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k=0.2
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Summary - conclusion

  Simple stat mech model - optimal refuge size
       + importance of fluctuations

  Focus on geometry of clusters 
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