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Motivation

Extinction of species happens at an ever increasing rate.
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Model

Die with probability: P4
Sexual reproducing individuals
Move about by random walk

May reproduce when nearest neighbours: Db
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Figure 3.1: Two example plots in the (1+1)-dimensional simulations results with p, =
0.5 and pq = 0.07. The black plot is an average over 1,000 runs, whereas the red plot is

the data from just one run.
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Model Details

1) A set number of individuals are randomly placed on the lattice (usually we begin with

all sites occupied).

2) A site is chosen at random.

3) If the chosen site is empty, nothing happens. Return to 2).

%’i%%—%%%

4) If the chosen site is occupied, the individual dies with probability p4. If the individual

dies, return to 2). Otherwise, continue to 5)
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Model Details

5) If the individual does not die, a neighbouring site is chosen at random. If this site is

empty. the individual moves there and we return to 2). If the site is however occupied,

ittt

6) Another neighbouring site is chosen at random. If this site is occupied, nothing hap-

continue to 6).

pens and we return to 2). Otherwise, a new individual is placed on this site with

I probability m,.

Henrik Jeldtoft Jensen Imperial College London

Wednesday, 13 January 2010



Mean field equation

d[;l—it) = pp(1 = pa)p” (O)[1 — p(t)] — pap(t)
T L i 3  4pq
Po=0orpy = 5l1+ \/1 py(1 —pd)]
For p(0) =1

lim p(t) = p4 for pg < pa,

{— 00

pa. = pv/ (4 + po)
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The spatio-temporal process

Figure 3.4: Space-time plots showing examples where the population survives (left)
and dies out (right) for tpmax = 2,000. A value of p, = 0.5 was used in both cases with
pa = 0.071 in the left plot and pq = 0.075 in the right.
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Figure 3.3: Critical parameter values for the MF (line), 1 =1 {+).2+1(x) and 3+ 1

(o) dimensional simulations.

survival probability known as o ’
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Figure 3.5: a) dp/dt versus p showing the (in)stability of the stationary points p, (p_)
and py. b) Bifurcation diagram according to the MF equation where solid lines show the

stable, and hashed lines the unstable, steady states.
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Extinction as phase
transition
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Extinction as a phase transition
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Figure 4.1: Steady state population densities for the MF (line) and the (1 + 1)- (4),

(24 1)- (x) and (3 + 1)- () dimensional MC simulations.

Discontinuous change for d> 1

Continuous change ford =1 =% look for p(t) X t_5

A. Windus and H.J. Jensen,
Phase transitions in a lattice population model.
J Phys A, 40, 2287-2297 (2007).

Henrik Jeldtoft Jensen

d=1:
Exponents consistent with
Directed Percolation class

Imperial College London

Wednesday, 13 January 2010



Continuous transition: Algebraic indicator
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(141)-dimensional model (middle black line) and non-power law behaviour for the off
critical points. The black lines represent (from top to bottom) pg = 0.071654, 0.071754
and 0.071854. The red line represents the gradient -0.159 as a guide for the eye. b)
Non-power law behaviour for various values of pq close to the critical point for the 2 + 1
dimensional model. The exponential decay for the super-critical values are shown in the
inset. The 3 + 1 dimensional case is very similar. Information on how the critical points

were found are detailed later in this chapter.
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I Figure 4.2: a) Log-log plots showing power law behaviour at the critical point for the

Wednesday, 13 January 2010



Discontinuous transition: hysteresis
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Figure 4.3: Hysteresis loop for the a) (241)- (inset) and (3+1)-dimensional models and
b) no hysteresis occurring in the (1+ 1)-dimensional model. The ticks show p4 increasing

(x) and decreasing (+).
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and population size to scale as
Pit) ~ t7
n(t) ~ "

Asymptotic values

n = 0.314 +0.002
O = 0.160£0.00.2
consistent

with Directed Percolation
universality class
n = 0.313686

0 = 0.159464
Henrik Jeldtoft Jensen
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Figure 4.4: Plots of a) n(t) and b) §(t) up to t = 10°. From top to bottom, pq =
0.071746, 0.071754 (red) and 0.071762. Plots c) and d) show the same but only up to
t = 10* and with pq = pa, = 0.071754 only. The insets show the plots of n(t) and P(t)
with the hashed lines showing the gradients of n and ¢ respectively.
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First orderind = 2 - 7

Histogram indicators wl 1o oD

0.8 1

Figure 4.8: a) Normalised histogram, N'(p) for different population densities in the
(1+1)-dimensional (left) and (2+ 1)-dimensional (right) cases showing the results at the
critical point for a continuous and first-order phase transition respectively. b) Example
of output at the critical point pq, with pa, —0.001 (top) and pq, + 0.001 (bottom) in the

(2+1)-dimensional case.

a) b)

Figure 4.9: Histogram of population density for different number of time steps at a)
a first-order phase transition and b) a continuous phase transition. In both cases, from

right to left, ¢ = 100, 200, 400, 800, 1600, 3200, 6400 and 12800.
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Size dependence

The value of P4, in the limit L — oo
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Figure 4.10: L-dependent critical point in 241 dimensions for a) our histogram method

and b) the interface method. In a) the red hashed line shows the line of best fit, extrap-

olating to the thermodynamic limit and in b), it shows the mean value of p4, (top) and

pd, (bottom).
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Interface Method
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Figure 4.11: Snapshots showing the dynamics of the population at different time steps

for pg < pq. (left) and py > pg. (right).
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Between one and two
dimensions
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Does the change in the nature of transition occur
for d between 1 and 2 dimensions?

Fractals of different fractal mass dimensions

SC(92,32,3) SC(5%,16,4) SC(42,12,4) SC(32,8,5)
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Figure 4.12: Pictures of Sierpinski carpets of various fractal dimensions. Although a
finite value of k was used in each case, we give the approximate fractal dimensions as (from
left to right) df ~ log(32)/log(9) = 1.5573, log(16)/log(5) = 1.7227, log(12)/log(4) =
1.7925 and log(8)/log(3) = 1.8928 (all to 4 decimal places).

A. Windus and H.J. Jensen,
Change in order of phase transition on fractal lattice.
Physica A 388, 3107 (2009)
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Change in nature of transition appears to
happen ford = 1.7

Continuous phase transition: First-order phase transition:

dg ~1og(16)/log(5) df ~1og(8)/log(3)

x10°

Figure 4.13: Results and snapshots of the simulations for the continuous (left) and
first-order (right) phase transitions. For the continuous phase transition, we have used a
single seed and we see the resulting power law behaviour along the hashed lines. For the
first-order phase transition we began the simulations from a fully-occupied lattice and

we observe the double-peaked structure in the histogram of population density.
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Scaling relation for d; < d,.
n+20=d/z—=n+20=ds/z

Measure n and d in simulations from

P(t) & t°
n(t) o t"
dy
and estimate z from Zsca,ling =
N+ 20

compare with the directly measured value of z from

R%(t)x t/7
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Behaviour below and above d=1.7

a) dy ~ 1.5573 b d; ~ 1.5573
1o ___-_-_._-___________ ]

S , Change from
0 continuous to
T e discontinuous
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Figure 4.14: &) Plots of m(t] and P(t) at the critical point for fractal dimension 1.5573.
The hashed lines give the estimeted values for the exponents outlined in Table 4.1. b}
ghows the plot of R?(t) with the heshed line showing the gradient 2/z with z given
by the scaling relation (4.19). <) The double pesked histogram of populstion density
imdlicating & frst-order phase transition for @ ~ 1.8928. The inset shows the predicted
values of py (N) and an extrapolation of these results for N — oo, d) Possible power
lew behawiour for dr ~ 1.7027. The insst shows the lack of the double-peaked structure
in the histogram.
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Conservation ecology

Size of refuge

14000}

Number of threatened species

:
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From

http://www.iucnredlist.org/info/2007RL Stats Table%202.pdf.
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Conservational implications of the model

() Analytic analysis of population dynamics equations like

Op(z, 1)
ot

= pup — p> + DV?p

conclude the existence of a threshold habitat size above which
extinction won'’t occur.

() We find that size dependence is more subtle and strongly
influenced by the existence of a critical point.
Fluctuations important.

A. Windus and H.J. Jensen
Allee Effects and Extinction in a Lattice Model.
Theo. Popul. Biol. 72, ,459-467 (2007).
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Increase pg to 1 at

~

L briefly to let

population density

dropto pPe = P—

Most run did result
in extinction !

Henrik Jeldtoft Jensen

Conservational implications of the model

() The need to find a mate introduces a direct density effect.
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Figure 5.5: a) The average population density of the surviving runs only. b) The
average population density of all the runs (solid line) and the survival probability P(t)
(hashed line), i.e. the probability that extinction has not occurred up to time ¢. c) Plot
showing the recovery of the population density for the surviving runs only after a disease
breakout at t = 3000 due to the re-sizing of the lattice. The lattice is returned to how it

was originally at ¢ = 6000 and the population recovers its original size.

Imperial College London

Wednesday, 13 January 2010



Survival probability and habitat size

0.35

Figure 5.6: a) How the probability of survival changes with different reductions in
habitat area, AA for p. = p = 0.05 (I]), 0.08 (), 0.11 (v7), 0.14 (o) and 0.17 (1).
The corresponding values of pg were 0.089, 0.091, 0.092, 0.093 and 0.094 respectively. b)
How the probability of survival changes with reductions in habitat size, A A, for different

initial values L =26 (1)), 32 (<), 38 (v/), 44 (o) and 50 (/) with p. = p; = 0.11.
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Mixture of asexual and sexual
reproduction

All bacteria and viruses exhibit asexual
reproduction. Fungi and Oomycetes can
be asexual, sexual, or exhibit a mixture of
both types of reproduction.

http://en.wikipedia.org/wiki/Oomycete
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Tricritical behaviour

Generalised model.

asexual reproduction to occur with rate kL
sexual reproduction as before occur with Dy,

I Continuous phase transition at k = lf—‘;d
I SURVIVAL

N

Tricritical point

Py

EXTINCTION k*F

PvPd k

1=pa

First-order phase transition at k = —py, + 2

0 Da

Figure 6.2: MF phase diagram showing the first-order and continuous phase transition Pa o

lines. The tricritical point is also shown as well as the density-dependent region.
Figure 6.3: Plot showing how the value of the threshold population density varies across

the density-dependent region. The darker the shade, the greater the value.

Henrik Jeldtoft Jensen Imperial College London

Wednesday, 13 January 2010



Relative rates of sexual asexual reproduction

Population structure at criticality. Concentrate on 2+1

For k=0.17 asexual rate = sexual rate dimensions
Initial snapshot Density Asexual Sexual
distribution reproduction rate reproduction rate

Sexual reproduction favoured
in the denser areas

w5 e

SoeTie

Figure 6.5: Plots of initial snapshots and average density distribution and relative
reproduction rates over 50 time steps for (from top to bottom) k& = 0.05, 0.17 and 1.0.
The lighter colours indicates the greater probability for the latter three pictures in each

Trow.
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Tricritical: Monte Carlo & Mean field
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Figure 6.6:

Phase diagram for the MF (lines) and simulation results (x).

0.5

The

red lines/markers show the critical points and the area in between the blue and red

lines/markers shows the density-dependent region. The inset illustrates a zoomed-in

region for the MC results only.

A. Windus and H.J. Jensen
Cluster geometry ans survival probability in systems driven by
reaction diffusion dynamics

New J Phys 10, 113023 (2008)
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Improved Mean Field
Cluster approximation

INn one dimension
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Cluster approximation method

Reaction An, Ane, Probability

eee — oo -1 -2 pac?/p

ee0 —» eo0oO -1 —1 pgcd/p X2
ceo —3 o000 -1 0 pad?/p

ee0c0 —> eo0e0 0 —1 11 —pa)(1 —k)ede/p(1 —p) x2
cece —5 o0O0ee 0 41 3(1—pa)1—k)d3/p(1—p) x2
eco — eeo +1 41 1(1—pq)kde/(1-p) X2
ece — eee +1 42 L(1—pg)kd®/(1-p) X2
eec0 — eeeo +1 +1 11— pa)ppede/p(1 — p) X2
eece — eeee +1 42 1(1—pq)pred®/p(l - p) X2

Table 6.3: Reactions for the 2-site approximation. This time, reactions such as eece —
e o ee for which An, = Ane, = 0 have been ignored. A symmetry factor arising from
the parity symmetry has also been included (right column) rather than writing both

equations down.

A. Windus and H.J. Jensen

Accuracy of the cluster-approximation method in a
nonequilibrium model.

J Stat Mech P03031 (2009)
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Reaction ANeee ANgeo ANeoo Anee Probability

0coe00 —3» 00000 0 0 -1 0 pgzlw/d?

coeoce —» o00O0O® 0 0 0 —1  pazvw/d? X2
coeeo —» 000@O 0 -1 0 pay?z/cd X2
coeee —3» oOO0Oee -1 0 0 paryz/cd X2
ceece —3% oceocOe 0 -1 1 —1  pay?v/cd x2
ceeeo —3> O0e0eO -1 -1 0 1 pazy?/c?

ceeee —3> oOecee -2 0 0 1 pazly/c? X2
ece0e —3 e0O0Oe 0 0 1 -2 pdv2w/d2

eceee —> eO0Oee -1 0 1 —1 pgzyv/cd X2
eeeee > eecee -3 1 0 1 pdz‘3/c2

coeococe — 00OeOe 0 0 -1 1 31 -pa)(1—k)Bw/d’e  x2
coeo0e0 —3 00O0eeo 0 1 0 -1 3(1—pa)(1 = k)zow?/d>  x2
coecee —3 0O0OCeee 1 0 0 -1 %( —pa)(1 — k)yzow/d> X2
0ee000 —3 O0O@O0®00 0 -1 0 1 %( pd)(lf/c)yZzu/cde X2
ceecce —3 oOeoeoe 0 -1 -1 %( —pa)(1 — k)y? x2
ceecee —> OeOeee 1 -1 0 0 %( —pa)(1—k)y 1)/cd2 X2
€00000 —> @00eO00 0 0 1 -1 %( —pa)(1 — k)zuvw/d?e  x2
€000 —> e0Oeeo 0 1 1 —2 %( —pa)(1 — k)v?w?/d? X2
e0ecee —> eO0OCeee 1 0 1 —2 %( —pa)(1 — kB)yv?w/d® X2
e0e000 —> ee0e00 -1 0 0 1 %( —pa)(1 — k)zyzu/cde X2
eeec0e —5 eeOeoOe -1 0 -1 2 %( —pa)(1 — k)zyz?/cde %2
eeece0 —5 ee0eeO -1 1 0 0 3(1—pa)(l—k)zyvw/cd® x2
0000 —> O0ee00 0 1 0 0 %( — pa)kzuw/de x2
cecoce —> oOeeoce 0 1 -1 1 %( — pa)kz?w/de X2
ceceo0 —> OeeeO 1 1 0 -1 %( — pa)kvw? /d? X2
cecee —> Oeeee 2 0 0 -1 %( — pa)kyvw/d? x2
@000 —5> eee0O 1 0 0 0 %( — pa)kyzu/de X2
eec0e —3 eeece 1 0 -1 1 31— pa)kyz®/de X2
o000 —3 eeeeO 2 0 0 -1 %( — pa)kyvw/d? x2
eecee — eeeee 3 -1 0 -1 3(1—pa)ky*v/d? X2
©e000 —> @ee0O0 1 0 0 0 %( — pa)ppyzu/de X2
eec0e —> eeece 1 -1 1 %( — pa)ppyz?/de X2
ee0e0 —> eeeeO 2 0 -1 %( — pa)ppyvw/d? X2
eecee — eeceee 3 -1 0 -1 %(1—pd)pby v/d? X2

Table 6.4: All reactions for the triplet approximation, where at least one of Angee,

ANeeo, ANgoo OF Algoe IS NON-ZETO.

Henrik Jeldtoft Jensen

Imperial College London
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Behaviour for increasing n
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Figure 6.11: Numerical results for a) the critical point for various values of k and
b) the steady state population density at & = 0 . The red line shows the original MF
approximation (n = 1) and the crosses (from right to left) the n = 2, 3, 4 and 5. The
black circles illustrate the MC results. c¢) The approximation for pq, for £ = 1 for the

different values of n. The red circle shows the MC value with the red hashed line giving

an extrapolation through the points for n =4 and n = 5.
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Behaviour for increasing n

Location of tricritical point - no good agreement

05

0.4r-

0.3r

k* (n)
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01r
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04

1/n

0.6

08

Figure 6.12: Plot showing how the approximated value of the tricritical point changes

with n. The hashed red line is the straight line through the points from n = 2 to 5.
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Geometrical structure of
population

Simulations

A. Windus and H.J. Jensen

Cluster geometry and extinction

in systems driven by reaction-diffusion dynamics.
New J of Physics 10, 113023 (2008)
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Properties of individual clusters

&—C

Figure 7.2: Picture of how the different clusters are taken from the original lattice and

one by one are placed at the centre of a sufficiently large lattice.
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Figure 7.3: Histograms of a) R, and |r; — ry|? (inset) for clusters of size 20 and b)

cluster size. In both plots we have k = 0 (blue), k = 0.12 (green) and k = 1 (red) and in

a) only, the randomly formed clusters given by the hashed, black line.
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Time-evolution of individual clusters
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Figure 7.4: a) Space-time plots of a critical cluster beginning with two adjacent particles

at the centre of an otherwise empty lattice for £k = 1 (left) and k£ = 0 (right). b) The

number of boxes N (€2, €) of volume eie“ needed to cover all of the occupied sites for

k =1 (blue) and k = 0 (green). The hashed line shows the DP value D, = 2.204.

Henrik Jeldtoft Jensen

I Y

Imperial College London

Wednesday, 13 January 2010



Cluster size and survival

1

Curve corresponding to

the tricritical point: N |
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I Figure 7.5: a) Plot of survival probability (for tmax = 200) against initial cluster size
for (from bottom to top) k = 0, 0.12 and 1. Relatively small cluster sizes were used since
clearly Ps; — 1 as cluster size — oco. The inset shows P, against population size, where
the population increases with probability p and decreases by probability ¢ as outlined in
the text. The red hashed line shows true linear behaviour with gradient 0.0074. Equal
values p = ¢ = 0.1502195 were used with tmyax = 1000. b) The number of births (solid
line) and deaths (hashed line) per individual per time step for (from bottom to top)
k =0, 0.12 and 1. The inset shows how, for k = 1, the position of the crossover for B;(n)

| and D;(n), n. diverges to infinity with power law behaviour as tpyax — co. The hashed

line gives the gradient 0.576.

A. Windus and H.J. Jensen
Cluster geometry and extinction
Int J of Mod Phys C. 20, 97 (2009)

Henrik Jeldtoft Jensen Imperial College London

Wednesday, 13 January 2010



Cluster size and survival
E=0. pa=pa = 00973 Purely asexual:

02< P, <03 0.6 < P, <0.7 population Consisting of
many small clusters best
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Figure 7.9: For two values of k (k = 0 and k¥ = 1), we plot (from top to bottom)
histograms of cluster size n. and distance between clusters r, and a typical snapshot of
the population. For each value of k, we have combined all the population distributions
whose survival probability Ps fell within the same range. We show both the highest and
the lowest ranges of P for each value of k. A 128 x 128 lattice was used with p. = 64,/1282.
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Cluster size and survival

k=0.2

At k=0.2 no significant 035
dependence on cluster o

. . . 0.25-
distribution ool
POl

66 80
0.1 :

0.051

30 40

various snapshots of the population distributions for k¥ = 0.2 and pg = pg, = 0.18888.
With ¢,.x = 500, the top three snaphots had survival probabilities (from left to right)
0.42, 0.42 and 0.46 and the bottom three had probabilities 0.75, 0.75 and 0.76. We see
no real difference between the cluster distributions for those that had a better chance of

Sltuatlon dlﬁe rent survival against those that had the worst, as verified by the collapsed histograms.

for k>0.2:
small well separated
clusters best
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I Figure 7.10: Histograms of cluster distribution for different ranges of P along with
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Summary - conclusion

2k Simple stat mech model - optimal refuge size
+ importance of fluctuations

2Kk Focus on geometry of clusters
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Thank vou
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